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Abstract. A trend in today’s mobile robotics is to perform the control of mobile

robots in a distributed fashion. This control scheme requires a wireless commu-

nication network connecting the robot to the other existing devices in the envi-

ronment. WiFi and Bluetooth are examples of such networks. Ad-hoc networks

such as wireless sensor networks (WSN) can be deployed instantly and offer a

wide coverage by employing a large number of communicating nodes. In addi-

tion to provide a communication link to the robots, a WSN can aid the robot’s

navigation, localization, and also enhance its sensory capabilities. This paper

presents a network architecture for supporting the control and communication

of mobile robots through WSNs.

Keywords: Wireless Sensor Networks, Networked Robotics, Mobile robotics.

1. Introduction

Wireless sensor networks (WSN) are ad-hoc networks composed of small multi-

functional nodes that are able to communicate among them in short dis-

tances [Akyildiz et al. 2002]. Each node has limited memory and processing power and

can have multiple sensing capabilities (e.g., temperature, light, humidity and accelera-

tion). A structured WSN has its sensor nodes placed in well known positions, usually

employing a regular geometry. An unstructured WSN has its nodes deployed in arbitrary

geometries.

WSNs are becoming widespread for purposes such as area monitoring, pre-

cision agriculture, and wild life protection, usually providing extensive field cover-

age. WSNs can also be deployed instantly in order to manage unforeseen situations

such as natural or man-provoked disasters. Mobile robots are interesting comple-

ments to WSNs. In fact, WSNs and mobile robotics have been combined for differ-

ent purposes. A WSN can extend the mobile robots’ sensory capabilities by supply-

ing the mobile robots with information about the environment. This information can

be employed by the mobile robots for localization [Peng et al. 2009], mapping, naviga-

tion [Popa et al. 2009] [Yao and Gupta 2010], mission planning, among other purposes.

In addition, mobile robots can enhance WSN applications by deploying, replacing and

acquiring data from sensor nodes [Tekdas et al. 2009], supplying the location of sensor

nodes [Sichitiu and Ramadurai 2004], and providing gateway services to the sensor net-

work.

We are particularly interested in deploying mobile robots on environments already

monitored by unstructured WSNs. The mobile robots are equipped with sensor nodes and

are capable of communicating with the network. Our main objective is to use already

deployed WSNs to access and control the robots.
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Our starting point is a platform for networked robotics developed by our group

and reported in [Cardozo et al. 2010]. Firstly, we evaluate the restrictions imposed by

WSNs on networked robotics applications in cases when the robots must rely solely on

this network for control and communication purposes. Examples of such restrictions in-

clude bandwidth and message size restrictions, and routing restrictions. Then we present

the design and implementation of WSN capabilities added to this platform. The design

preserves the platform main features such as security, access from multiple programming

languages, and low overhead. Evaluations of the overheads were conducted in both sim-

ulated and real environments. We compare the platform’s performance using WSN and

WiFi networks and finally present a networked robotics application as a case study.

The paper is organized as follows. Section 2 presents a brief review of the in-

tegration of mobile robots and WSNs as related works. Section 3 introduces our mo-

bile robotics platform. Section 4 presents the platform extensions for operating through

WSNs. Section 5 presents performance evaluations comparing the platform overheads

when operating over wireless sensor and WiFi networks, and describes an application of

mobile robotics over WSNs. Finally, Section 6 concludes the paper and presents some

current and future works.

2. Related Works

There are many possibilities for integrating mobile robotics and WSNs. One of the most

usual application is to apply WSNs for aiding the navigation of mobile robots.

A solution presented in [Popa et al. 2009] performs motion control of a mobile

robot based on information gathered from WSNs, through a sensor node attached to the

robot that controls its navigation. This node communicates with another node attached to

a PC through the WSN. The PC monitors other nodes in the environment and receives the

robot’s position and motion. The robot sends periodic beacons to allow the WSN to track

its position. The robot position is calculated using a trilateration method. This implies

that at least three WSN nodes must know their positions as well as their distances to the

robot. This distance is inferred from RSSI (Radio Signal Strength Indicator).

