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Abstract. The semantic meaning of a content is frequently represented as con-
tent vectors, where each dimension represents an attribute of this content. For
instance, these attributes may represent keywords in a text, colors in a picture,
profile information in a social network, etc. One main challenge in this seman-
tic context is the storage and retrieval of similar contents. This way, a new
Distributed Hash Table (DHT), called Hamming DHT, is proposed in this paper.
The Hamming DHT leverages the Locality Sensitive Hashing (LSH) functions,
specially the Random Hyperplane Hashing (RHH) family, in order to improve
the performance of searches for similar content (similarity search). The pro-
posed DHT propitiates a scenario in which similar contents are stored in peers
nearly located in the DHT indexing space. In a comparison with Chord, the
experimental results indicate the effectiveness of our proposal in terms of the
number of hops required to retrieve similar content, and shows that the pro-
posed DHT is able to aggregate them, improving the similarity search.

1. Introduction

The advent of Peer-to-Peer (P2P) networking changed the way information is distributed,
providing to users the experience of sharing contents of their interest. In theory, P2P net-
works constitute a cooperative system built by the users, in which an unlimited amount of
information from different areas can be accumulated, creating a virtuous cycle for attract-
ing new users. However, the search for information of interest was not a trivial problem,
compromising the P2P virtuous cycle. Firstly, given a search, what are the contents really
related to it? Afterwards, given a search, where are such contents stored? Essentially, in
the first P2P systems, users were forced to perform several searches, providing accurate
keywords in order to find the desirable contents. At the same time, such mechanisms
were based on the flooding of search messages, causing an elevated exchange of control
messages.
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As part of the evolution, the second generation of P2P systemsintroduced the use
of Distributed Hash Tables (DHTs), aiming to facilitate the search and retrieval of content.
Through a structured overlay network, a large volume of data can be organized using
unique content identifiers, that are generated by using base hash functions, such as MD5
and SHA-1. In this solution, peers participating in the DHT also possess an identifier and
are responsible for storing a portion of the overall identity space. As presented in Chord
[Stoica et al. 2003], the portion assigned to each peer is related to its position in a virtual
ring that organizes the identity space. Afterwards, by using key-value primitives, like
put(k,v)andget(k), information can be stored and retrieved, avoiding the use of flooding
mechanisms. However, the use of MD5 and SHA-1 leads to an homogeneous distribution
of the identifiers in the identity space of the DHT, does not preserving the semantic of
similar contents in terms of the location where they are stored. For example, two very
similar contents can be stored in two far away peers, making difficult the search and
retrieval of them. In short, the search for contents of interest is still not efficient given
the scattering of information in the DHT and, also, given the need of providing the exact
content identifier for theget(k)primitive to retrieve the content.

An alternative to improve the searching for similar contents is to organize them
based on their similarities. For this purpose Locality Sensitive Hashing (LSH) functions
can be applied, instead of using MD5 or SHA-1. The benefit of organizing content iden-
tifiers by similarity is to make it easier to search and retrieve them in the DHT. It is im-
portant to mention that this paper considers a search for similar contents as being a search
in which a set of contents, similar to a given query, is returned. Basically, the searching
objective is to retrieve a set of similar contents greater than or equal to a similarity index.
Consequently, it is fundamental to assure that similar identifiers represent similar contents
in order to boost the search/retrieval experience of users.

In the literature, a common way of measuring the similarity between contents is
to use the cosine of the angle between content vectors, in which each dimension repre-
sents a unique characteristic of the content, such as keywords in a text [Berry et al. 1999],
color histogram in a picture [Kong 2009] or fields in a multidimensional data structure
[March and Teo 2005]. Generally, in a content vector schema, the similarity between
contents can be measured in two ways: using the Euclidean distance or the cosine of the
angle between the content vectors [Qian et al. 2004]. Space Filling Curves (SFC), such
as the Hilbert curve, are often used to cluster similar contents in the Euclidean distance
space, but as explained in [Indyk and Motwani 1998], this is an expensive choice due to
the curse of dimensionality.

