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Abstract. We consider the problem of defining an energy optimal testing assign-
ment for the identification of node malfunctions in Wireless Sensor Networks
(WSNs). In system-level diagnosis, a testing or connection assignment is a set
of mutual tests among the n units of a system S. If t is the number of faulty
units in the system and (i) n ≥ 2t + 1; (ii) each unit is tested by at least t other
units, the system is said to be t-diagnosable. A t-diagnosable system is optimal
if n = 2t + 1. In this work we prove that, given a set of 2t + 1 sensors, our
Optimal Design Testing Assignment (ODTA) approach generates a connection
assignment with minimum cost from the point of view of the energy required by
the sensors to sustain it. Furthermore, we present simulation experiments that
compare the present approach with our preliminary results.

1. Introduction
Wireless Sensor Networks (WSNs) [Baronti et al. 2007] are a specific kind of
ad hoc networks with sensing, processing and communication capabilities sub-
ject to stringent resource constraints. Applications of WSNs include medical di-
agnosis, infrastructure monitoring, agriculture and environmental sensing, between
many others [Chen et al. 2010, Ko et al. 2010a, Shuman et al. 2010, Corke et al. 2010,
Ko et al. 2010b, Hughes et al. 2011].

Since WSNs are often deployed for unattended operations, they need to run de-
pendable applications. As in our previous works [Weber et al. 2010, Weber et al. 2011],
we concern with an energy-aware testing approach for identifying node malfunctions in a
WSN. Specifically, we introduce an optimal testing assignment, based on the concepts of
optimal systems and optimal designs of the PMC model [Preparata et al. 1967].

PMC stands for the initials of Preparata, Metze and Chien, which proposed the
first system-level diagnosis model. In the PMC model a system is considered as a set of
units that are able to execute tests among themselves. The outcome of a test performed
by a fault-free unit is assumed to be reliable (it is 0 if the tested unit is fault-free and it is
1 if the tested unit is faulty), while it is completely unreliable if the testing unit is faulty.
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The system is represented as a directed graph where vertices represent the sys-
tem units, and a testing link exists between units ui and uj if there is a communication
link between them and unit ui tests unit uj . The set of test outcomes, known as the syn-
drome, is decoded by a centralized system supervisor using a suitable diagnosis algorithm
[Dahbura and Masson 1984, Caruso et al. 2007].

In the PMC model a system is diagnosable provided the number of faulty units
does not exceed a certain threshold. Furthermore, the so called diagnosability of the sys-
tem is subject to some topological properties of the diagnostic graph. More specifically,
a system of n units is said to be t-diagnosable if the number of faulty units does not ex-
ceed t. In addition, the following conditions must hold: (c1) the number n of units in the
system must be greater than or equal to 2t+ 1, and (c2) a unit must be tested by at least t
other units [Preparata et al. 1967].

The conditions (c1) and (c2) above are necessary and sufficient for t-diagnosability
provided there are not reciprocal tests, i.e, no two units test each other. Furthermore, in
the context of system-level diagnosis, a system S, consisting of n units, is defined as
optimal if n = 2t + 1, where t is the number of faulty units in S and condition (c2) also
holds.

The strategy introduced here, called Optimal Design Testing Assignment (ODTA)
relies on the non-reciprocity of tests and aims to reduce the number of sensors that par-
ticipate to the diagnosis to a minimum. Thus the testing graph generated by the strategy
ODTA always uses the optimal number of 2t+ 1 sensors.

An optimal system is defined by an optimal design, i.e., a set of edges, or tests,
which makes the system optimal. In general, there are several optimal designs for a given
system. Preparata et al. define a set or family of optimal designs; the so called Dδt family
[Preparata et al. 1967], based on which the strategy ODTA builds the testing graph, will
be presented later in this work.

The rest of this work is organized as follows: Section 2 presents related work.
The diagnosis model is presented in Section 3. Section 4 defines the energy model. The
Optimal Design Testing Assignment is introduced in Section 5. In Section 6, simulation
results are presented in comparison with our previous results. Section 7 concludes the
paper.

