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Abstract. This work analyzes the optimized deployment of two resources
scarcely available in mobile multiple access systems, i.e., spectrum and energy,
as well as the impact of filter optimization in the system performance. Taking
in perspective the two conflicting metrics, throughput maximization and power
consumption minimization, the distributed energy efficiency (EE) cost function
is formulated. Furthermore, the best energy-spectral efficiencies (EE-SE) trade-
off is achieved when each node allocates exactly the power necessary to attain
the best SINR response, which guarantees the maximal EE. To demonstrate the
validity of our analysis, two low-complexity energy-spectral efficient algorithms,
based on distributed instantaneous SINR level are developed, and the impact of
single and multiuser detection filters on the EE-SE trade-off is analyzed.

1. Introduction
Resource allocation (RA) techniques, mainly power optimization, are becoming increas-
ingly important in wireless system design, since battery technology evolution has not
followed the explosive demand of mobile devices. The aim in RA is to maximize the
sum of utilities of link rates for best-effort traffic. The usual approach consists in treat the
problem jointly, i.e., optimize the joint power control and link scheduling, which has been
extensively investigated in the literature and is known to be notoriously difficult to solve,
even in a centralized manner. Hence, the methodology in [Stanczak et al. 2006, Ch.4-6]
consists in identify a class of utility functions for which the power control problem can
be converted into an equivalent convex optimization problem. The convexity property is
a key ingredient in the development of powerful and efficient power control algorithms.

One of the most interesting way of dealing with power allocation prob-
lem is the energy-efficiency (EE) approach [Meshkati et al. 2007, Buzzi et al. 2010,
Miao et al. 2010], with aims to maximize the transmitted data per energy unit (mea-
sured in bits per Joule) and closely related to green communication techniques
[Han et al. 2011]. As pointed out by [Chen et al. 2011], one of the most important trade-
offs on green wireless communications is energy efficiency versus spectral efficiency
trade-off (EE-SE); the goal consists in balancing these two important conflicting metrics.

Recently, game theory, which has its roots in the economy field, has been broadly
applied to wireless communications for random access and power control optimization
problems. This work proposes a power control procedure based on the optimized deploy-
ment of two main resources scarcely available at the multiple access mobile terminals
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(MT’s), i.e., spectrum and energy. Importantly, from the analysis of two conflicting met-
rics, throughput maximization and power consumption minimization, the distributed en-
ergy efficiency cost function is formulated as a non-cooperative game. Indeed, the overall
EE network depends on the behavior of each single user; so, the power control can be
properly modeled as non-cooperative game [Fudenberg and Tirole 1991].

This work also investigates the impact of multiuser detection schemes, moti-
vated by the fact that the gap between optimal-EE and maximal-SE is reduced when
the multiple-access interference (MAI) is increased. Since those detectors are capa-
ble to reduce substantially the MAI from other users, their deployment could result in
more energy-efficient systems, meaning the same SINR can be achieved with less power
consumption. In order to demonstrate the validity of the method, two low-complexity
energy-spectral efficiency algorithms based on distributed instantaneous SINR level are
developed.

1.1. Related works

The energy efficiency power allocation problem with filter optimization was developed for
DS-CDMA systems in [Meshkati et al. 2005, Buzzi and Poor 2008, Buzzi et al. 2010],
and demonstrate the impact of MuD strategies in the EE maximization. Additionally,
[Zappone et al. 2011] introduced cooperative networks in that scenario. For multi-carrier
systems, [Miao et al. 2009, Miao et al. 2010] investigates the energy efficiency problem
for OFDMA systems, and the EE-SE trade-off for OFDMA systems are investigated in
[Miao et al. 2011]. Considering multi-carrier CDMA, [Meshkati et al. 2006] investigates
the existence of Nash Equilibrium for the EE optimization problem, and even assuming
some simplifications the system can achieve multiple or even none Nash Equilibrium.
To reduce the allocated power by non-cooperative games, [Saraydar et al. 2002] devel-
ops a linear pricing factor, and demonstrate that this approach is Pareto-dominant over
non-pricing solutions.