On the other hand, the Locality Sensitive Hashing (LSH) functions are capable
of creating hash keys, maintaining the similarities between their input data, i.e., similar
items are mapped to similar hash identifiers, with high probability, reducing the curse of
dimensionality [Indyk and Motwani 1998]. Among the existent LSH functions, the Ran-
dom Hyperplane Hashing (RHH) [Charikar 2002] is a family of LSH functions whose
similarity corresponds to the cosine of the angle between vectors. As shown in a previous
work [de Paula et al. 2011], using RHH, the similarity between contents can be repre-
sented by the Hamming distance of their identifiers with an elevated accuracy level. In
this context, the next step is to provide an indexing system capable of extracting benefits
from this hashing mechanism, as it can not be fully explored in traditional DHTs, like
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Chord, because peers and content are organized in a crescent order of identifiers.

Hence, this paper proposes a DHT whose structure is able of reflecting the similar-
ity provided by the Hamming distance between content identifiers, generated by using the
RHH function. Essentially, the proposed DHT establishes fingers between peers accord-
ing to the Hamming distance of their identifiers and, in this way, creates clusters of similar
peers to assure a small number of hops between them. Another important aspect related
to the proposed DHT is that, differently of the traditional DHTs that organize the virtual
ring based on the natural (crescent order) binary code, the identity space of the proposed
DHT is organized according to the Gray code sequence, where two successive identifiers
differ in only one bit. Thus, the slices of content identifiers are defined according to the
Gray code sequence, assigning fractions of the content to the peers existent in the DHT.
To demonstrate its effectiveness, this paper shows, using experimental results in a com-
parison with Chord, that the proposed Hamming DHT is capable of aggregating similar
contents in peers near located in the DHT structure. In short, the recall of information is
improved, since the number of hops required to retrieve similar contents decreases.

The remainder of this paper is organized as follows: Sections 2, 3 and 4 com-
pose the related work literature, where Section 2 justifies the use of cosine similarity by
comparing it with the Euclidean distance similarity; Section 3 briefly introduces the RHH
hash functions and the usage of the Hamming distance; and Section 4 presents the clus-
tering properties of the Gray code. In the sequence, Section 5 details the proposed DHT,
describing the process for establishing fingers according to the Hamming distance and
how it operates under the Gray code sequence. Section 6 presents the evaluation results,
comparing the proposed DHT with Chord. Section 7 concludes this paper.

2. Cosine and Euclidean distance similarity

This section justifies the option for adopting the cosine similarity to generate the content
identifiers, instead of using the Euclidean distance. To this aim, consider an applica-
tion scenario where documents are represented by 2-dimensional content vectors, where
each dimension is represented by the keywords ‘network’ and ‘protocol’. Basically, the
number of occurrences of each keyword in a given text forms a tuple that represents its
content vector. For example, consider the scenario depicted in Figure 1, where three
documents are stored and identified by the tuples DOC1(1,6) - 1 occurrence of keyword
‘network’ and 6 occurrences of keyword ‘protocol’, DOC2(3,2) - 3 occurrences of key-
word ‘network’ and 2 occurrences of keyword ‘protocol’ and DOC3(5,5) - 5 occurrences
of keyword ‘network’ and 5 occurrences of keyword ‘protocol’.

Based on the three documents available in the indexing system of Figure 1, con-
sider that a user issues a query using a text in which the term ‘network’ occurs two times
and the term ‘protocol’ occurs three times, as represented by the tuple QUERY(2,3) in
Figure 1. If the indexing system considers the Euclidean distance to measure the simi-
larity existent between the QUERY and the three available documents, DOC2 will be the
more similar document, since it is closer to QUERY using the Euclidean distance metric.
In essence, DOC2 contains the same number of keywords present in the QUERY, even
though the term ‘network’ occurs more frequently than the term ‘protocol’. In a simplis-
tic interpretation, such behavior can indicate that DOC2 is a text more focused on the
‘network’ than in the ‘protocol’ aspect, contrary to our interest.
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Figure 1. Keyword space for DOC1, DOC2, DOC3 and QUERY.

Conversely, if the indexing system considers the cosine of the angle existent be-
tween the vectors, DOC3 will be the more similar document. Note that in DOC3 both key-
words are more frequent than in the QUERY, showing a slight difference of scale between
them. However, such difference of scale can be interpreted, for example, as DOC3 being
a longer text about the same subject of the QUERY, as exposed in [Berry et al. 1999],
indicating a more accurate level of similarity and justifying the option of this work in
adopting it to generate the content identifiers.

The next section presents the Random Hyperplane Hashing function and shows
how the content identifiers generated are capable of reflecting similarity, measured by the
Hamming distance.