2. Related Work
The work of Corke et al. [Corke et al. 2010] is concerned with outdoor applications of
wireless sensor networks involving natural environment or agriculture like microclimate
monitoring for farms and rain forests, water-quality monitoring and cattle monitoring and
control. Nevertheless, the work also addresses the challenges faced by the authors to
ensure the reliability of the deployed sensors and networks.

In [Santi and Chessa 2001], Chessa and Santi present a comparison based testing
strategy in which the diagnosis model exploits the one-to-many communication paradigm
typical of ad-hoc networks. Both hard and soft faults are considered and the diagnosis is
based upon comparison of the results generated by testing tasks assigned to pairs of units
with a common neighbor.

In [Weber et al. 2010] the problem of determining a connection assignment of the
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sensors in a WSN is considered. Two strategies are shown, one for the scenario in which
reciprocal tests among sensors are possible and other for the scenario in which there are
no reciprocal tests. In the strategy without reciprocal tests, the region R is partitioned
into four quadrants of equal size. Sensors present in one quadrant test and are tested by
sensors in other quadrants, thus avoiding the reciprocity.

In [Weber et al. 2011] an evolution of the previous approach is presented, in which
a reduction of the number of tests is required for diagnosis. Both approaches are compared
in that work and will also be used as a parameter for comparison to the strategy introduced
in the present paper. More details will be given in Section 6.

In [Zhang et al. 2008], the authors propose a comparison-based fault locating
arithmetic for multi-source network cluster nodes. The approach is based on layer-built
topology structure and one-to-many communication mode. In [Choi et al. 2009] the au-
thors present a distributed adaptive scheme for detecting faults in WSN where each node
makes a local decision based on comparisons between neighbors, along with the dissem-
ination of the decision to them. Time redundancy is used to enhance the accuracy of
detection and tolerate transient faults in sensing and communication.

In [Chessa and Santi 2002] the authors propose an energy-efficient fault diagnosis
protocol for wireless sensor networks. This protocol, called WSNDiag, is capable of
diagnosing crash faults. The diagnosis works on demand and the protocol is capable of
correct diagnosis in a system with up to t faulty units, where t < k(G) and k(G) stands
for the connectivity of the system. In [Taghikhaki and Sharifi 2008] an energy-efficient
distibuted approach improves network lifetime by detecting data faults locally in cluster
heads. The sensors that belong to the same cluster share and compare their readings. From
these comparisons, the cluster head verifies which sensors present more fault indications
to find the set of possible faulty sensors in the cluster. In [Venkataraman et al. 2008],
another energy-efficient cluster-based approach avoids performance degradation aiming
at detecting in advance the failures that may cause connectivity loss.

Some works study topological properties of networks. In [Penrose 1999] a formal
proof is presented for the minimum degree a network must have in order to be k-connected
with high probability provided the number n of the nodes in the network is big enough.
In [Xue and Kumar 2004], the authors show how many neighbors the nodes of a network
with n randomly placed nodes should be connected to in order to the overall network
to be connected. The problem of determining the critical transmitting range (CTR) for
connectivity in mobile ad hoc networks is studied in [Santi 2005].

3. Diagnosis Model
In the PMC model [Preparata et al. 1967] a test (vi, vj) consists of a set of input stimuli
that are produced by the testing unit vi and sent to the tested unit vj . In turn, vj produces
a test result that is sent back to vi. Finally vi compares the output produced by vj with
the expected output and it produces the test result that is a binary outcome: it is 0 if the
two results match (and then the test succeeds), and it is 1 otherwise (i.e. the test fails).
Thus in the PMC model the execution of the test requires a bidirectional link between vi
and vj . However, in WSNs the tests may also be executed in presence of unidirectional
communication links [Santi and Chessa 2001]: a sensor may start a self-test on a pre-
defined set of stimuli and it may send the output to another sensor that compares it with
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the expected results. For this, it is sufficient only that the tested sensor be able to send its
output to the tester.

