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Abstract. In this paper, we study two second-order moment multifractal traffic 
models and evaluate which one offers better modern network traffic modeling 
for a given input network traffic trace. Two multifractal process models have 
traffic arrival loads with the Lognormal and Pareto distributions. The adopted 
evaluation procedure is based on two performance measures: empirical traffic 
arrival load distribution and loss probability at connection. Experimental 
results carried out on both real network traffic traces and synthetically 
generated ones have validated our approach. 

Resumo. Neste artigo, nós estudamos dois modelos de tráfego multifractais 
com momento de segunda ordem e avaliamos qual deles apresentam melhor 
modelagem de tráfego nas redes modernas para um determinado traço de 
tráfego. Os dois modelos de processos multifractais possuem carga de 
chegadas de tráfego com distribuições Lognormal e Pareto. O processo de 
avaliação adotado está baseado em duas medidas de desempenho: 
distribuição empírica da carga de chegada do tráfego e probabilidade de 
perda em conexões. Os resultados experimentais realizados em ambos os 
traços de tráfego reais e aqueles gerados sinteticamente validaram a nossa 
abordagem. 

1. Introduction  
Since the publication of the work of Leland et. al. [Leland et. al. 1994], there has been 
an intensification of research on network traffic involving the theory of fractals. Using 
Ethernet traffic collected in the network of Bellcore Morristown Research and Center 
Engineering, Leland at. al. had demonstrated that traffic traces of  modern high speed 
data networks exhibit fractal properties, such as self-similarity and long-range 
dependence (LRD). It was found that these properties, especially the long-range 
dependence, have a strong influence on network performance [Norros 1994], however 
not being adequately modeled by Poisson processes or more generically, Markov 
models. 

 In fact, the long-range dependence is an important characteristic of traffic, and 
has relevant implications in diverse issues such as queuing theory and network design. 
The heavy tail distribution of the duration or length of sessions or connections that 
originates from the aggregated traffic is identified as the cause of observed self-similar 
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characteristics [Park and Willinger 2000][Crovella and Bestavros 1997]. Thus, several 
mathematical models were proposed with the aim of better representing the self-similar 
characteristic found on network traffic. Particularly the fractional Brownian traffic (fBt) 
model became widely used due to its mathematical simplicity and the capacity of 
incorporating the features observed in the self-similar traffic [Park and Willinger 2000].  
 However, it has been observed that, on the time scales of the order of hundred 
milliseconds and more, the traffic behavior was well represented by self-similar models, 
whereas in smaller time-scales, self-similar models cannot effectively match real traffic 
characteristics. This finding has led the search for more comprehensive traffic models, 
in order to obtain a more faithful description of the network traffic. The multifractal 
processes arise as a generalization of self-similar processes, in order to providing better 
description of varying self-similarity characteristics in different time scales as well as 
the highly irregular behavior of network traffic. Many different multifractal traffic 
models have been proposed. Most and widely studied ones include: MWM [Riedi et. al. 
1999], AWMM [Vieira and Ling 2009], Multiscaling  Models with Lognormal [Stenico 
and Ling 2010] and Pareto [Stenico and Ling 2011] distributed traffic loads, and 
VVGM [Krishna et. al. 2003].  

 Traditionally traffic modeling problems were solved based on best traffic 
statistical propriety fitting, whether traffic has multiscaling properties or not. However, 
we strongly believe a robust traffic modeling method should consider both traffic’s 
static and dynamic characteristics, where latter are strongly impacted and driven by 
network dynamics. This work can be viewed as our very first attempt for robust network 
traffic modeling in which we evaluated two multiscaling traffic models with Lognormal 
and Pareto distributed traffic loads and decide which one best models an input real 
traffic trace. The adopted criterion is based on two measures: empirical traffic arrival 
load distribution fitting and evaluation of loss probability at connection.  
 The paper is organized as follows. In Section 2, we present the definition of the 
multifractal traffic processes, review some their concepts and analyzing the 
characteristics of the second-order statistical moments. In Section 3, we showed the 
expressions proposals for the loss probability estimation based on queuing theory. In 
Section 4 we present our experimental investigation. Finally in Section 5 we conclude. 