3. The Random Hyperplane Hashing function and the Hamming Distance
The Locality Sensitive Hashing (LSH) functions allow to represent content vectors by re-
ducing their dimensions without losing similarity. These functions are useful in the solu-
tion of thek nearest neighbors search problem, which is related to the search for thek near-
est neighbors of a point, i.e., the query, in an indexing space [Indyk and Motwani 1998].
As mentioned before, the Random Hyperplane Hashing (RHH) is a family of LSH func-
tions, whose similarity function corresponds to the cosine of the angle between vectors. In
this context, Charikar [Charikar 2002] presents a hashing technique where the execution
of a given LSH function returns a single bit, and the execution of a set of LSH functions
is concatenated to generate the hash value of a vector. Such process is summarized in the
sequence:

Given a set of sizem of random vectors−→r ∈ ℜd, selected from a standard normal
distribution, and a content vector−→u ∈ ℜd, a hash functionh−→r is defined as follows:

h−→r (−→u ) =

{

1, if −→r · −→u ≥ 0
0, if −→r · −→u < 0

For eachh−→r (−→u ) one bit is generated, and the results ofm h−→r (−→u ) are concate-
nated to compose am-bit hash key for the content vector−→u . Then, for two content vectors
−→u ,−→v ∈ ℜd, the probability of generating similar values is a function of the cosine of the
angle between−→u and−→v , as shown in the sequence:

Pr{h−→r (−→u ) = h−→r (−→v )} = 1− θ(
−→u ,
−→v )

π
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Consequently, as more similar two vectors−→u and−→v are, the more likely the
generated keys, resultant ofm h−→r (−→u ) andm h−→r (−→v ), will share common bits, leading
to two identifiers close in the Hamming distance. It is important to mention that them

h−→r executions follow the same order in the set of random vectors−→r , in order to generate
similar content identifiers.

As an example, assuming that an application uses an identifier space of 8 bits,
it is necessary to generate a set ofm = 8 random vectors−→r , and to concatenate the
returned bits of them h−→r , in order to extract the 8-bit content identifiers for each content
vector. In the scenario previously presented in Figure 1, 8-bit content identifiers for the
documents DOC1, DOC2, DOC3 and QUERY could be defined as presented in Table
1. As can be seen, DOC3, the more similar text to QUERY based on the cosine of the
angle metric, has the content identifier with the smallest Hamming distance (Dh) to the
QUERY identifier, i.e., DOC3 presentsDh = 1 to QUERY, corresponding to 87.5% of
bits matching between both identifiers.

Table 1. Text identifiers, Hamming distance and Similarity level to the QUERY.

Text Identifier Dh Similarity
QUERY 01010101 0 1
DOC3 11010101 1 0.875
DOC2 01111101 2 0.75
DOC1 11111111 4 0.5

4. Gray codes

This section briefly introduces the properties and definitions of the Gray codes, where
two successive codewords differ in exactly one bit position, i.e., their Hamming distance is
equal to 1. Thus, if these codewords were generated by the RHH family of LSH functions,
successive codewords will represent similar contents.

A n-bit binary Gray codeGn can be represented as a2n × n binary matrix, with
each row being a codeword. IfGn is a n-bit Gray code, thenGn+1 is a (n+1)-bit Gray
code, which is produced by: 1) concatenating theGn codewords to theGn codeword in
reverse order; 2) prefixingGn codewords with the bit 0 and 3) prefixing the codewords
in the reflectedGn code with the bit 1. Hence, recursively applying this method, the
reflected binary Gray code is obtained which is trivially defined asG1. To illustrate this
method, Figure 2 shows the definitions for the binary reflected Gray codesG1, G2, G3,
Gn andGn+1.

In order to create a virtual ring structure which follows the binary reflected Gray
code sequence, it is possible to convert a conventional ring, organized using the sequential
order of identifiers, to the Gray code sequence and vice versa. Such conversions can be
performed with simple CPU operations such as XOR, shift right and comparisons to 0, as
demonstrated in the Algorithms 1 and 2.

Essentially, the adoption of the Gray code in the proposed DHT is justified by its
ability of successively positioning similar contents. In this scenario, performing searches
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Figure 2. Definitions for the binary reflected Gray codes G1, G2, G3, Gn and Gn+1.

Algorithm 1: Binary to Gray code
conversion.

Input : Binary codeword,
(binary).

Output : Gray codeword, (gray).
gray← binary ⊕ (binary≫ 1)

Algorithm 2: Gray to Binary
code conversion.