In this paper we assume that links are bidirectional (an assumption that can eas-
ily enforced by disregarding unidirectional communication links), but we consider only
unidirectional tests, that is, even if there is a bidirectional communication link between
two sensors vi and vj , an unidirectional testing link between them means that either vi
tests vj or vj tests vi. Thus, the diagnosability can be derived by conditions (c1) and (c2)
described in Section 1 above.

In this work we are not concerned with the nature of the sensor faults, but with the
network topology properties necessary to build an optimal connection-assignment. As in
our previous works [Weber et al. 2010, Weber et al. 2011], in ODTA’s diagnosis model
we assume that sensors are deployed in a sensing area with uniform distribution. Further-
more, each sensor knows its geographical coordinates and the topology of the WSN is
known to the sink. As in [Weber et al. 2011], the sink is responsible for generating the
connection assignment and to inform it to the sensors.

The WSN is defined as the system graph G = (V,E) where each vertex v in
V represents a sensor and an edge (vi, vj) ∈ E if either vi is within the transmission
range of vj or vj is within the transmission range of vi or both. Eventhough PMC’s
model assumes bidirectional links and a fully-connected graph, this assumption may be
weakened, provided all links that may be necessary to the tests exist. Note that this
assumption can be enforced by properly calibrating the sensor’s transmission ranges.

4. Energy Model
In order to estimate the energy consumption of a given testing assignment, we consider
the one-slope model [Patwari et al. 2003], a widely used propagation model in wireless
communications. This model assumes a linear dependence between the path loss (dB)
and the logarithm of the distance d between the transmitter and the receiver, as expressed
in 1:

L(d) |dB= l0 + 10α log10(d) (1)

where l0 is the path loss at a reference distance of 1 meter, and α is the power decay
index (also called path loss exponent). In general, to ensure a communication between a
transmitter t and a receiver r placed at distance d from each other it is necessary that the
packet sent by t reaches r with a power level higher than the sensitivity of the receiver.
In other words, letting Et be the transmission power of the transmitter, Er the power of
the signal at the receiver (where Er depends on Et and the distance d) and Em be the
sensitivity of the receiver, must be Er > Em.

Knowing that L(d) is equal to the difference in decibels of the power of the
signal at the transmitter and the power of the signal when it reaches the receiver
[Rappaport 2001], by Equation 1, we have:

10 log10

(
Et
Er

)
= l0 + 10α log10 d (2)
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Thus:

Er =
Et

10(
l0
10

+α log10 d)
(3)

Adding Er > Em in Equation 3 we obtain that the minimum of transmission
power Et on the transmitter that ensures that the package reaches the receiver with the
power level required is:

Et = Em10
( l0
10

+α log10 d) (4)

Therefore, Equation 4 depends on the distance d, on the sensitivity of the receiver
and on the parameters l0 and α. Typical values for these parameters are used for the
simulations [Rappaport 2001] (in this work we use l0 = 10 and α = 3), whileEm depends
on the sensors’ hardware. Developing Equation 4 we have:

Et = Em10
l0
10dα (5)

It is shown from Equation 5 that the energy transmitted grows polynomially with
the distance d, with an exponent equal to α. Thus the energy costs of the testing strate-
gies presented in this work are based exclusively on the geographical distance between
sensors. So for l0 = 10 and α = 3, we have:

Et = Em10d
3 (6)

BecauseEm depends on the hardware used, and in general is a small value, the en-
ergy expended is defined most as the cube of the distance between source and destination.
Thus, we establish that an energy unit, or e.u., is equal to 10Em. Thus, we define that the
energy expended by a transmission of d meters is equal to d3 energy units. Knowing that
the test consumption will be a xd3 e.u., where x defines the number of messages needed
for a test, we use only the value d3 for comparisons purposes between testing strategies in
Section 6 of this work.

5. Optimal Design Testing Assignment
Let us assume that a set T (with cardinality t) of sensors in a WSN generate alarms that
are received by the sink. In turn, the sink defines a connection assignment in order to
diagnose the region of the network where the alarms were generated. Then, the sink
informs each selected sensor to perform the tests in which it is involved as tester in the
testing assignment.