This paper proposes the EE-SE trade-off analysis in DS-CDMA systems, as de-
veloped by [Miao et al. 2011] for OFDMA systems. Based on the conclusions of this
analysis, we develop two algorithms to improve the EE of the system by removing EE
non-optimal users, putting these users in outage. So far, this approach was not presented
in other works. Hence, in previous literature’s works, when a user is not able to achieve
the optimal EE, it uses the maximum power to achieve the maximum EE. Since CDMA
systems are limited by interference, removing those users it enables to reduce the gener-
ated interference and, possibly, increases the energy efficiency.

2. Network System Model

For analysis simplicity, initially we have assumed a single rate uplink direct sequence
code division multiple access (DS/CDMA) network. However, the extension for multi-
cell multi-carrier multiple access systems is straightforward. The received signal in the
base station can be described as:

y =
K∑
k=1

√
pkhkbksk + ηηη (1)
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where hk is the complex channel gain between the kth user and the base station, constant
during the chip period1, sk is the kth user spreading code with length N , representing the
processing gain; the modulated symbol is given by bk, and ηηη is the thermal noise, assumed
to be AWGN, zero-mean and covariance matrix given by σ2IN .

The uplink 1×K channel gain vector, considering path loss, shadowing and fading
effects, between users and the base station, is given by:

hupl = [h1, · · · , hK ] (2)

which could be assumed static or even dynamically changing over the optimization win-
dow (N time slots). The signal-to-interference-plus-noise ratio (SINR) is defined by the
received signal power to the sum of interfering power plus background noise, measured
after demodulation. In DS/CDMA this ratio depends on the detection strategy. Consider-
ing the adoption of linear receivers, the SINR can be expressed, generically, as:

γk =
pk|hk|2(dT

k sk)
2

K∑
j=1
j ̸=i

pj|hj|2(dT
k sj)

2 + σ2
k(d

T
kdk)

=
pk|hk|2

Ik + σ2
k(d

T
kdk)

(3)

where the channel gain hi = |hi|e∠hi , Ik =
∑K

j ̸=i pj|hj|2(dT
k sj)

2 represents the MAI
power level, sk = 1√

N
[c1, c2, · · · , cN ], ci = U{−1, 1} is the kth user pseudo-noise (PN)

spreading code, with (sTk sk) = 1, and dk is the N−dimensional vector representing the
receive filter for the kth user; (·)T denotes transpose operator.

2.1. Matched Filter (SuD)
The simplest filter that can be used is the matched filter (MF), a single-user detection
(SuD) strategy. For this receiver, the filter vector dk is defined as the kth user spreading
code, and the interference power is considered as a background noise, which limits the
system performance, since CDMA systems are limited by the interference level. Hence,
the SINR expression in eq. (3) can be re-written considering MF by:

γMF
k =

pk|hk|2(sTk sk)2
K∑
j=1
j ̸=i

pj|hj|2(sTk sj)2 + σ2
k(s

T
k sk)

=
pk|hk|2

K∑
j=1
j ̸=i

pj|hj|2(sTk sj)2 + σ2
k

=
pk|hk|2

IMF
k + σ2

k

(4)

Besides the simplicity, consider the MAI as noise power implies that the sys-
tem cannot mitigate the interference, and when the system loading becomes higher, the
necessary power to keep the SINR level for a specific user becomes higher; as a conse-
quence, this impacts on the whole multiple access system, increasing the overall power
level consumption. In order to avoid this behavior, improve the system performance and
simultaneously reduce the MAI effect, Verdu developed the idea of multi-user detection
(MuD) [Verdú 1984]. In order to detect/decode the signal of the interest user, multiuser
receivers deploy MAI information (come from interfering signal users), reducing the nec-
essary power to achieve the same SINR level. The best MuD strategy namely optimum
MuD receiver (OMuD) is that this receiver results in an exponential complexity, which
reduces the applicability of the optimum receiver.

1Mobile channel is assumed to be slow and non-selective in frequency.
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2.2. Sub-Optimum Linear Multiuser Filters (LMuD)
One of the possible ways to reduce the OMuD complexity, obtaining near-optimal perfor-
mance, consists in apply linear multiuser filters [Lupas and Verdu 1989], such as decor-
relator (DE), zero-forcing (ZF) and the minimum mean square error (MMSE). Linear
multiuser filters applies a linear transformation in the MF soft estimation, decoupling the
MAI. Besides, LMuDs are useful in power optimization algorithms because the resulting
SINR is deterministic, unlike heuristic-based methods, and that is important to find the
minimum power to achieve the target SINR.