Input : Gray codeword,
(gray).

Output : Binary codeword,
(binary).

binary← gray

i← (gray≫ 1)
while i 6= 0 do

binary← (binary ⊕ i)
i← (i≫ 1)

end

for contents that have identifiers with long bit strings in common (small Hamming dis-
tances), is facilitated given the better aggregation of the identifiers according to their
Hamming distances. Faloutsos [Faloutsos 1988] analytically proves that this clustering
property of the Gray codes is never worse than the clustering property of the binary codes
and, in the best cases, it is up to 50% better.

5. The Hamming DHT

This section presents our proposal of a new DHT, called Hamming DHT, whose consistent
hashing approach and the join and leave procedures are similar to Chord. As mentioned
before, the main differences between the Hamming DHT and Chord are: 1) the use of
the Gray codes in the organization of the identifiers in the ring and 2) the establishment
of fingers based on the Hamming distance. Thus, the main goal of this proposal is to
show that the use of Gray codes in conjunction with the Hamming distance facilitates the
similarity search, when contents are indexed using the RHH function.

Regarding the related literature, Hycube [Olszak 2010] is an example of DHT that
uses Hamming as a distance metric and organizes peers in a unit size hypercube. How-
ever, the costs involved in the maintenance of the hypercube under churn are greater than
the costs in a consistent hashing DHT, such as the proposed Hamming DHT. pSearch
[Tang et al. 2003] is a P2P network that also uses content vectors and cosine similarity,
but it differs from the Hamming DHT since it is specialized only for similarity search
of text documents in a P2P network. Bhattacharya [Bhattacharya et al. 2005] uses co-
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sine similarity and LSH functions to propose a framework for similarity search in P2P
databases, such as Chord. Nevertheless, all these three mainly differ from the Hamming
DHT because they do not explore the Hamming similarity of identifiers for organizing
peers and contents in the ring and to facilitate the similarity search of any kind of content.

5.1. Organizing the Ring

In the Hamming DHT, the keys are mapped to peers in the network, and such keys can
represent content identifiers or, depending on the application using the DHT, these keys
can also be associated to values representing a locator or a list of locators of contents.
Basically, each key/value pair is stored at the peer responsible for the slice that contains
it, defined according to the Gray code sequence.

In order to operate, peers (P) and contents (C) in the Hamming DHT are mapped
to the same identity space, using two different hash functions: (FP andFC). In the case of
the mapping regarding the peers, it is important thatFP assures consistent hashing, since
the ideal is that each peer becomes responsible for roughly a same size slice of the overall
identity space. In this way, load balancing is provided and relatively little movement of
keys occur when peers leave or join the DHT. Hence, the Hamming DHT adopts forFP

a base hash function, like MD5 or SHA-1, and a peer identifier is obtained, for example,
by hashing its name, IP address or a private key.

On the other hand, to map a content to the identity space, the Hamming DHT
adopts forFC the Random Hyperplane Hashing function, previously described in Section
3, which is a non-uniform hashing function that meets the following properties:

∀ c1, c2 ∈ C : sim(c1,c2)→ [0..1], where 0 means no similarity.

∀ c1, c2 ∈ C : Dh(FC(c1),FC(c2)) ∝ 1/sim(c1, c2),

wheresim is any similarity function between contents, andDh is the Hamming distance
metric. In the Hamming DHT, a content identifier is obtained by hashing the content
vector itself and the cosine similarity is used.

5.2. Consistent Hashing

After definingm-bit identifiers to all peers and contents using the mapping functionsFP

andFC, the obtained identifiers are ordered according to the Gray code resulting in a ring
of size2m. Figure 3 shows an example of the proposed Hamming DHT, wherem = 5.
As can be seen in this figure, there are fours peers (3 -000112, 13 -011012, 30 -111102
and 22 -101102), and three contents (0 -000002, 24 -110002 and 31 -111112).

In order to store the contents in the Hamming DHT, the keyk of a content is
assigned to the first peer whose identifier is subsequent or equal tok. This peer is called
the successorof key k and it is denoted assuccessor(k). In short, thesuccessor(k)is
the first peer clockwise fromk in them-bit ring. For example, the peer 3 (000112) is
responsible for storing the content ofk = 0 (000002), the peer 30 (111102) is responsible
for storing the content ofk = 24 (110002), and the peer 22 (101102) is responsible for
storing the content ofk = 31 (111112).