2. Definitions of Multifractal Processes and Second-order Moments 

Let ܺ(ݐ) be the traffic rate at t. Then ܹ(ݐ) = ∫ ܺ௧  will be the arriving load up to ݐ݀(ݐ)
t. Denote by ܸ(ݐ∆,ݐ) = ݐ)ܹ + (ݐ∆ (ݐ)ܹ− . The average traffic rate is 
ߣ = ݈݅݉௱௧→ஶ  .ݐ∆/(ݐ∆)ܸ

 Let ߤ and ߪଶ  represent the mean and variance of ܸ(∆ݐ) . Given ܶ > 0 , the 
accumulative process ܹ(ݐ) is said to be a multifractal process at time scale ܶ if all of 
the following condition are satisfied: 

i) ܹ(ݐ) has a stationary increment at time scale ܶ, i.e., ܸ(ݐ, ܶ) =  .(ݐ)ܸ

ii) ߤ (mean) and  ߪଶ (variance) of  ܸ(ݐ), satisfy the following conditions: 
 ii.a) ߤ =  .ܶߣ

       ii.b) There exist an integer ܯ > 0, a set ܣ = :(ܶ)ߚ} 0 < (ܶ)ߚ < 1, ݅ ≤  a set ,{ܯ
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ߔ = ൛߶(ܶ): 0 < ߶(ܶ) < 1, ݅ ≤ ∑,ܯ ߶(ܶ) = 1ୀଵ;ெ ൟ , and a small constant ߝ > 0 
such that for any ߬ ∈ {߬: ܶ − ߝ < ߬ < ܶ + ,ߝ ߬ > 0} such that  

∑~ଶߪ																																					 ߶(ܶ)߬ଶఉ(்)ெ
ୀଵ                         (1) 

 The moments of the first and second orders, given by conditions (ii.a) e (ii.b), 
respectively, have strong influence on the behavior of multifractal traffic. It is observed 
that the variance (second order moment) of multifractal processes is related to the 
Hölder exponent	β(t). The Hölder exponent of a time process at a particular time instant 
t is related to the regularity level of the signal at that instant [Daoudi et. al. 1998].  
Here we assume that the Hölder exponent of a process has a normal distribution in time 
scale ܶ, i.e., ܰ(ߙ,  ,ଶ [Liu and Baras 2003]. Thereforeߪ	 and varianceߙ ଶ) with meanߪ
the variance of the distribution 2 of the traffic process at time scale ܶ  can be 
represented as: 

∫~ଶߪ                ଵ
√ଶగఙ

ݔ݁ ቂ− (ఉିఈ)మ

ଶఙమ
ቃ ܶଶఉ݀ߚ∞

ି∞           (2)              

 Let z = Tଶஒ , then β = ln(z) ൫2ln(T)൯⁄  and dβ dz⁄ = dz (2ln(T)z)⁄ . Then Eq 
(2) becomes 

∫~ଶߪ ݖ ଵ
√ଶగ(ଶ(்)ఙ)௭

ݔ݁ − ൫(௭)ି(ଶ(்)ఈ)൯
మ

ଶ(ଶ(்)ఙ)మ
൨ ஶݖ݀

      (3) 

 The right hand side of Eq. (3) shows that 2  simply has a log-normal 
distribution L(ω, θ) with parameters ω = 2ln(T)α and	θ = (2ln(T)σ)ଶ.  

 Under the log-normal distribution of 2 , it can be shown immediately that [Liu 
and Baras 2003]: 

ߙ(ܶ)2݈݊]ݔ݁~ଶߪ + [ଶ(ߪ(ܶ)݈݊)2 = ܶଶఈܶଶఙ(்)								  (4) 

3. Loss Probability Estimation for Multifractal Processes 
We considered two second-order moment multifractal traffic models in this work. The 
first model considers that the cumulative traffic load ܸ(ݐ)  in the period ,ݐ]	 [ݐ  has 
Lognormal distribution [Stenico and Ling 2010], while the second model, Pareto 
distribution [Stenico and Ling 2011]. 
A. Multifractal traffic Model 1 
Suppose that ܸ(ݐ) has a Lognormal distribution 

݂(௧)(ݔ) = ଵ
√ଶగ௫ఏ

݁ି
((ೣ)షഘ)మ

మഇమ          (5) 

 The distribution parameters ω and θ can be determined by the knowledge of the 
mean µ  and variance  σଶ of the process	V(t). Thus, we can write down µ and σଶ of the 
log-normal distribution in function of the distribution parameters ω and θ  as: 

ߤ = ߱)ݔ݁ + ଶߠ 2⁄ )                             (6) 
and 

ଶߪ    = 2߱)ݔ݁ + (ଶߠ)ݔ݁](ଶߠ + 1]                (7) 

Conversely, we have 
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߱ = −(ߤ)݈݊ ଵ
ଶ
݈݊ ቀఙ