If the WSN is defined as the graph G in Section 3, the connection assignment is
the testing graph D = (VD, ED), where VD ⊂ V , ED ⊂ E and an edge (vi, vj) ∈ ED if
and only if vi tests vj . We define n as the cardinality of VD. It should also be noted that
the set T ⊂ VD.

In order for the diagnostic graph D to be t-diagnosable, the contitions (c1) (i.e.
that n ≥ 2t+1) and (c2) (i.e. the indegree of each vertex in D is at least t) should be met
[Preparata et al. 1967].
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The strategy presented here, an Optimal Design Test Assignment (ODTA) aims at
reducing the number of sensors that participate to the diagnosis to a minimum, i.e., the
testing graph made by the strategy ODTA always uses 2t+ 1 sensors.

The algorithm that defines ODTA’s diagnostic graphD is based on the concepts of
optimal systems and of optimal designs of the PMC model [Preparata et al. 1967]. In the
context of system-level diagnosis, a system S, consisting of n units, is defined as optimal
if n = 2t + 1, where t is the number of faulty units in S, and each unit of S is tested
by exactly t other units. An optimal system is defined by an optimal design, i.e., a set of
edges, or tests, which makes S optimal. In general, there are several optimal designs for a
system S. Preparata et al. [Preparata et al. 1967] define Dδt as a set, or family, of optimal
designs. A system S belongs to a design, or graph, Dδt when a test (ui, uj) exists in S if
and only if (j − i) mod n = (δm) mod n with m assuming the values 1, 2, . . . , t.

Preparata et al. prove that if a system S employs a graph D1t, then S is t-
diagnosable [Preparata et al. 1967]. The cyclical characteristic of the graphs of type D1t

produces t-diagnosable testing graphs without reciprocal tests. In their work, Preparata
et al. also prove that a graph Dδt generates t-diagnosable assignments if δ and t are rela-
tively prime [Preparata et al. 1967]. For this proof, it is demonstrated that the D1t graphs
are isomorphic to the graph Dδt when δ and t are relatively prime.

The ODTA strategy aims to define the set of edges that creates a graph D1t for a
system composed of the units of VD. For this assume that the set VD has already been
defined and that n = 2t+ 1. To define a testing graph D belonging to a family of graphs
D1t, each sensor present in VD receives an unique numeric identifier i, where i = 0 . . . 2t.
This identifier is assigned randomly by the sink, creating an overlay network over the
sensors of VD and the edges that must exist in the testing graph according to the definition
of the D1t design. Please observe that the transmission ranges of the sensors that belong
to VD may be tunned in order to ensure that all necessary edges in ED exist.

The graph D is then built as follows: each sensor will test the t next sensors fol-
lowing the increasing order of their identifiers. Thus, a sensor vi, where i is its identifier in
the overlay network, tests the sensors v(i+1) mod n, . . . , v(i+t) mod n on the overlay network.
Therefore, each sensor will test t sensors and will be tested by t other sensors. The total
energy cost for the strategy ODTA is defined as:

CT (D) =
∑

Ci,j|∀(vi, vj) ∈ ED (7)

where Ci,j is the energy cost spent by the sensors vi and vj when the sensor vi
executes a test over the sensor vj . The cost of a test executed by sensor vi on sensor vj at
a distance d from each other is computed as the sum of the energy spent by vj to send the
output sequence of a self-test to vi and by vi to receive such outcome.

The nonexistence of reciprocal tests is provided by the fact that a sensor vi tests
its t next sensors and is tested by its t previous sensors in the overlay network. This is
true for all sensors, which, in a cyclic manner, avoid reciprocal tests. Figure 1(a) shows
an example of the testing graph represented on the overlay network. Figure 1(b) has an
example of the same tests over the sensor network graph. Please note that the two graphs
are isomorphic in relation to each other.
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(a) Testing graph generated by strat-
egy ODTA, represented over the
overlay network, with n = 5 and
t = 2.

(b) Testing graph generated by strat-
egy ODTA, represented over the
sensor network, with n = 5 and
t = 2.