In [Yao and Gupta 2010] a different solution for the navigation problem is pre-

sented. A distributed planning framework is proposed where “obstacles” detected by the

WSN are taking into account in determining feasible paths for mobile robots. In other

words, a roadmap is generated by the wireless sensor network to guide robots through

the environment. Sensors must be equipped with laser rangefinders capable of detecting

obstacles and build a map of their sensing region. The local maps are combined to form

a map of the monitored area. This map is then used to generate roadmaps for the robot.

To combine the local maps created by the sensors the environment must be equipped with

landmarks, known as relay points. These relay points are later used to stitch the local

maps together.

An indoor navigation system for autonomous mobile robots using WSN is pre-

sented in [Fu et al. 2009]. This system is based on a pre-deployed sensor network with

at least three nodes per room with known locations. These nodes communicate with the

robot transmitting their positions. The robot is then capable of determine its own position

using RSSI.

WSNs are also applied to solve localization problems. In [Peng et al. 2009], a
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system that calculates the localization of a moving target traveling along an area covered

by a WSN. In this scenario a mobile robot is equipped with a sensor node, turning it into

a mobile sensor node to the WSN. It is assumed that all static nodes of the sensor network

have known positions. When the robot moves through the WSN its position is determined

using trilateration based on the position of the static nodes and RSSI readings between

the mobile and the static nodes.

Another possibility when combining WSN and mobile robots is to use the robot

to collect or aggregate information from sensor nodes. A system that uses mobile robot to

harvest information from sensor nodes is presented in [Tekdas et al. 2009]. This solution

becomes interesting when monitored areas are far from each other and their information

need to be combined. In this scenario the use of a mobile robot that can collect information

from one area and then move to the next area to collect the information is more interesting

(e.g., in terms of energy savings) than deploying nodes to connect the two regions.

A mobile node moving within a WSN can also be used to localize the nodes of a

deployed network, as reported in [Sichitiu and Ramadurai 2004]. In this work a mobile

robot equipped with a sensor node performs random walks within a WSN. The robot

sends periodic beacons with its position that are received by the nearby nodes. Using

these beacons the sensor nodes are capable of inferring the distance to the robot and use

such distances to construct and maintain their own position estimates.

In [Meger et al. 2009] a different system for mapping a WSN is presented. In this

case, several sensor nodes equipped with cameras are deployed on the environment with-

out communication among the nodes. A mobile robot, equipped with a sensor node and

a known landmark that the cameras are able to detect, navigates through the environment

communicating its position to the nodes. Using the landmark, the nodes are able to deter-

mine the distance between them and the robot, and with the robot’s position information,

the nodes are able to determine their own positions.

Solutions for the integration of WSN and mobile robotics usually are developed

to solve specific problems in specific scenarios. Navigation strategies employing WSNs

usually rely on the fact that the positions of all network nodes are well known or can be

inferred. The solutions for the localization problem often employ RSSI readings, which

are well documented as unreliable in dynamic environments, to determine node or robot

positions [Menegatti et al. 2009] [Peng et al. 2009].

3. A Networked Robotics Platform

The WSN architecture presented in this paper is based on a networked robotics platform

that allows control of mobile robots over the network [Cardozo et al. 2010]. The platform

employs open protocols, services, and security solutions adopted by modern distributed

applications to grant access to mobile robots through the Internet and private networks.

The platform is divided into four basic packages: Front-End, Protocol Handler, Manage-

ment and Embedded, as shown in Figure 1.

The Embedded package aggregates microservers that run on the robot’s internal

processors. Although large mobile robots have enough processing power to run full fea-

tured servers, this is not the case for small and mid sized robots. Low processing power

imposes constraints in some design decisions regarding the microservers. Real time, se-

curity, and interaction with the robot’s hardware are examples of such constraints.
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Figure 1. The packages of the networked platform and their relationships.

On the client side, applications interact with the microservers using well known

protocols, such as HTTP (Hypertext Transfer Protocol) and SIP (Session Initiation Pro-

tocol). These protocols are favored for three reasons: i) they are simple, text-based pro-

tocols; ii) proxies simplify the processing of these protocols at the server-side; iii) they

have powerful client applications available (e.g., Web browser for HTTP and Internet

communicators for SIP).