మ

ఓమ
+ 1ቁ				     (8)               

and  

ߠ = ට݈݊ ቀఙ
మ

ఓమ
+ 1ቁ           (9) 

 
 In this model, instead of a normal distribution, it is convenient using an 
exponential function ݂(ݐ) = (ݐܾ)ݔ݁ܽ  to describe the behavior of the variance  2 
under time scale T given by equation (4), thus [Stenico and Ling 2010]:  

߱ = ݈݊ ቂ ఒ்
( ఒమ⁄ )௫(௧)ାଵ

ቃ     (10) 

ߠ = ට݈݊൫(݇ ⁄ଶߣ (ݐܾ)ݔ݁ܽ( + 1൯        (11) 

where k is a finite constant. 
 We assume that the single queue is stable with buffer capacity sufficient to 
accommodate eventual transient bursts. Using the result derived in [Benes 1963], the 
fully characterized queuing behavior of eventually any traffic type in term of 
information loss can be calculated by:  

ܲ௦௦(ݐ) = ∫ ݂(௧)
ஶ
௧ା

(߭)݀߭ + ߩ ∫ ݂(௨)
௧


(߭)|ఔୀ௨ା݀(12)   ݑ 

 The first term on the right side of (12) for the traffic model 1 can be further 
expressed in detail as: 

ܲ௦(ݐ) = ∫ ݂(௧)
ஶ
௧ା

(߭)݀߭ = ଵ
ଶ
− ଵ

ଶ
݂ݎ݁ ቂ(௧ା)ିఠ(௧)

√ଶఏ(௧)
ቃ     (13) 

Thus, the overall loss probability under the stationary state is: 

ܲ(ݐ) = ܲ௦௦(ݐ)௧→ஶ
 = ߩ ݐݑݏ > 0 ቄ∫ ݂(௨)

௧


(߭)|ఔୀ௨ା݀ݑቅ       (14) 

or 

ܲ(ݐ) = ቀ1 − ఒ

ቁ ∫ ଵ

௫ఏ√ଶగ
݁ି

((ೣ)షഘ)మ

మഇమ |௫ୀ௨ା݀ݑ
ஶ
          (15) 

 
Therefore, replacing the equation (10) and (11) in (15) we have the loss 

probability estimation expression based on the lognormal distribution assumption 
proposed in [Stenico and Ling 2010] 

ܲ(ݐ) = ቀ1 − ఒ

ቁ ∫

௫

⎣
⎢
⎢
⎢
⎡
ି
ቈౢቆ	(శ)ට൫ೖ/ഊమ൯ೌೣ(್)శభቇషౢ	(ഊ)

మ

మഏ ౢቀ൫ೖ/ഊమ൯ೌೣ(್)శభቁ
⎦
⎥
⎥
⎥
⎤

ටଶగ ୪୬൫(/ఒమ)௫(௧)ାଵ൯(௧ା)
ஶݐ݀

    
       (16) 
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B. Multifractal Traffic Model 2 
In this modeling ܸ(ݐ) has a Pareto distribution 
 

݂(௧)(ݔ) = ఈഀ

௫ഀశభ
       (17) 

where  µ = ୩
ିଵ

 and σଶ = ቀ ୩
ିଵ

ቁ
ଶ
ቀ 
ିଶ

ቁ are mean and variance of  V(t), respectively. 

 The distribution parameters α and k can be determined by the knowledge of the 
µ and σଶ of the process	V(t).  
 In this model [Stenico and Ling 2011], the function exponential was used for 
describe the relation between the square mean and the variance under time scale 	T, 
i.e.,	µଶ/σଶ = aexp(bt), thus we have:      

ߙ = ఓమ

ఙమ
=  (18)                 (ݐܾ)ݔ݁ܽ

and 

݇ = ߤ − ఙమఓ
ఓమ

= ߤ	 −  (19)           ߤଵି(ݐܾ)ݔ݁ܽ

or 

ߙ = ఓమ

ఙమ
+ 2 = (ݐܾ)ݔ݁ܽ + 2	     (20) 

and 

݇ = ఓయାఙమఓ
ఓమାଶఙమ

= ߤ ቀ௫(௧)ାଵ
௫(௧)ାଶ

ቁ      (21) 

 Using again the results derived in [Stenico and Ling 2011] and [Benes 1963], we 
have: 

ܲ௦(ݐ) = ∫ ݂(௧)
ஶ
௧ା

(߭)݀߭ = ቀ
௫
ቁ
ఈ

 for   ݔ ≥ ݇      (22) 