Figure 1. Different representations of a testing graph

Although the assignment of identifiers have no relation to the geographical
position of each sensor in VD, the strategy ODTA ensures that, given an initial set VD, the
test assignment with the lowest total energy cost for the set VD is generated.

Theorem 1. Given a set VD of sensors with cardinality 2t+ 1, the ODTA strategy gener-
ates a testing graph D whose CT (D) is minimum for the given VD.

Proof. As far as we assume that by enlarging the transmission ranges of the sensors we
can obtain any edge ED that is necessary for a test in VD, the assignment of the identifiers
of the 2t+ 1 sensors of VD may be totally randomic and no matter which is the identifier
of each sensor, the total cost CT (D) will always be the same because in PMC’s optimal
designs each sensor vi has a relation to each one of the other 2t sensors either as a tested
unit or as a tester unit. If another set of identifiers or another set of relations between the
sensors is chosen (provided conditions (c1) and (c2) are guaranteed) the cost is the same,
once Ci,j = Cj,i.

Given that the present algorithm generates the test assignment with lowest total
cost to VD, the choice of sensors that form the set VD is responsible for lowering the limit
of the total energy consumption used in the diagnostic process.

The high number of possible combinations for the choice of the t+ 1 sensors not
belonging to T in order to ensure that CT (D) is minimal, suggests that the problem is
NP-complete. This proof is not shown here, and is considered to be a future work.

Thus, an heuristic for the choice of the sensors is used. The heuristic ensures the
choice of a set of sensors where most of them are next to each other. The heuristic is based
on the definition of R, the smallest rectangular area that includes all sensors in T . The
center of R, Rc, is used as a parameter for the choice of the sensors. The chosen sensors
are the t+ 1 sensors not belonging to T which are geographically closest to the point Rc.
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Since the set VD has 2t+1 sensors, the heuristic ensures that, at least, most of the
sensors (t + 1) are the geographically closest to each other. Thus, the cost of most of the
edges, or tests, in D is also minimal. However, it is not possible to ensure that the total
cost is minimal.

The best case occurs when sensors in T are all close to each other. For the best
case, the heuristic will present a set VD of sensors that are close to Rc and also the closest
to the sensors of T , thus minimizing the costs.

The worst case occurs when sensors of T are far from each other. For the worst
case, the heuristic will ensure that most of the sensors of VD will be close to each other.
Considering real applications and fault-free sensors, it is unlikely that the sensors in T are
located far from each other, once a monitored phenomenon tends to occur in a neighbor-
hood of sensors. Thus, the worst case is not expected in most real applications.

6. Evaluation
The results presented in this paper were obtained through simulation. The simulator, pro-
grammed in C++, generates a geographic deployment of sensors based on a probabilistic
distribution. The cartesian coordinates of the sensors are used to calculate the euclid-
ian distances between them. The costs of the connection assignments are proportional to
the euclidian distances between nodes. The testing strategies TAWR [Weber et al. 2010],
EETA [Weber et al. 2011] and ODTA are implemented.

TAWR stands for Testing Assignment Without Reciprocal tests and is our prelimi-
nary work, in which an approach is proposed to generate a connection assignment that is
t-diagnosable. In that work we were not concerned with energy awareness, so the strategy
involved a great number of tests.

The EETA strategy (Energy-Efficient Testing Assingment) was proposed in
[Weber et al. 2011] as our first energy-aware approach. It was built over our previous
work and used the method of dividing the rectangular region that comprises the sensors
belonging to T into quadrants. The center Rc of the region is used in order to choose the
nearest sensors not belonging to T that take part on the diagnosis. The testing procedure
ensures that sensors in one quadrant tests sensors in other quadrant in a cyclic manner so
that reciprocal tests are avoided. Furthermore, an heuristic is used to exchange sensors
with higher test costs for sensor with smaller costs. The number of the sensors used in the
diagnosis procedure is fixed in 4t, where t is the diagnosability of the system.

The ODTA strategy improves the gains obtained by EETA by diminishing further
the number of sensors used for the establishmnet of a connection assignment.