The full list of identifiers according to the Gray code form = 5 is presented in the
right side of Figure 3, where the four peers are highlighted by the arrows. In a comparison
between the Gray code sequence and the sequential binary (also shown in the right side of
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Figure 3. Example of the Hamming DHT ring with m = 5.

Figure 3), it is possible to realize the benefits of the Gray code sequence for aggregating
similar content. As an example, the curly brackets show that, in a search for content
identifiers similar to *10**, the use of Gray codes reduces the distance between them, as
proven by Faloutsos in [Faloutsos 1988]. As can be seen in the figure, all the occurrences
of *10** are consecutively positioned and stored in peer 30, while in the binary natural
order, the occurrences are stored in peers 13 and 30.

In order to maintain the consistent hashing, whenever a peerp ∈ P joins the
network, certain keys previously assigned tosuccessor(p)now become assigned top.
Whenp leaves the network, all of its assigned keys are reassigned tosuccessor(p).

5.3. Establishing Fingers

Once the ring is organized, the storage and retrieval of information on/from the DHT is
possible. To this aim, each peer must be aware of its successor on the ring and, based
on this circular relationships, the actions of storing and retrieving a given keyk simple
require that the messages are routed around the ring, passing through the list of successor
peers, until finding the peer responsible for that content key (thesuccessor(k)).

However, to obtain a better routing performance, each peer maintains additional
routing information about a few other peers. As in Chord, each peer maintains, in the
steady state, information only aboutO(log N) other peers, whereN is the number of
peers in the network. In this schema, it is necessary to store information about only a
small portion of the network. Afterwards, to allow contacting the peers present in the
finger table, the Hamming DHT associates the locator (e.g., an IP address) of them in the
respective entries. For the cases where the required finger entry does not correspond to a
peer located in the DHT (it might be a content with keyk), such entry is mapped to the
successor(k).

Each peerp maintains a routing table, also called finger table, with (at most)m
entries. Theith entry in the finger table (fi) maps the identifier of the peerp, switching
its ith bit to its successor on the identifier ring, i.e.,fi = (FP(p)⊕2i−1)→ sucessor(fi),
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1≤ i ≤m. This finger table also includes the locator ofsuccessor(fi). As an example, in
Figure 3 it is shown the finger tables of peers 3, 13, 30 and 22. In this example, the finger
table of peer 13 (011012) points to the successor of each of itsm entries: 12 (011002),
which points to 13 (011012); 15 (011112), which points to 30 (111102); 9 (010012), which
points to 30 (111102); 5 (001012), which points to 13 (011012); and 29 (111012) which
points to 22 (101102).

For the cases when a peerp does not have a finger directly established with the
successor(k)of key k, it forwards the packet to the peerp′ available in its finger table,
whose identifier ofp′ most immediately precedesk. Such process is repeated until it
arrives at thesuccessor(k), corresponding to cases where the number of hops (the path)
between the peers are bigger than one. This operation, as previously mentioned, is done
according to the Gray code sequence.

Finally, in dynamic scenarios, peers can join and leave the network at any time.
So, the ability of the system to locate every key in the network is necessary to be main-
tained. To achieve this goal, the correct maintenance of each peer’s successor and the
consistent hashing are necessary. To achieve a better performance, it is also necessary to
maintain up-to-date the finger table of each peer. The algorithm to handle the peer joining
and leaving in the system borrows the same core ideas from Chord, since the proposed
Hamming DHT also deals with a ring, a consistent hashing, and adopts the same number
of entries in the finger table of each peer.

The next section presents the evaluations performed by searching similar contents,
indexed with the RHH function in the Hamming DHT and in Chord.

6. Evaluation
This section describes some experiments aiming to evaluate the Hamming DHT proposal.
The main idea is to validate such DHT as a valuable approach in order to support the
searching for similar contents. The following experiments were done:

• Sets with different quantities of content vectors have been generated with the co-
sine of the angle between them equal to or greater than 0.9, 0.8 and 0.5, respec-
tively. It means that the contents in each set have similarity belonging to the
following intervals: [0.9, 1.0], [0.8, 1.0] and [0.5, 1.0], respectively. For each set,
using the RHH function presented in [de Paula et al. 2011], 128-bits and 64-bits
content identifiers were generated;
• These sets of content identifiers were indexed and distributed at a time in the

DHTs. The peers distribution was the same for each test in Chord and Hamming
DHT. Ten different peers distribution (networks) were tested and evaluated for
each DHT;
• For each set of similar contents, a query vector with the same similarity level of

the respective set was generated;
• An identifier was generated for each query and a lookup having this identifier as

argument was done in each DHT. The lookup message is forwarded to the peer
which is responsible for the query identifier (the hosting peer), i.e., its successor
on the ring;
• From the hosting peer, each content identifier agreeing with the query’s similarity

level is retrieved, and the distance in number of hops from the hosting peer to the
other peers hosting each similar contents is measured.

