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Abstract. The replication of a web service over geographically distributed lo-

cations can improve the QoS perceived by its clients. An important issue in such

a deployment is the efficiency of the policy applied to distribute client requests

among the replicas. In this paper, we propose a new approach for client-based

load distribution that adaptively changes the fraction of load each client sub-

mits to each service replica to try to minimize overall response times. Our re-

sults show that the proposed strategy can achieve better response times than

algorithms that eagerly try to choose the best replica for each client.

1. Introduction

The replication of a web service over geographically distributed locations can improve the

QoS perceived by its clients. An important issue in such a deployment is the efficiency of

the policy applied to distribute client requests among the replicas.

Most of the load distribution solutions proposed so far are based

on mechanisms that redirect client requests via DNS [Colajanni et al. 1998,

Barroso et al. 2003, Pan et al. 2003, Yokota et al. 2004, Moon and Kim 2005,

Su et al. 2006, Nakai et al. 2009a] or proxy web servers [Cardellini et al. 2003,

Chatterjee et al. 2005, Ranjan and Knightly 2008, Pathan and Buyya 2009]. Client-

based solutions have been neglected because of their lack of transparency to the clients

(a.k.a. web browsers). However, the web is becoming the universal support for applica-

tions that support previously unforeseen usage scenarios. For example, it is now common

to find smart clients that can generate interactions in a programmatic way (e.g. SOA). In

scenarios like this, where transparency is not an obstacle, client-based load distribution

becomes an interesting alternative.

A main advantage of this kind of solution is the fact that the client can monitor

end-to-end network latencies (response times) in a better way than the DNS and/or web

servers. In some cases, a mechanism for client-side server selection may be the only

option available. For example, a client may want to distribute their requests among a set

of equivalent web services that do not belong to the same provider. In this case, server-

side solutions are not applicable.

The client-side server selection techniques found in the literature can be divided

into two groups: those that equitably distribute the requests among the distributed web

services, and those that try to choose the best replica to which a client should send all

requests. In the latter case, the focus has been the criteria used for decision making (e.g.

latency, bandwidth, and best response time), and the way the criteria are applied (e.g.

using historical data and/or dynamic probing of servers).
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Although previous work has studied the efficiency of the server selection mecha-

nisms for a single client, they do not have assessed the effect of these mechanisms for the

whole system. In this work, we have simulated scenarios where several clients, generat-

ing different workloads, access replicas of a web service distributed world wide. In these

simulations, we assessed server selection policies that are representative examples of the

two groups of solutions. Our experiments indicate that the two types of solutions led

the system to load-unbalanced states and, consequently, to the worsening of the response

times perceived by the clients.

With respect to this problem, we propose a new approach for client-based server

selection that adaptively assigns different selection probabilities to each server regarding

network latencies and end-to-end response times. Our results show that the proposed

strategy can achieve better response times than algorithms that eagerly try to choose the

best replica for each client.

The main contributions of this paper are: (i) the evaluation of client-based server

selection policies in scenarios where several clients use the same policy; and (ii) the pro-

posal of a new solution that outperforms existing ones by dynamically adapting the frac-

tion of load each client submits to each server.

The remaining of the text is organized as follows. Section 2 discusses related

work. Section 3 presents our policy. Section 4 describes our simulations and Section 5

shows the results. Finally, in Section 6 we present our final remarks and future work.

2. Related Work

Dikes et al. [Dykes et al. 2000] present a comparison of 6 client-side server selection

policies for the retrieval of objects via the Internet: Random, Latency, BW, Probe,

ProbeBW, and ProbeBW2. Random selects a server randomly (equitably distributes the

load). Latency and BW select the server that offers the best historical network latency

and bandwidth, respectively. Probe probes the network latency of all servers (via ping)

and selects the first to reply. ProbeBW considers only n servers with the fastest historical

bandwidths and applies Probe to them. ProbeBW2 probes the network latency of all

servers and applies BW to the first n servers to reply. In summary, the results showed that

the policies based on dynamic network probes presented best service response times. A

similar result was presented by Conti, Gregori, and Panzieri in [Conti et al. 2001].

In the papers [Conti et al. 2005a] and [Conti et al. 2005b], Conti, Gregori and

Lapenna compare a probe-based policy to a parallel solution. In the parallel solution,

the total amount of data to be retrieved is divided in equal fixed-size blocks. Then, one

block of data is requested to each service replica. The authors argue that this strategy can

be useful when: (i) the objects to be downloaded are large; (ii) the client operations are

read-only; (iii) the client wants better throughput; and (iv) the performance of the service

replicas is not the bottleneck of the system.