6.1. Simulation Environment

For the generation of the networks, the simulator receives a set of parameters, among
which there are: (1) the network size, which defines the size (in meters) of the sensing
field; (2) the number of sensors deployed in the sensing field; (3) the number of sensors
that report alarms, i.e., t; (4) the statistical distribution used to geographically position the
sensors over the sensing field; and (5) the alarm region factor (ARF ), which defines the
size of the region which sensors T are chosen from.
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More specifically, the alarm region is defined as a square region positioned ran-
domly on the network. Only the set of sensors positioned within the region are candidates
to be chosen as sensors of T . The alarm region factor, or ARF , is a number that indicates
the proportion of the network’s size which define the size of the alarm region. So, with
ARF equal to 0.1, a square region with 10% of the network size will be randomly defined
for the selection of the sensors of T . The value of ARF has a direct effect on the spatial
positioning of the sensors in T .

Two statistical distributions are supported by the simulator: the uniform distribu-
tion and the triangular distribution [Evans et al. 2000]. The uniform distribution allows
the network to be composed of sensors distributed in an homogeneous way over the sens-
ing field. In turn, the triangular distribution enables the generation of networks with a
higher concentration of sensors at some specific point.

Figure 2 shows an example of the geographical positioning of 1024 sensors gen-
erated by (a) the uniform distribution and (b) the triangular distribution. Sensors are
represented by dots distributed over a sensing field with 512mX512m,

(a) Uniform distribution. (b) Triangular distribution.

Figure 2. Example of the positioning of sensors.

The experiments run aim at evaluating and comparing the testing approaches men-
tioned in the beginning of the Section. The properties evaluated in each experiment, for
different values of t, are:

• the total energy cost of the test assignment D (CT (D));
• the average energy cost of the test assignment D (CA(D));
• the number of sensors in the testing graph;
• the impact of different values of ARF .

Different sets of simulations were performed; for each one, the four properties
listed above were evaluated. In each simulation, 100 different networks were generated
and the average values of the properties were obtained.

In all simulations, networks of size 512mX512m, composed by 512 and 1024
sensors were considered. Simulations were run using the following values of t: 1, 3, 5, 8,
10, 12 and 15, and with the following values for ARF : 0.01, 0.1, 0.5 and 1.

Table 1 lists the set of simulations parameters.
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Parameter Value
t 1,3,5,8,10,12,15

ARF 0,01, 0,1, 0,5, 1
Distribution Uniform, Triangular

Network Size 512mX512m
Number of sensors 512, 1024

Number of generated network by experiment 100

Table 1. Simulations parameters.

6.2. Results

This section presents the results obtained. At first, results for networks generated with
uniform and triangular distributions are presented and compared. Then, the behavior
exhibited by the testing strategies for tests with different values of ARF are described.

6.2.1. Experiments with Uniform and Triangular Distributions

In this subsection, two sets of experiments were carried out, one for a sensing field gen-
erated using the uniform distribution and the other for a sensing field generated using the
triangular distribution.

The sensing fields have the size of 512mX512m. The ARF value is set to 0.1;
so in these cases the sensors of T are chosen from a square region with 51.2mX51.2m.
Simulations with 512 and 1024 sensors were performed.

Total Energy Cost Figure 3(a) shows the average of the total energy cost (CT (D))
obtained by the three strategies for networks with 512 and 1024 sensors and different
values of t. The results show that, in all strategies, the total energy consumption increases
proportionally to the value of t for both 512 and 1024 sensors. Furthermore, all strategies
have their total energy costs reduced in denser networks because of the proximity between
the sensors. As expected, the strategy ODTA, which uses the minimum number of sensors
for diagnosis, shows the smallest values for CT (D).

In the experiments with triangular distribution, as shown in Figure 3(b), both
EETA and ODTA have reductions in total consumption, compared with results obtained
with uniform distribution due to the high concentration of sensors in one area. Further-
more, ODTA presents the smallest values of energy consumption.