In our communication model the client-microserver interaction is based on the

REST (Representational State Transfer) interaction pattern [Richardson and Ruby 2007].

REST employs messages to inspect and change the state of an object maintained by a Web

server. The object is a data structure representing a logical entity (e.g., a database entry) or

physical entity (e.g., a robot). Messages can be based on any protocol, HTTP and SOAP

(Simple Object Access Protocol) being the most used ones. Our platform favors REST

messages directly over HTTP for simplicity on the microserver side. As such, messages

already defined for HTTP are employed in the interaction, mainly GET, PUT, POST and

DELETE for retrieving, creating, updating, and removing object states, respectively.

Another important aspect is the interaction of the microservers with the robot’s

hardware. Usually a robotic framework such as ARIA [Mobile Robotics 2010] or

Player [Player 2010] is used as an intermediator. These frameworks are responsible for

all interaction with the robot’s hardware. For instance, an HTTP POST message carrying

a new state of the robot (e.g., a new pose) must be translated into instructions that can be

interpreted by the robot. Robotic frameworks usually are called from C/C++. In order to

process a request, the microserver calls the proper C/C++ functions, collects the returned

data, and assembles an HTTP response to the client carrying a XML (Extensible Markup

Language) document as reply.

The robot operations available for the users, through a HTTP microserver, are

divided into different categories of services. Table 1 shows the categories of services that

a typical mobile robot requires.

In order to facilitate the access to the robotic resources, the Front End package

supplies APIs (Application Programming Interface) for several programming languages

(Java, C/C++, Python, C#, Matlab, and LabView). The APIs generate HTTP requests and

parse the XML reply transparently to the clients. An overview of the platform components
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Service Definition

Move Service Handles movement related operations.

(e.g., setVel, setHeading, getPosition)

Range Service Handles sensory related operations.

(e.g., getSonarReadings, getLaserReadings)

Video Service Handles video and image capture related operations.

(e.g., getPicture, getVideo)

Camera Service Handles camera configuration related operations.

(e.g., setPan, setTilt)

Info Service Handles robot information operations.

(e.g., getRobotSizes, hasGripper)

Table 1. Platform service categories.

is shown in Figure 2. All interaction with the robot is mediated by the Proxy Agent and

the Security Agent (part of the Protocol Handler package). These components allow

communication only from authenticated and authorized users and applications.

Figure 2. The components of the networked robotics platform. Management

components are not shown.

4. Wireless Sensor Network Architecture

Last section introduced a mobile robotics platform that grants access to robotic resources

over a network, more specifically, the robot’s communication model within the platform.

This section presents a WSN extension to provide communication between the robot and

the platform server over IEEE 802.15.4, instead of IEEE 802.11 (WiFi).

In order to change the radio technology from 802.11 to 802.15.4 some aspects

must be taken into account. Since sensor nodes are small devices with limited pro-

cessing, storage, and power capabilities, several constraints are imposed. One impor-

tant limitation is the severe reduction on package payload size. For instance, on the

TinyOS [TinyOs 2010] implementation of the 802.15.4 standard the package payload

must not exceed 28 bytes. At the same time, the change in technology must remain

transparent to both client and robot sides. This implies that the communication model

presented in Section 3 (XML over HTTP) must remain unchanged. Meanwhile, the WSN
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extensions must be able to provide at least the robot’s main functionalities. We assume

that the robot’s main functionalities are provided by the Move, Range and Info services

(Table 1).

The solution relies on two WSN gateways, one running on the platform’s proxy

server, and a second one running on the mobile robots as shown in Figure 3. These

gateways communicate through a WSN protocol.

Figure 3. The platform extended architecture for WSN support.

4.1. The WSN Gateways

The WSN gateways are responsible for providing the major functionalities of the net-

worked robotics platform through a WSN. At the platform side, the WSN gateway is im-

plemented as a Java HTTP microserver with the same CGI (Common Gateway Interface)

interface as the microserver running on the robot. The Proxy Agent redirects an HTTP

request to the robot or to the WSN gateway, according to the address mapped for the re-

source (e.g., request to resource /PioneerRobot can be proxyed to robot’s microserver or

to the WSN gateway at the same node).