Among the LMuD filters, the most efficient is the MMSE, because this technique
takes into account the amplitude and background noise from the interfering users, which
results in a most efficient interference reduction without a large increase in the back-
ground noise, as occur for zero-forcing and decorrelator as well [Moshavi 1996]. Besides
the efficiency, the MMSE filter requires users’ amplitude matrix, and a distributed im-
plementation becomes complicated – mainly whit the proposed iterative power control
algorithm, as described in Section 5, since this matrix will be updated at each iteration.

In order to avoid the aforementioned problems, decorrelator detector has been
chosen, which presents slight inferior performance regarding the MMSE detector,
but it depends only on the spreading codes (sk) and the correlation matrix (R)
[Meshkati et al. 2005]. Both parameters are constant during the power control algorithm
execution, which implies in just one transmission at the beginning of algorithm iterations.
The decorrelator filter (after MF) is given by:

dDEC = [d1 d2 · · · dk · · · dK ] = S(STS)−1 = SR−1 (5)

Hence, the achieved SINR is given by:

γDEC
k =

pk|hk|2

σ2dT
kdk

=
pk|hk|2

IDEC
k

(6)

The investigation of the trade-off between the resource reduction achieved with
the MMSE detector (instead of decorrelator), and the needed power and communication
overhead to transmit the amplitude information is out of the scope of this work and could
be addressed in a future work.

2.3. QoS Requirements
In order to guarantee the quality of service (QoS), a minimum data rate Rk,min for each
user must be provided for the system network service, being an important requirement
to be warranted. So, in general, data rate for the kth user is assumed to be a function of
SINR γk. To do that, we use a modified version of Shannon capacity equation, given by:

rk = Cgapk = w log2(1 + θk · γk), ∀k [bit/s] (7)

where γfilter
k is given herein by the (4) or (6) and θk is a gap introduced to describe the

limitations and imperfections in real communication systems, such as modulation effects,
and so on, to approximate the real data rate [Tse and Viswanath 2010], given by:

θk = −
1.5

log(5 BERk)
, with θk ∈ [0; 1[
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and BERk is the maximum tolerable bit error rate by the kth user
[Goldsmith and Chua 1997]. The spectral efficiency (SE) is obtained from (7):

ηk = log2(1 + θk · γk), ∀k
[

bit

s · Hz

]
(8)

From (7), the minimum data rate for the kth link, Rk,min, which is able to guarantee
the QoS, considering maximum tolerable BER for that service, can be easily mapped into
the minimum SINR:

γk,min =
2

Rk,min
rc − 1

θk
∀k = 1, . . . , K (9)

3. Problem Formulation
In a multiple access interference limited communication system, the kth user selfish
(non cooperative approach) allocates his own transmit power pk and receive filter strat-
egy (single- or multi-user detection strategy, cancelation, MAI mitigation, zero-forcing
and so forth) in order to maximize his own energy efficiency function, expressed by
[Goodman and Mandayam 2000]:

ξk = rk
L

M

f(γk)

pk + pc

[
bit

Joule

]
, ∀k = 1, . . . , K (10)

where M is the number of bits in each transmitted data packet; L is the number of informa-
tion bits contained in each data packet, pk is the transmission power, pc is the circuit power
consumption, and f(γk) is the efficiency function, which approximates the probability of
error-free packet reception. When no coding technique is used, it can be approximated by

f(γk) = (1− e−γk)M (11)

This approximation is widely accepted for BPSK and QPSK modulation.

It is worth noting that both transmission power and circuit power consumptions are
very important factors for energy-efficient communications. While pk is used for reliable
data transmission, circuit power represents average energy consumption of electronics de-
vices and circuitry [Miao et al. 2010]. Besides, the SINR for user k, γk, assumes different
definition depending on system type, multiple access detection strategy (SuD or MuD, as
described in Section 2.1 and 2.2, respectively), spreading sequence type an so forth.

Note that ξk is measured in
[

bit
Joule

]
, which represents the number of successful

bit transmissions that can be made for each energy-unit drained from the battery and
effectively used for transmission.