 Thus, the loss probability under the stationary state assumption is: 

ܲ(ݐ) = ܲ௦௦(ݐ)௧→ஶ
 = ߩ ݑݏ

ݐ > 0 ቄ∫ ݂(௨)
௧


(߭)|ఔୀ௨ା݀ݑቅ    (23) 

or 

ܲ(ݐ) = ቀ1 − ఒ

ቁ ∫ ఈഀ

௫ഀశభ
|௫ୀ௨ା݀ݑ

ஶ
 	    (24) 

 Note that for multifractal traffic series the variables α and k can be calculated 
using equations (18) and (19) or (20) and (21), respectively. Substituting the relations 
given by the equations (18) and (19) into (24), the loss probability can be estimated by 
[Stenico and Ling 2011]:  

ܲ(ݐ) = ቀ1 − ఒ

ቁ ∫

൬ഋ
మ

మ൰൬ఓି
మഋ
ഋమ ൰

ഋమ

మ

(௧ା)
ഋమ
మ

శభ
ஶݐ݀

          (25) 
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 Now substituting the relations given by the equations (20) and (21) into (24), the 
loss probability can be estimated by:  

ܲ(ݐ) = ቀ1 − ఒ

ቁ ∫

൬ഋ
మ

మ
ାଶ൰൬ഋ

యశమഋ
ഋమశమ ൰

ഋమ

మశమ

(௧ା)
ഋమ
మశయ

ஶݐ݀
         (26) 

 

4. Experimental Evaluation 
Our multifractal traffic modeling methodology is composed of the following steps: 

(1) Data Measurement and Empirical Statistical Parameter Estimation – This 
step consisting in traffic data acquisition and data parameter calculation; 
more precisely, definition of time resolution, estimation of ߤ (mean) and  ߪଶ 
(variance) of  ܸ(ݐ), and ܸ(ݐ) probability function fitting, and calculation of 
mean ߙ and variance	ߪଶ. 

(2) Estimation and Parameterization of the Model – For each multifractal traffic 
model, we estimate the distribution parameters ߱  and ߠ  of ܸ(ݐ)  and 
calculation of mean ߙ and variance	ߪଶ (the Normal distribution parameters 
of the Hölder exponent at time scale ܶ). 

(3) Performance Evaluation – The accuracy of multifractal traffic modeling is 
performed based on two performance measures: accuracy of arrival traffic 
load distribution fitting and loss probability at connection.  

 For comparison purpose, we also compared with two other widely known 
multifractal traffic modeling methods. The first model was proposed by Ribeiro et. al. 
[Ribeiro et. al. 2000] who developed an analysis of queue multi-scale for models based 
on multifractal cascades in a non-asymptotic approach. For this process modeling the 
following approximation for loss probability was derived: 

(ܾ)ܳܵܯ = ܲ[ܳ < ܾ] ≔ 1 −∏ ଶషܭ]ܲ < ܾ + 2ି]ܥ
ି 	  (27) 

where K  indicates the series of traffic, n  is the number of scales considered and C 
constant service capacity. This approach is named as the Analysis Multiscale Queuing 
(MSQ), which incorporates the distribution of data traffic across multiple temporal 
resolution (not only the second order statistics). 
 Another approach, similar to the MSQ, is called CDTSQ (Critical Dyadic Time-
Scale Queue), where the loss probability can be estimated as:  

(ܾ)ܳܵܶܦܥ = ܲ[ܳ < ܾ] ≔ ವܭ]ܲ
∗ − ∗ݎܥ > ܾ]           (28) 

 Note that the approach CDTSQ comes of the concept Critical Time-Scale – CTS 
defined as: 

r	∗ = argsup୰∈ℕP[K୰∗ − cr∗ > ܾ]    (29) 
where r = 2୫ for m ∈ (0, … , n). More detail see [Ribeiro et. al. 2000].  

In our experimental investigation we used the Simpson numerical method for 
calculating the proposed expression for loss probability estimation. We tested in 
simulation some real traffic traces TCP/IP: lbl-tcp-3, lbl-pkt-4, 3-7-I-1 and 4-7-I-9, 
available at [http://ita.ee.lbl.gov/html/traces.html]. We also generated several synthetic 
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series, this series were randomly generated following a specific distribution and for 
comparison we consider the Lognormal and Pareto distributions. For each series used, 
we get its process statistics such as mean, variance, under server capacity C = 5 x 105 
bytes/s, and varying buffer size q.  

Table I shows some statistical information (means and variances) of traffic 
traces used. 