At the robot side, the WSN gateway is a Java program that reads messages sent to

the robot’s WSN node. If the message requires an operation on the robot (e.g., to set an

speed), the gateway generates an HTTP request to the robot’s microserver and forwards

the reply to the client (in this case the gateway running on the platform side). If the

operation does not involve robot operations (e.g., the reading of a nearby sensor node),

the gateway performs the operation directly through the WSN.

4.2. The WSN Protocol

The limit on message length imposed by the WSN (28 bytes in our case) demands a

protocol able to fragment the messages commonly carried through HTTP and formatted

in XML. Common requests and replies fit in a single WSN message. For instance, to set

a pose of the robot it is required two integer numbers (coordinates) and a floating point

number (orientation). Setting operations return a single true/false response indicating

success/failure. Range sensor readings, on the other hand, return a large amount of data:

apart from the robot pose, for each sensor it contains its position in a local (robot’s)
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reference frame, the obstacle detected in both local and global (inertial) reference frames,

and the absolute distance read. For example, a robot with a laser rangefinder able to

perform 180 readings, results in a 16 Kbytes XML document with the readings data.

Clearly, XML is not a practical format for WSNs due to its low efficiency in terms

of information coding. For WSNs, we replaced the platform’s XML-based protocol in

benefit of a more efficient protocol. The protocol defines message types for requests and

replies. Each request message contains two fixed fields (message type and operation),

plus a set of variable length fields with the operation parameters. The number and length

of parameters are inferred from the operation type. Listing 1 shows the format of a request

message in the NesC [Gay et al. 2003] notation.

t y p e d e f n x s t r u c t Opera t ionReques tMsg {
n x u i n t 8 t msgType ;

n x u i n t 1 6 t o p e r a t i o n ;

n x i n t 1 6 t p a r1 ;

n x i n t 1 6 t p a r2 ;

n x i n t 1 6 t p a r3 ;

} MoveMsg ;

Listing 1. Format of a request message generated by the WSN gateway at the
platform side.

As an example, Listing 2 shows the command to read all the sixteen sonars of the

robot as submitted to the WSN gateway (top) and the corresponding generated message

to be carried over the WSN to the gateway running on the robot (bottom).

h t t p : / / RobotWSN / r a n g e . c g i ? op= g e t S o n a r R e a d i n g s&r a n g e = 0 : 1 5 : 1

Message <Opera t ionReques tMsg>

[ msgType=0x2 ]

[ o p e r a t i o n =0x21 ]

[ pa r1 =0x0 ]

[ pa r2 =0x10 ]

[ pa r3 =0x1 ]

Listing 2. Range request submitted to the platform and the corresponding WSN

request message.

Reply messages are defined for each type of operation. Most reply messages fit

on a single WSN packet, e.g., operations returning a true/false indication, a single nu-

merical quantity (speed, orientation, etc.), or a few quantities (e.g., robot pose). In case

of multiple sensor readings, the protocol defines two messages, a control message and a

sensor reading message. Once the WSN gateway at the robot side receives a XML docu-

ment containing the sensor readings, it parses this document and computes the number of

readings. It then generates a control message shown in Listing 3.

t y p e d e f n x s t r u c t ControlMsg {
n x u i n t 1 6 t numMsgs ;

n x i n t 1 6 t robotPosX ;

n x i n t 1 6 t robotPosY ;

n x i n t 1 6 t robo tPosTh ;

} ControlMsg ;

Listing 3. Control message format.

The control message carries the robot’s pose when the readings were taken and

the number of sensors read. After the control message, the WSN gateway at the robot
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side generates sensor messages containing only the sensor’s ID and distance reading, plus

a message ID, as shown in Listing 4.

t y p e d e f n x s t r u c t RobotSensorMsg {
n x u i n t 8 t msgId ;

n x u i n t 8 t i d ;

n x u i n t 1 6 t r e a d i n g ;

} RobotSensorMsg ;

Listing 4. Sensor message format.

After receiving the messages containing the readings of all sensors, the WSN gate-

way at the platform side reassembles the XML document as specified by the platform.

This process requires the pose of the robot (present in the control message) and the posi-

tions of the sensors in the local reference frame (dependent of the robot type). In order

to work with different robot types, the WSN gateway can rely on a configuration file that

supply the sensor positions for the robot type (types can be identified by the robot’s node

ID or the gateway can query the robot type through the Info service).