In a more general context, we can define the concept of global energy efficiency
function as the ratio of the total achievable capacity over the total power transmission
consumption:

ξ̄ =

∑K
k=1 ℓkrkf(γk)

PTot

[
bit

Joule

]
(12)

where PTot =
∑K

k=1(pk + pc), and ℓk =
(

L
M

)
k
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3.1. Distributed Non-cooperative EE Power Optimization Game
The network energy efficiency depends on the behaviors of all users; so, the power control
can be properly modeled as non-cooperative game [Fudenberg and Tirole 1991]. In the
context of non-cooperative power control game

G = [K, {Ak} , {uk}] (13)

where K = {1, 2, . . . , K}, and {Ak} = [0, Pmax] is the strategy set for the kth user, with
Pmax being the maximum allowed power for transmission; the utility functions {uk} is
performed by one of the energy efficiency functions {ξk}, such as eq. (10).

Consider the power allocation for the kth user, pk and denote the respective power
vector of other users (interfering users):

p−k = [p1, p2, . . . , pk−1, pk+1, . . . , pK ] (14)

Hence, given the power allocation of all interfering users, p−k, the best response of the
power allocation for the kth user can be expressed as:

pbestk = fk(p−k) = argmax
pk

uk(pk,p−k) (15)

where uk is given by (10), and fk(p−k) is called the kth best response function.

Finally, the problem for distributed energy-efficiency with power constraint under
non-cooperative game perspective can be posed as:

arg max
pk

ξk = arg max
pk

ℓkrk
f(γk)

pk + pc
(16)

s.t. 0 < pk ≤ Pmax

which solution consists in adopting the best-response strategy for user k. Indeed, the
best-response strategy consists in obtain the best user utility function (EE) individually
for each user, as posed by (15). Hence, applying the derivative on eq. (16), regarding pk,
we have:

∂ξk
∂pk

= 0

which, under certain conditions, represents the best response power allocation strategy
for each user, given the interfering power vector p−k.

3.2. Best SINR Response for SuD and LMuD Filters
Given the context of medium or high SINR, the power allocated for k−th can be approx-
imated by

pk ≈ γk
Ik
|hk|2

= γkĨ
MF
k (MF), pk = γk

Ik
|hk|2

= γkĨ
DEC
k (DEC). (17)

The first derivative of EE function (16) regarding to pk is equivalent to take the
derivative of EE function regarding to γk:

∂ξk
∂γk

=
∂

∂γk

{
ℓk
(1− e−γk)M log(1 + θkγk)

γkĨk + pc

}
(18)
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Hence, the optimal SINR for the kth user, γ∗
k , in terms of EE-SE trade-off is ob-

tained finding the solution of ∂ξ̃k
∂γk

= 0 (maximization point), admitting fixed the normal-

ized multiple access interference Ĩk. This condition is equivalent to solve function (19)
regarding γk.

Me−γk log2(1 + θkγk) +
θk(1− e−γk)

(1 + θkγk) ln 2
=

Ĩk log2(1 + θkγk)(1− e−γk)

(γkĨk + pc)
(19)

In order to guarantee that eq. (19) has only one maximizer, we introduce the
concept of quasiconcavity, defined as [Miao et al. 2011]:

Definition 1 (Quasiconcavity). A function z, that maps a convex set of n-dimensional
vectors D into a real number is quasiconcave if for any x1,x2 ∈ D,x1 ̸= x2

z(λx1 + (1− λ)x2) ≥ min {z(x1), z(x2)} , where, λ ∈ (0, 1). (20)

Lemma 1 (Quasiconcavity of uk). The utility function uk(pk,p−k) is quasiconcave in pk

This result is very important in the proof of existence and uniqueness of the system
equilibrium. However, due to space limitation all proofs are not developed herein.

4. Increasing Interference Effect and Nash Equilibrium on EE-SE Trade-off
In this section we present a trade-off between non-cooperative energy-efficient and
spectral-efficient power control schemes. This trade-off is determined by the multiple
access interference level, which is responsible by the gap among the maximal EE and
the optimum SE (only attainable with infinity power allocation). In realistic interference-
aware systems the increasing number of active users brings an increasing on system ca-
pacity; therefore, the SE of the system increases accordingly. The gap among the max-EE
and the opt-SE, Λ, can be reduced when the interference level increases. In order to
quantify this effect, let us define the coupling network parameter:

βk =
⟨|hk|2⟩
⟨|hj|2⟩

, k : interest; j ̸= k : interfering users

where ⟨·⟩ is the operator temporal average. Furthermore, defining the cell geometry and
the placement of the j = 1, . . . , K − 1 interfering users, as well as the ith interest user in
the way of Fig. 1, the max-EE and the opt-SE behavior are obtained in terms of d−i

interf , i ≥
2, Fig. 2. It is clear the gap reduction between the max-EE and the asymptotic-SE when
MAI increases, considering conventional detector. For decorrelator, the main components
are the distance (since increases path loss) and spreading-code correlation, since bigger
correlation implies in bigger noise amplification. Table 1 shows the system parameters
used in this simulation scenario.