 
Table I Mean, Variance 

Traffic Trace Mean Variance 
lbl-tcp-3 1.74 x 104 3.39 x 108 
lbl-pkt-4 3.64 x 103 1.70 x 107 
3_7_I_1 4.69 x 103 5.40 x 107 
4_7_I_9 1.22 x 104 5.39 x 108 

Synthetic Lognormal 2.22 x 104 2.44 x 108 
Synthetic Pareto 1.11 x 103 1.47 x 107 

 
Figure 1 compares the loss probability estimates resulted from applying Eqs. 

(25) and (26) (under the Pareto distribution modeling) for traffic trace lbl-tcp-3. Clearly 
the two performance curves are very close. Thus, for this work we adopt Eq. (25) 
thereafter. 

 

 
Figure1. Differences between Equations 25 and 26. 

 
 Figure 2 compares the performance curves for traffic trace lbl-pkt-4 estimated 

under the Lognormal and Pareto arrival modeling approaches. Clearly the Lognormal 
arrival method offers more traffic modeling accuracy (close to the connection 
simulation result).   
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Figure 2. Loss Probability versus Size of Buffer for the traffic Trace lbl-pkt-4. 

 
Figure 3 compares the performance curves for traffic trace 3-7-I-1 estimated 

under the Lognormal and Pareto arrival modeling approaches. In this case the Pareto 
arrival method offers better traffic modeling accuracy (close to the connection 
simulation result).   

 

 
Figure 3. Loss Probability versus Size of Buffer for the Traffic Trace 3-7-I-1. 

 
For the purposes of showing the advantage of using Multifractal traffic 

modeling, we additionally tested two other real traffic traces and 2 synthetically 
generated traces and add two new performance curves provided by the previously 
mentioned MSQ and CDTSQ methods. Figures 4, 5, 6 and 7 compare these four 
calculated performance curves with respect to the corresponding simulated one and 
confirm the superiority of multifractal modeling approaches. 
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Figure 4. Loss Probability versus Size of Buffer for the Traffic Trace 4-7-I-9. 

    
Figure 5. Loss Probability versus Size of Buffer for the Traffic Trace lbl-tcp-3. 

 
Figure 6. Loss Probability versus Size of Buffer for the Synthetic Lognormal 

arrival Traffic Trace. 
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Figure 7. Loss Probability versus Size of Buffer for the Synthetic Pareto Arrival 

Traffic Trace.  
 

The investi gation results shown by Figures 2, 3, 4 and 5 suggests that traffic 
traces lbl-pkt-4 and  lbl-tcp-3 can be best modeled by a Multifractal Lognomal arrival 
traffic model while traffic traces 4_7_I_9, and 3_7_I_1 by a Multifractal Pareto arrival 
traffic model. Figures 8, 9, 10 and 11 plot the empirical distributions of the 
corresponding arrival traffic load processes what conform the accurate decision of 
traffic models based on the loss probability estimates. Similar results also hold for the 
synthetically generated traffic traces, as illustrated by the Figures 12 and 13. 

 

 
Figure 8. PDF Approximations for the Traffic Trace lbl-pkt-4. 
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Figure 9. PDF Approximations for the Traffic Trace 3_7_I_1. 

 
Figure 10. PDF Approximations for the Traffic Trace 4_7_I_9. 

   
Figure11. PDF Approximations for the Traffic Trace lbl-tcp-3. 
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Figure 12. PDF Approximations for the Synthetic Lognormal Traffic Trace  

 

 
Figure 13. PDF Approximations for the Synthetic Pareto Traffic Trace. 

5. Conclusion 
In this paper, we use two performance measures, namely empirical traffic arrival load 
distribution and loss probability at connection, as the criterion for accurate multifractal 
traffic modeling.  Two proposals for calculating the loss probability were studied, 
considering the multifractal characteristics of traffic on a single server with finite buffer. 

 We strongly believe that a robust traffic modeling method should consider both 
traffic static and dynamic characteristics, where latter are strongly impacted and driven 
by network dynamics. This work can be viewed as our very first attempt for robust and 
complete network traffic modeling. 

 Experimentally we evaluated 4 different real network traffic traces and 2 
synthetically generated traces. Both performance measure criterions provide accurate 
decision on the modeling fitting.  Mostly important the proposed multifractal traffic 
models outperform some other well-known multifractal based approaches suggested in 
literature.  
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 For future work, we should improve further our traffic models by considering 
other discriminating statistical information, for instance, higher order moments of traffic 
processes and/or other heavy tail probability distributions.  
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