4.3. An Enhanced Range Service

An important feature of WSNs is the ability to acquire different environmental informa-

tions (e.g., temperature, humidity, light). These sensory functions were incorporated by

the platform’s Range Service. With this enhancement the robot is now capable of collect-

ing environmental information from nodes in its communication radius.

The WSN sensor reading requests follow the range service pattern. Therefore,

when a WSN sensor reading request arrives at the WSN gateway at the robot side, it

generates a regular WSN reading request that the nodes can interpret and reply. This

enhancement remains transparent to the client applications and can be employed even if

the robot is connected through both WiFi and WSN networks.

The WSN sensor readings can be targeted to only one sensor or to a region nearby

the robot. If the client wants to read a specific sensor the request must specify the node’s

ID. When the reading request is for a region, the robot’s gateway will broadcast the read-

ing request and wait for replies from its neighbors until a timeout occurs. When this

timeout is reached a reply is sent to the client with the readings from the nodes that re-

sponded the broadcast. Figure 4 shows the system during a region reading and Figure 5

shows a sequence diagram for the entire process.

5. Results

This section presents the tests employed to evaluate the implementation. All the sen-

sor network implementations were written in NesC 1.3.1 programming language for the

TinyOS 2.1.1 operating system.

5.1. Simulations

Simulations were conducted using the TOSSIM, the TinyOS simulator, to evaluate some

scalability aspects. The goal was to evaluate the impact that the network size would have

on the robot-server comunication. A simple set operation was used to make this evalua-

tion. The simulation scenario started when the message arrives on the server gateway, the

operation request is processed and sent through the network to the robot. and ended when
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Figure 4. Robot performing a region sensors reading.

Figure 5. Sequence Diagram for a sensor region reading.

the response packet is delivered by the server gateway. To evaluate the scalability of the

networking solution, simulations were conducted with networks with 9, 50, 100 and 150

nodes (Figure 6).

In all simulations, the robot was deployed as far from the server as possible, so that

the packets would have be routed through the most number of motes. The operation was

conducted sixty times for each configuration. Times were measured from the assemble of

the message to the confirmation that the operation was successfull. The network was setup

as a grid. Average RTT (Round Trip Time) for all the simulated scenarios are presented

in Table 2.

Network Size Average Number of Hops Average RTT (ms)

9 nodes (3x3) 4 hops 79

50 nodes (5x10) 14 hops 220

100 nodes (5x20) 22 hops 389

150 nodes (5x30) 33 hops 517

Table 2. Simulation Average RTT.
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Figure 6. Simulations results for 9, 50, 100 and 150 nodes.

The simulations shown an expected and regular increase on RTT times for the

different network sizes. Considering that the range of one node is approximately 25 me-

ters, with 150 nodes a robot can cover a region up to 94000m2 with an average response

time of 517ms. With these results we conclude that the system is scalable for sub-second

latencies, and can be applied even to large coverage areas.

An interesting observation about the simulation results is that for large config-

urations the RTT tend to decrease over time. This is an indication that the network is

constantly adapting its routing tables trying to establish better packet routes.

5.2. Experimental Setup

Experiments were conducted using the Mensic’s iMote2 sensor platform with a low-

power PXA271 Xscale processor at 416MHz with 265kB SRAM, 32MB Flash and 32MB

SDRAM. The iMote2 is also equipped with an integrated CC2420 IEEE 802.15.4 radio

transceiver from Texas Instruments. The radio supports a 250kb/s data rate with 16 chan-

nels in the 2.4 GHz band.

To communicate the iMote2 with the platform server and the robot the IIB2400

Interface Board was used. To perform the sensory functions the iMote2s were fitted with

the ITS400 Basic Sensor Board. This sensor board is equipped with a 3-axis accelerom-

eter, analog and digital temperature, humidity, and light sensors. For power supply it

was used the IBB2400 Battery Board, which holds three AAA batteries each. Figure 7

illustrates these devices.

One requirement for the WSN was that it should not be device specific. This

means that any TinyOS-based device should be able to integrate the network. To fulfill

this requirement, we rely only on native TinyOS communication and routing protocols.