When circuit power consumption is much smaller than the transmitted power
(pc << pk), an interesting result emerges: the optimum SINR obtained from the EE
optimization problem in (19) is the same for any MAI level, while the asymptotic SINR
necessary to the SE maximization still remains related to the interference power level, Ĩk.
Hence, under this hypothesis, the best SINR for max-EE criterium depends only on the

36 Anais



−100 −80 −60 −40 −20 0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

u
i

u
j

d
interf

d = 50m

Figure 1. Cell geometry
with increasing interference
level, I ∝ d−i

interf , i ≥ 2.

Table 1. System Parameters – EE-SE
trade-off analysis

Parameters Adopted Values
DS/CDMA Optimal Power Allocation

Noise Power Pn = −90 [dBm]
Processing Gain N = 15
Max. power per user Pmax = 10 [dBm]
# mobile terminals K ∈ {3; 9}
Interest user distance d = 50 [m]
Interfering users distance dinterf = [80; 200] [m]
Packet size M = 80 [bits]
Data bits L = 50 [bits]
Maximum BER BERk = 10−3

Circuit Power pc = 7 [dBm]
Bandwidth w = 106 [Hz]

Channel Gain
Path loss ∝ d−2

Fading coefficients Rayleigh distribution
mean over 5000 samples

Verhulst PCA
Convergence factor α = 0.5
# iterations Nit = 500

system parameters, such as maximal tolerable BER (QoS), modulation level, coding and
packet coding size. It is worth to note that when the MAI increases, the transmitted power
becomes higher and, indeed, the condition pc << pk holds, as one can see from the left
side plots of Fig. 2.a) to c), i.e., when distance dinterf is reduced.

In order to corroborate those conclusions and to determine the impact of the MAI
in the energy efficiency problem, this work analyzes the impact of linear multiuser filter
deployment, specially the use of decorrelator multiuser detector. Hence, the achieved
SINR with decorrelator filter, eq. (6), does not depend on the interference level, but the
equilibrium point is changed by the position of the mobile terminals (i.e. the path-loss,
which impacts on the channel gain, hk), the instantaneous fading and the active users’
spreading codes correlation (as one can be seen on the right side plots of Fig. 2). This
way, the expectation is that the EE is almost the same for any system loadings when
multiuser filter is deployed at receiver side.

5. Proposed EE-SE Algorithms

The proposed algorithm to implement the optimal EE-SE trade-off solution is described in
Algorithm 1 and is based on Verhulst power control algorithm (PCA) [Gross et al. 2011].
On the other hand, in order to avoid users’ outage, in which users are not able to achieve
the optimal SINR in terms of EE (due to Pmax constraint), but are able to maintain the
minimum data rate, Rk,min, an alternative algorithm is proposed in Algorithm 2.

Algorithm 1 and 2 are closely related. It’s easy to see that when the necessary
SINR to achieve the minimum rate criterion rk,min (and the associated γk,min) is greater or
equal than the optimum SINR (γ∗

k), Algorithm 2 reduces to Algorithm 1, since the second
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Figure 2. EE-SE trade-offs considering different interfering scenarios and fil-
ters (left hand-side MF, right hand-side DEC). a) dinterf = 200dinterf = 200dinterf = 200m, βk = 0.25βk = 0.25βk = 0.25; b)
dinterf = 100dinterf = 100dinterf = 100m, βk = 0.50βk = 0.50βk = 0.50; c) dinterf = 80dinterf = 80dinterf = 80m, βk = 0.63βk = 0.63βk = 0.63.

condition to be inserted in Kout is always true for the non-optimum users.