The strategy TAWR presents higher values than the other strategies due to the high
concentration of sensors in a point of the network, which causes the selection of a large
number of sensors for the region R in that strategy.

Number of Sensors Used Figure 4 shows the average number of sensors used by the
strategies. As shown in [Weber et al. 2011], the number of sensors used for EETA is 4t
while for ODTA it is 2t + 1 for either distribution. Clearly, the strategy TAWR uses a
larger number of sensors in both scenarios.
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Figure 3. Total energy consumption for each strategy, in networks with 512 and
1024 sensors.
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Figure 4. Number of sensors used for each strategy, in networks with 512 and
1024 sensors.

Average Energy Cost per Sensor Figure 5 shows the average energy costs (CA(D))
obtained by the three approaches. For experiments using the uniform distribution, and
512 sensors, TAWR and EETA have higher values due to the smaller number of sensors
in the network and, thus, the higher distance between them. On the other hand, for denser
networks, TAWR uses more sensors. Thus, despite getting a total cost higher, it obtains,
in some cases, an average consumption smaller than the obtained by the other strategies.

For ODTA, the lower number of sensors used, the possible farther position of the
sensors in T and the heuristic for the choice of sensors makes the average energy costs per
sensor higher in some cases. For experiments using the triangular distribution, the high
density favors the strategy ODTA that uses very few tests and sensors close to each other.

6.2.2. Experiments Varying the Alarm Region Factor

In this subsection we present a comparison of the behavior of the testing approaches
for different values of ARF . The alarm region factor influences the distance between
the sensors of T . For all experiments shown below simulations with 1024 sensors and
uniform distribution were carried out.
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Figure 5. Average energy consumption for each strategy, in networks with 512
and 1024 sensors.

Total Energy Cost Not surprisingly, in all strategies, the total consumption grows with
increasing values ofARF . For EETA and ODTA, higherARF causes the use of “longer”
tests (of higher cost). For ARF = 1, EETA has lower values than ODTA, despite using
a larger number of sensors. For ODTA, with sensors of T far from each other, tests with
higher energy costs are realized. TAWR’s energy consumption is much higher than that
of EETA and ODTA. The graphic is not shown here due to lack of space.

Number of Sensors Used Strategies EETA and ODTA use fixed numbers of sensors, 4t
and 2t+ 1, respectively. In strategy TAWR, for higher sizes of the region R, more sensor
are added to VD, leading to a high number of sensors used.

Figure 6 compares the final testing graph generated by each strategy for the same
case, where t = 3. In the Figure, the sensors are represented by dots and tests are repre-
sented by edges. It is clear that the strategy ODTA presents a significant reduction on the
number of used sensors,

(a) TAWR (b) EETA (c) ODTA

Figure 6. Comparison of the testing graph generated by each strategy for the
same case, with t = 3.

7. Conclusion
In this work we were concerned with the problem of defining an energy optimal testing
assignment for the diagnosis of a WSN. The testing assignment proposed was based on

156 Anais



the concept of optimal designs of the PMC model, more specifically, on the so called set
Dδt of designs. The Optimal Design Testing Assignment (ODTA) approach always uses
the optimal number of 2t + 1 sensors for diagnosis, where t is the diagnosability of the
system.

The strategy proposed was compared to two previous approaches, the Testing As-
signment Without Reciprocal tests (TAWR) and the Energy-Efficient Testing Assignment
(EETA). The strategy ODTA presented the smallest energy costs for the great majority of
the cases. Furthermore, the smallest number of sensors used increases the network life-
time. Nevertheless, EETA presents lower energy consumption in cases where the sensing
region being monitored is very large. In these cases, a set with more low-cost tests (EETA)
generates lower total costs than few tests with high energy consumption (ODTA). Al-
though EETA has lower consumptions in these cases, ODTA presents better performance
in general, once the occurrence of alarms in sensors far apart is not expected in most real
applications. Future work includes investigating the fairness of the approach in relation
to the sensors used in the diagnosis process and studying the efficiency or intractability of
the problem of the choice of the sensors that take part in VD. The comparison of ODTA
to other approaches may also be cited as future work.
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