XXX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 183



These tests permitted to highlight the following points:

• The frequency distribution of the Hamming distances from the query originating
host to each similar content in the set. This evaluation shows the effectiveness
of the RHH function to generate content identifiers preserving in their Hamming
distance the respective content similarities;
• The frequency distribution of the number of hops to retrieve all similar contents to

the query in each set. This evaluation shows that the Hamming DHT aggregates
more than a normal ring-style DHT, such as Chord, reducing the distance between
similar contents in the number of hops;
• The query recall, corresponding to the fraction of the content that is relevant to the

query and was successfully retrieved. This evaluation shows that it is possible to
build a more efficient search engine on top of the Hamming DHT, at lower costs,
measured in the number of hops to complete the query.

For the tests, a simulator of the Chord and the Hamming DHT was developed.
This simulator is able to generate random peers and join them in a ring-style DHT. The
algorithms presented in Section 4 were used to convert a binary natural ring to a ring
following the sequence of the Gray code. Also, the developed simulator indexes and stores
each content identifierk by the use of theput(k,v)operation. Thelookup(k)operation
returns the successor of the keyk on the ring, which represents the peer responsible to
store the content associated to this key, the hosting peer. Theget(k)primitive was extended
to handle the proposed similarity level, assuming the formatget(k,sim): given a key and a
similarity level (sim), it returns all similar contents stored in the hosting peer. This search
can be extended to the neighbors of the hosting peer with distance of 1 hop or longer
distances, aiming to improve the searching results.

The tests were performed using two different key lengths, 64 and 128 bits, and
the influence of this variable in the results was necessary to be evaluated. The frequency
distribution was shown with a 64-bit key and the recall was shown with a 128-bit key.
While not all results are presented here, there is no significant differences between them.

Figure 4 shows the frequency distribution of the Hamming distances, on average,
from the query to each content identifier in its set, according to its similarity level. For
an identifier with size equal to 128 bits, the results show that the RHH function is capable
of maintaining the similarity level of each content identifier in their Hamming distances.
From this figure it is possible to see that, with the similarity level equal to 0.9 and a
128-bits length identifier, most of the Hamming distances are less than 10 (7,81% of 128
bits) and the maximum Hamming distance is 13 (10,16% of 128 bits), corresponding to
a Hamming similarity of 0,898 (89,8%). The Hamming similarity corresponds to the
relation between the number of bits matching in two bit strings and the total size of these
strings.

This test was repeated 10 times. The variance and 95% confidence interval of
these results are negligible. It is important to explain here that the content vectors were
generated having 100 dimensions, and the cosine of the angle between each content vector
and the query vector having, respectively, values greater than or equal to 0.9, 0.8 and 0.5
(their similarity level).

Figures 5(a) and 5(b) show the frequency distribution of the number of hops to
retrieve the similar contents. The figures exhibit the percentage of recovered contents,
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which is relative to the total number of similar contents in the set, and their corresponding
distance in to the hosting peer. As explained before, the query is forwarded to the hosting
peer and, from this peer, look-ups for the totality of the similar contents in the set are
performed. The tests were performed varying the number of peers in each DHT to analyze
this influence in the results. The tests simulated 1000 (a) and 10000 (b) peers in Chord
and in the Hamming DHT with similarity 0.5 (a) and 0.8 (b). The size of the keys used in
these results is 64-bits.
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Figure 5. Distribution of the number of hops: 1000 peers, similarity 0.5 and 64-bit
keys (a); 10000 peers, similarity 0.8 and 64-bit keys (b).