After defining the algorithms, we need to investigate the existence and unique-
ness of the achieved equilibriums. Given that the equilibrium is defined by p∗ =
(p∗1, p

∗
2, · · · , p∗k), the Nash equilibrium can be defined as:

Definition 2 (Nash Equilibrium). An equilibrium is said to be a Nash equilibrium if and
only if any user cannot unilaterally improve their response by changing the optimum
value. In the context of the energy-efficiency problem, this is equivalent to that any user
cannot improve their utility value by changing the optimum power for any other value:

uk(p
∗
k,p

∗
−k) ≥ uk(pk,p

∗
−k), ∀k (21)
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The uniqueness of the Nash equilibrium for both non-cooperative games is sum-
marized in Lemma 2.
Lemma 2. When the equilibrium p∗ is achieved without removing any user, this Nash
equilibrium is unique. When is needed to remove any user, multiple equilibriums will
exist, depending on the adopted criterion. For our adopted criterion, the equilibrium is
also unique.

6. Numerical Results
System parameters are indicated previously in Table 1 with some changes. Analysis in
this section assumes a ring geometry, with internal radius rint = 50m and external radius
rext = 200m, with K mobile users uniformly distributed on this ring area with radius
∼ U [rint, rext], and the base station in the center of the ring. The processing gain was
assumed N = 63; number of mobile terminals K ∈ {2; 15}. For simplicity, identical
parameters of QoS were adopted for all users, i.e., maximal tolerable BERk = 10−3, and
minimum data rate Rmin = 500 [kbps]. Fading is modeled as flat Rayleigh distribution
(module), simulated by a complex Gaussian random process, with zero mean and variance
given by d−2

j . Numerical results were taken as the average over 2000 network realizations,
including random (uniform) users distribution, pseudo-noise spreading codes and channel
gains. Furthermore, it was assumed that the mobile transmitter has perfect channel state
information (CSI) available, but the measurement of other mobile users’ CSI can only
be carried out by the base station through quantized transmitted bits. To corroborate the
results, we compare the two proposed algorithms with the classical approach adopted in
literature, defined by eq. (16) [Meshkati et al. 2005, Buzzi and Poor 2008].

Algorithm 1 EE-SE with Verhulst Opti-
mum Power Allocation
Require: i← 1, It, pk[0] = σ2

k, ∀k
while i ≤ It do

for k = 1 : K do
Evaluate hk, Ĩk;
Find γ∗k solving (19);
Find p∗k using Verhulst Algorithm.

end for
i← i+ 1

end while
Compute γk for each user;
Compute Kout, where k ∈ Kout if γk < γ∗k
if {Kout} ̸= ∅ then

choose the user with worst channel gain
in Kout (j-th user)
set γ∗j = 0;
go to the beginning.

else
return p∗k ∀k

end if

Algorithm 2 EE-SE–Rk,min and Verhulst
Power Allocation
Require: i← 1, It, pk[0] = σ2

k, ∀k
Compute p∗k as described in Algorithm 1;
Compute γk for each user;
Compute Kout, where k ∈ Kout if γk < γ∗k
and rk < Rk,min

if {Kout} ̸= ∅ then
choose the user with worst channel gain
in Kout (j-th user)
set γ∗j = 0;
go to the beginning.

else
return p∗k ∀k

end if

Figs. 3 and 4 bring four metric figures in order to analyze and to quantify perfor-
mance gain of the two proposed algorithms, i.e., attainable sum rates of all users,

∑
R,

XXX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 39



sum of power level consumption, including the circuit power,
∑

P , the general energy ef-
ficiency (EE), obtained from the two algorithms for the two considered filters and, finally,
the outage probability.

From Fig. 3.a) one can conclude that the problem defined in literature achieves the
best result in terms of sum rate maximization, mainly when the system loading increases,
since no user was put in outage, followed by Algorithm 2, since a user is dropped only
when the attainable rate rk remains lower than Rmin. As a consequence, the power con-
sumption is increased, because users that don’t achieve the optimum SINR try to achieve
it using maximum power allowed, increasing remarkably the interference level. Since the
decorrelator is more efficient than the matched filter on the MAI mitigation, the system is
able to support more users under decorrelator multiuser filter. That way, any sum power
or sum rate performance difference between the two proposed algorithms could not be
noted, despite the evident efficiency increasing of both algorithms, since the achieved rate
is larger and simultaneously the allocated power is smaller than those attainable with MF.
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Figure 3. a) Sum rate (SR) and b) sum power (SP) for two different filters.