The Collection Tree Protocol (CTP) [Gnawali et al. 2009] is a multi-hop tree-based pro-

tocol developed for WSNs. In the CTP algorithm routes are traced based on Expected

Transmissions (ETX), an estimate of the number of transmissions it takes for a node to

deliver a packet. Each node maintains and exchanges information only about neighbors
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and the tree root on the network. This means that only the root route is maintained by ev-

ery node on the network. In our WSN architecture two route trees are formed, one rooted

on the node attached to server and one on the node attached to the robot. This means that

independent routes are maintained on the network making the network more dynamic and

fault tolerant.

A Pioneer P3-DX mobile robot was used in our experiments. The robot has a

Pentium III processor with 512 MB of RAM and runs the Xubuntu 8.04 LTS operating

system. The platform’s Proxy Server is connected via USB to the WSN through an inter-

face board. The robot is connected to the WSN also through an interface board packed

with a sensor board (as such, the robot is a WSN mobile node). The rest of the network

consists of sensor nodes fed by battery boards. Figure 8 shows the mobile robot fitted on

it’s top with a Mensic’s iMote2 interface and sensor boards.

Figure 7. Interface Board (left)
and a wireless sensor node
(right).

Figure 8. Mobile Robot fitted with
iMote2.

The first evaluation was conducted in a one hop scenario. This means that the

robot and the gateway node can communicate directly. The iMote2 has an approximated

range of 25 meters. This scenario can be seen as if the robot and the platform server

are in the same room. A second evaluation was conducted with a multi-hop scenario

with 3 hops. The robot is deployed far from the server in an environment with multiple

nodes. Figure 9 presents the end-to-end communication latencies for the single-hop and

multi-hop WSN scenarios compared with Wi-Fi. The average RTT for each scenario is

presented in Table 3. It is important to point out that the simulations results show only the

network overhead while the experimental results take into account not only the network

but also the platform overhead due to HTTP proxying and XML parsing.

Scenario Average RTT (ms)

WiFi 19 ± 27

Single Hop 75 ± 31.5

Multi Hop 108 ± 11.4

Table 3. Average RTT, plus standard deviation, for WiFi and WSN.

As expected, the WSN performance is lower when compared with a WiFi network.

In a single-hop structure the average time to perform a complete operation was 75ms.

When using multiple hops this average time rose up to approximately 110ms. Using WiFi

it took approximately 19ms to perform the same operation. Since we are dealing with

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 815



Figure 9. End-to-end communication latencies for WSN and WiFi networks.

small, limited devices these results show that the solution can be applied to teleoperation

and navigation at low speed applications.

5.3. Case Study

A network robotics application was implemented for testing the proposed WSN archi-

tecture in a real scenario. The Potential Fields is an autonomous navigation algorithm

that, given a goal position, is able to navigate the robot safely through the environ-

ment [Barraquand et al 1992]. The algorithm uses a combination of repulsive fields gen-

erated by the detected obstacles and an attractive field towards the goal. The resulting

field is used to update the robots direction and speed.

The algorithm was executed on a client computer using both infrastructures in

order to evaluate the performance of the WSN network. The proposed scenario was that

the robot should reach a goal position across a room and come back to the starting point.

Between the robot and the goal position there was an obstacle that needed to be avoided.

Figures 10 and 11 presents the experimental results from the real experiments.The

path followed by the robot is presented in Figure 10. The path using the regular WiFi

network is shown in Figure 11. In both executions the obstacle was the same, a square

box located in front of the robot. The black dots represent the robot’s sonar readings, the

diference in the figures is due to the sonar sensor uncertainty and the robot’s odometry

error.

Although the algorithm has executed correctly and the robot did reach its goals

in both networks, the paths taken by the robot were different. When using the Wi-Fi

network the navigation application can interact faster and more times with the robot then

when using the WSN, due to different network technologies latencies. This is illustrated

in areas 1 and 2 of Figures 10 and 11. Beacause of the WSN higher latency when the robot

is getting closer to the obstacle the algorithm takes longer to perceive and avoid it. It also

takes longer for the algorithm to notice that there are no more obstacles in the direction

of the goal. Despite the lower performance, the WSN allowed the correct conduction of

the robot, being an interesting option for outdoor mobile robotics.
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Figure 10. Robot path using a
wireless sensor network.