These results show the average obtained from 1000 simulations for each set of
similar contents, which means that 100 different sets and queries were generated. Also,
each of these 100 sets were tested in 10 different networks in Chord and the Hamming
DHT. From these results, it is possible to notice that the Hamming DHT is able to cluster
more similar contents in lower number of hops, i.e., lower distances between them. The
confidence interval for 95% of the samples is shown in the vertical bars. The results hardly
depends on the query identifier and the distribution of the peers in the DHT but, with this
confidence interval, it is possible to say that, comparing to Chord, the Hamming DHT
reduces the number of hops necessary to retrieve similar contents in a similarity search.
The results for the similarity level equal to 0.9 are not shown due to space limitations, but
it has an equivalent behavior to the similarity level 0.8.
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Figure 5(b) shows that there is no significant difference between Chord and the
Hamming DHT in the number of similar contents having a 0 hop distance from the hosting
peer. This can be explained by the behavior of the RHH function under high similarity
levels. As an example, suppose a 100-bit content identifier and a similarity level of 0.9
in a DHT having 1024 (210) peers. In this scenario, with consistent hashing in the peers’
identifier, each peer is responsible for2100/210 = 290 identifiers. Two different content
identifiers having similarity greater than or equal to 0.9 vary in up to 10 bits (with high
probability). If this variation occurs in the 90 least significant bits, this variation implies
that these content identifiers will be stored in the same hosting peer, consequently with
0 hop distance between them. Any variation in any of the 10 most significant bits, maps
these similar content identifiers in different peers in the DHT, forcing one or more hops.

Figures 6, 7 and 8 show the recall in a similarity search for the Chord and the
Hamming DHT. Figure 6(a) uses a DHT with 10000 peers, similarity level 0.5 and a 128-
bit keys, while Figure 6(b) uses the same values for the similarity level and the length of
the keys, but in a DHT with 100000 peers. Figure 7(a) uses a DHT with 10000 peers,
similarity level 0.8 and a 128-bit keys, while in Figure 7(b) the DHT has 100000 peers.
Figure 8(a) uses a DHT with 10000 peers, similarity level 0.9 and a 128-bit keys, while
in Figure 8(b) the DHT has 100000 peers.
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Figure 6. Recall, with 10000 peers (a) and 100000 peers (b), similarity level 0.5
and 128-bit key.

From the results of Figures 6, 7 and 8, it is possible to see that using the Hamming
DHT as an infrastructure to support similarity search is a valuable approach. Because
peers are distributed in an homogeneous way along the ring, each peer will be responsible
for, approximately, the same number of keys in both DHTs, while the fingers acquisition
according to the Hamming distance leads the Hamming DHT to benefit similar identifiers.

As an example, from Figure 7(a), it is possible to see that a search engine designed
over the Hamming DHT having aget(k,sim)function with a depth of 4 hops, 90% of all
similar concepts can be retrieved, while in Chord, only 50% of them can be retrieved.

7. Conclusions and Future Work

This paper proposes a DHT based on the Gray code and the use of the Hamming distance
as a similarity metric to facilitate the search for similar content, which we called Hamming
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Figure 7. Recall, with 10000 peers (a) and 100000 peers (b), similarity level 0.8
and 128-bit key.
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Figure 8. Recall, with 10000 peers (a) and 100000 peers (b), similarity level 0.9
and 128-bit key.

DHT. The tests done compared the average number of hops necessary to retrieve similar
content on the Hamming DHT and in the Chord DHT, used as a reference. The idea was
to experimentally evaluate the reduction in the distance to retrieve similar content, and the
recall, that represents the relation between the number of retrieved content and the total
number of similar content in the DHT with the lowest distance, measured in the number
of hops from the query source.

The similar contents used in this paper are indexed using the RHH function and
they are represented by content vectors. The similarity between contents is represented
by the cosine of the angle of their content vectors and this similarity is maintained in the
Hamming distance of their identifiers. The results show that the Hamming DHT can be a
useful tool to serve as an infrastructure for similarity search. The comparison with Chord
is not completely fair because it was not proposed in the context of similarity search.
However, Chord can be used as a reference element to illustrate how a specific distributed
structure, as the Hamming DHT, can contribute for this kind of searching. Also, to the best
of our knowledge, no other paper in the DHT literature explores the Hamming similarity
of content identifiers to propose a DHT specialized for similarity search, which difficults
our comparisons with related work.

XXX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 187



As future work, we intend to investigate a way to generate identifiers for the peers
reflecting the similarity between them and the content they share. In this scenario, our
hypothesis is that similar peers will be closer in their Hamming distance. Also, another
scenario we intend to investigate is the use of this approach in a data storage data center.
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