Fig. 4.a) indicates the EE behavior against increasing system loading. When
K ≥ 7, despite of the sum rate improvement obtained by the Algorithm 2 and the problem
defined in eq. (16) over Algorithm 1 (considering MF), as one can see from Fig. 3.a),
this improvement is obtained at cost of the system’s energy efficiency degradation. This is
justified by the fact that there are users transmitting with non-optimal powers in Algorithm
2 and in the problem defined by the literature. Besides, the best response in terms of EE
is achieved by Algorithm 1, but incurs in more users in outage. Although there is a
marginal power-rate trade-off difference among the two proposed algorithms, both are
more efficient than the classical approach, mainly when system loading increases. As
pointed out before, the multiuser decorrelating detector is more efficient than the MF for
the two proposed algorithms, thanks to its improved capacity to provide MAI mitigation.

Fig. 4.b) shows the impact of the MAI into receivers equipped with matched
and decorrelator filters based systems. System loading was confined in the interval
K
N
∈ [0.0317; 0.2381]. Hence, even under low system loading, Algorithm 1 based system

is not able to achieve the maximum energy efficiency point for all users, since the required
power to achieve the optimum SINR increases as the interference increases and then the
maximum power available is overcame very soon. On the other hand, since Algorithm 2
allows users to transmit over a non-optimum power level scenario (as long as the mini-
mum rate criterium is reached), the outage probability will be smaller. Again, thanks to
the MAI mitigation characteristics of the decorrelator filter, the outage probability will be
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Figure 4. a) Energy Efficiency and b) outage probability for the two proposed
algorithms and detectors.

smaller than for MF. However, under extremely low loading (under 15%), Algorithm 2
with MF presents lower outage probability than Algorithm 1 with DEC filter; of course,
with increasing system loading the outage probability becomes higher than Algorithm 1
with DEC.

It is worth to note that the performance gaps among the two proposed algorithms
can be explained by the numerical value for the minimum rate adopted, which requires
a low spectral efficiency (ηk = 0.5) to be achieved, while allow a better visualization of
the performance difference. Adopting a higher value for the minimum rate criterion, the
expectation is that the outage probability will be increased for the two filters (MF and
DEC), while the performance difference among the Algorithm 1 and 2 will be decreased.

To corroborate the efficiency of decorrelator and the conclusions about rate cri-
terium, we simulate the same metric figures (Figs. 5 and 6) now at full-loading (K ∈
[3; 63]) and with two different rate criteria (Rk,min = 50 kbps and 1 Mbps). For sum
rate and sum power, the results in Fig. 5 demonstrate that Algorithm 1 obtains the best
results in terms of sum-rate and sum-power, followed by Algorithm 2 and the algorithm
described by eq. (16). Note that the bigger the minimum rate criterium, the closer Algo-
rithm 2 results are from Algorithm 1.
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Figure 5. a) Sum rate (SR) and b) sum power (SP) for decorrelator filter.

From Fig. 6.a) we can see that the achieved EE decreases when system loading in-
creases, but still bigger than the obtained for MF in low system loading. Again, Algorithm
1 is the most efficient, followed by Algorithm 2 and the literature common approach. For
outage probability, Fig. 6.b) demonstrate again that Algorithm 1 presents the higher prob-
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ability, but even at full loading this probability are lower than the obtained by MF at lower
loadings. Again, higher the minimum rate, closer Algorithm 2 is from Algorithm 1 and
lower the minimum rate, closer Algorithm 2 is from literature’s common approach.
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Figure 6. a) Energy Efficiency; b) outage probability for decorrelator filter.

7. Conclusions
In this work we have analyzed the distributed energy efficiency (EE) cost function from
the perspective of two conflicting metrics, throughput maximization and power level con-
sumption minimization, as well as the impact of filter optimization over EE-SE trade-off.

We have found that SINR under the max-EE point equilibrium is almost the same
whatever the level of multiple access interference becomes, mainly if interference level is
medium or high. For MF, the best EE-SE trade-off consists in allocating to each node the
necessary transmit power to achieve the maximal EE, since SE is significantly limited by
MAI power level.

Employing different figures of merit, numerical results indicated that deploying
both proposed power allocation algorithms the linear multiuser filter is much more ef-
ficient than conventional matched filter receiver. Finally, since the decorrelator detector
is more efficient in providing MAI mitigation, new formulation for the max-EE versus
opt-SE trade-off problem, considering multi-objetive techniques would be proposed as a
new research direction in the field.
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