Figure 11. Robot path using a
WiFi network.

6. Conclusion

This paper presented a WSN architecture that supports access and control of mobile robots

on environments were traditional networks such as WiFi are not available. In addition,

this architecture enhances the robot’s sensory capabilities by allowing mobile robotics

applications to access environmental data such as temperature and humidity.

Both simulations and real world experiments were conducted in order to evaluate

the performance of the proposed architecture. Through simulations it was possible to

conclude that the solution is scalable and can be applied to WSN covering wide areas. The

experiments with the mobile robot compared the WSN and the WiFi performances. Using

the Potential Fields algorithm the solution was tested in a real robotic application and it

was demonstrated that a WSN is a good choice when WiFi networks are not available in

the field.

Future works include the porting of the WSN system from TinyOS to embedded

Linux OS, implementing a discovery algorithm to identify robots entering and leaving the

network area, and port the microserver architecture to the embedded Linux OS, therefore

eliminating the robotic framework overhead. We are also investigating WSN routing

algorithms more suitable for dynamic topologies as the case where a set of WSN nodes

are mobile nodes.
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Cardozo, E., Guimarães, E., Rocha, L., Souza, R., Paolieri, F. and Pinho, F. (2010) “A

Platform for Networked Robotics”, IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, Taipei, Taiwan, October.

Fu, S., Yang, G. and Hou, Z. (2009), “An Indoor Navigation System for Autonomous

Mobile Robot using Wireless Sensor Network”, IEEE International Conference on

Networking, Sensing and Control, Okayama, Japan.

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 817



Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E. and Culler, D. (2003), “The

nesC Language: A Holistic Approach to Networked Embedded Systems”, ACM

SIGPLAN 2003 Conference on Programming Language Design and Implementa-

tion, San Diego, USA.

Gnawali, O., Fonseca, R., Jamieson, K., Moss, D. and Levis, P. (2009), Collection Tree

Protocol, 7th ACM Conference on Embedded Networked Sensor Systems, Berkeley,

USA.

Meger, D., Marinakis, D., Refleitis, I. and Dudek, G. (2009), “Inferring a Probability

Distribution Function for the Pose of a Sensor Network using a Mobile Robot”,

IEEE International Conference on Robotics and Automation, Kobe, Japan.

Menegatti, E., Zanella, A., Zilli, S., Zorzi, F. and Pagello, E. (2009), “Range-Only SLAM

with a Mobile Robot and a Wireless Sensor Networks”, IEEE International Confer-

ence on Robotics and Automation, Kobe, Japan.

Mobile Robotics Inc. (2010), Advanced Robot Interface for Applications (ARIA), http:

//robots.mobilerobots.com/wiki/ARIA.

Peng, E., Meng, M. and Liang, H. (2009), “An Experimental System of Mobile Robot’s

Self-Location Based on WSN”, IEEE International Conference on Automation and

Logistics, Shenyang, China.

Player Project Web Site (2010), http://playerstage.sourceforge.net/,

2010.

Popa, M., Marcu, M. and Popa, A. (2009), “Wireless sensory control for mobile robot

navigation”, 7th International Symposium on Intelligent Systems and Informatics,

Tokyo, Japan.

Richardson L. and Ruby, S. (2007), “RESTful Web Services”, O’Reilly.

Sichitiu M. and Ramadurai, V. (2004), “Localization of Wireless Sensor Networks with

a Mobile Beacon”, IEEE International Conference on Mobile Ad-hoc and Sensor

Systems, Fort Lauderdale, USA.

Tekdas, O., Isler, V., Lim, J. and Terzis, A. (2009), “Using Mobile Robots To Harvest Data

From Sensor Fields”, IEEE Wireless Communications, Vol 16, No. 1, February.

TinyOS Project Web Site (2010), http://www.tinyos.net/.

Yao, Z. and Gupta, K. (2010), “Distributed Roadmaps for Robot Navigation in Sensor

Networks”, IEEE International Conference on Robotics and Automation, Alaska,

USA.

818 Anais