Mendonça et al. [Mendonça et al. 2008] compared 5 client-side server selection

policies for SOAP web services: Random, HTTPPing, Parallel Invocation, Best Last,

and Best Median. Random and HTTPing are equivalent to Random and Probe from

[Dykes et al. 2000]. In Parallel Invocation, the client requests all servers in parallel and

waits for the fastest response. Best Last selects the server with the best recent response
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time. Best Median selects the server with the best median response time. According to

the authors, Best Last and Best Median are the best choice in most of cases.

The main difference between our work and the previous ones is that we are con-

cerned with the effect of the server selection policy in scenarios where several clients use

the same policy. We show that representative examples of the policies mentioned before

present better or worse performances depending on the system condition. Therefore, we

propose a new adaptive solution that outperforms the others by producing best response

times.

3. Adaptive Server Selection

The server selection problem can be defined as follows. Let Pi be the probability of a

client to send a request to the server i, with 1 ≤ i ≤ n and
∑n

i=1
Pi = 1. The problem is

to find Pi that offers the best QoS. As we can see, all solutions mentioned before belong

to one of the two types:

1. Pi = 1/n: Equitably distributes the load among n servers;

2.

{

Pi = 1, if i = k
Pi = 0, if i 6= k

: Where k is selected according to some policy criterion (la-

tency, bandwidth, response times, etc.).

Examples of server selection policies of the first type are: Round Robin, Random,

and Parallel Invocation. The positive points of this type of policies are: (i) they are simple

and do not require the client to gather server information; and (ii) they distribute client

requests among all servers, thus reducing the possibility of server overload. Figure 1

(i) shows a scenario that is favorable to these policies. In this scenario, the equitable

distribution helps not to overload any server. A negative point is that, since these policies

do not consider any server information (e.g. latency, response times), they send requests

to “worst” servers with the same probability as they send them to the “best” servers.

Figure 1 (ii) illustrates an unfavorable scenario, where servers 3 and 4 do not have enough

capacity to serve the incoming load and, thus, become overloaded.

Figure 1. Equitably distribution server selection. (i) Favorable scenario. (ii) Un-
favourable scenario.

The second type includes those server selection policies that use some criterion to

select the best server. The advantage of this kind of solution is that it allows the client to
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perceive changes in the responsiveness of the selected server and react to these changes.

These polices can offer good performance if the aggregated workload assigned to the “best

server” does not exceed its capacity. Otherwise, the clients may start chasing for the best

server and this leads another server to become overloaded. This situation is illustrated

in Figure 2. In a time t1 (Figure 2(i)) , clients select server 1, that becomes overloaded.

Once the clients perceive the changes in the responsiveness of server 1, they select server

2 (Figure 2(ii)), and then, it also becomes overloaded.

Figure 2. Best server. (i) t1: best server overloaded. (ii) t2: Chase for the best
server effect.

Considering the advantages and problems of these two types of solutions, we pro-

pose a new approach that dynamically adjusts Pi in order to minimize response times by

avoiding the overloading of the servers. Our hypothesis is simple: if clients cooperatively

balance the load of the system by distributing requests in a smart way, all of them can

benefit from that.

In our solution, as well as in the Probe policy ([Dykes et al. 2000]), the clients

probe the network latencies of the servers in a predefined time interval. Each client main-

tains a list of servers that is sorted according to their network latencies. Here, we assume

that, in normal conditions, the response times of nearby servers tend to be better than

the response times of farther ones. The main idea of our solution is to find the highest

selection probability the client can assign to each server, giving higher priorities to the

nearest ones, without overload them. In order to accomplish this objective, we propose

the heuristic described in the following.

The pseudo-code in Figure 3 describes our heuristic. At the beginning of its exe-

cution, a client sets Pi = 1/n, as in the Random policy. It sends requests to the servers

according to Pi and maintains a sliding-window mean of the response times of all servers

(MRT ) updated (lines 11 to 17). Another process monitors MRT (lines 20 to 22). When-

ever the mean of server i (MRTi) does not exceeds MRTj , i+1 ≤ j ≤ n, the probability

to select the server i is increased in a predefined amount INC (lines 27 to 30). In this

case, INC is subtracted from Pj in a direct proportion to MRTj . If MRTi > MRTj or if

a request to server i fails, then the client assumes that server i is overloaded and performs

a contention action. It decreases Pi in a predefined amount DEC, which is added to Pj in

an inverse proportion to MRTj (lines 32 to 35). DEC should be very much higher than
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01 Definitions:

02 S: set of servers, ordered by network latencies

03 Si: ith server

04 Pi: probability of selecting the server i

05 MRTi: mean response time of the server i

06 INC: probability increment

07 DEC: probability decrement

08 t_UPDATE: time between probability updates

09

10 #CLIENT

11 On each request:

12 SELECT server Sk, according to Pi (1 <= i <= n)

13 status <- SEND request to Sk

14 IF status == SUCCESS

15 Update MRTk

16 ELSE

17 Alarm[k] <- TRUE

18

19 #MONITOR

20 Continuously:

21 IF MRTi (1 <= i <= n-1) > MRTj (i+1 <= j <= n)

22 Alarm[i] <- TRUE

23

24 #PROBABILITY UPDATE

25 On each t_UPDATE seconds:

26 FOR i<-1:(n-1)

27 IF alarm[i] == FALSE

28 Pi <- Pi + INC

29 Subtract INC from Pj (i+1 <= j <= n)

30 in direct proportion to MRTj

31 ELSE

32 Pi <- Pi - DEC

33 Add DEC to Pj (i+1 <= j <= n)

34 in inverse proportion to MRTj

35 Alarm[i] <- FALSE

Figure 3. Heuristic for adaptive server selection probabilities.

INC, in order to grant that, once a problem in the responsiveness of server i is detected,

the aggregated load sent to server i is reduced to less than its capacity.

It is important to note that, in our approach, clients cooperate to maintain the

load balancing of the system in a very indirect way. There are no interactions among

clients or between clients and servers to exchange load and/or state information. The only

information each client has, as in the other solutions, is the response times produced by

the servers. Using this information, a client can avoid overloading the “best” servers by

willingly sending fractions of its requests to other servers. This happens in isolation from
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the other clients. However, since all clients perform in the same way, the overall system

load stands balanced. Considering that the clients send as much requests as possible

to better servers and the severs are not overloaded, the system can provides very good

response times.

4. Methodology

In order to evaluate our solution, we have implemented a simulator using the CSIM for

Java1, a discrete event simulator framework. In the following, we describe how we have

simulated the web services and their clients, the topology of the simulations, and the

configuration parameters.

4.1. Load Generation and Web Servers

We used the PackMime Internet traffic model [Cao et al. 2004, pac ] to generate HTTP

traffic in our simulations. PackMime has been obtained from a large-scale empirical study

of real web traffic and has been implemented in the ns-22, a well known network simulator.

In order to use the model in our simulations, we have implemented a Java version of the

PackMime.

PackMime allows the generation of both HTTP/1.0 and HTTP/1.1 traffic. The in-

tensity of the traffic is controlled by the rate parameter, which is the average number of

new connections started per second. The implementation provides a set of random vari-

able generators that drive the traffic generation. Each random variable follows a specific

distribution. The distribution families and the parameters used in PackMime are described

in [Cao et al. 2004]. In our simulations, we used the following random variables:

• PackMimeHTTPFlowArrive: interarrival time between consecutive connec-

tions;

• PackMimeHTTPNumberPages: number of pages requested in the same connec-

tion (if using HTTP/1.1);

• PackMimeHTTPObjsPerPage: number of objects embedded in a page;

• PackMimeHTTPFileSize: sizes of files (pages and objects);

• PackMimeHTTPTimeBtwnPages: gap between page requests;

• PackMimeHTTPTimeBtwnObjs: gap between object requests;

We assumed that each geographically distributed replica of the web server is com-

posed of a cluster of servers. Each server is simulated as a queueing system with fixed

service time of 10 ms. Thus, a cluster with k servers provides a capacity of k*100 re-

quests/second. The request interarrival time distribution is defined by the PackMime

model [Cao et al. 2004, pac ]. Figure 4 illustrates the workload generating 210 connec-

tions per second. Note that, since each connection generates more than one HTTP re-

quest, the number of requests per second reach peaks of 380. It is important to note that,

although the service time is fixed, the response time perceived by the clients also includes

the server queue time. Therefore, different loads do affect the entire response time.

In order to divide the load between different clients, we adopted a solution similar

to the one proposed by [Colajanni and Yu 2002]. In this paper, the authors propose to di-

vide clients (in this case, end customers) into domains according to the Zipf’s distribution,

1http://www.mesquite.com/
2http://www.isi.edu/nsnam/ns/
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Figure 4. Example of workload generated by Packmime.

where the probability of a client to belong to the ith domain is proportional to 1/ix. This

solution was motivated by previous work that demonstrate that if one ranks the popularity

of client domains by the frequency of their accesses to a Web site, the size of each domain

is a function with a large head and a very long tail. In our simulation, the total aggregate

load is divided between the clients according to the Zipf’s distribution. We can also vary

the skewness of the distribution by changing the exponent x of the function.

4.2. Internet Latencies

We have considered a scenario with six replicas of the web server that are world wide

distributed (Figure 5): one in South America (S1), one in North America (N1), two in

Europe (E1 and E2), and two in Asia (A1 and A2).

We used the average of the latencies (ping RTT/2) measured on real hosts of Plan-

etLab3 in Brazil, USA, Belgium, Austria, Japan, and China, to simulate the latencies

among the replicated web servers. Table 1 shows the measured RTTs. We also consider

that each replica serves a region and that the latency between a replica and a client of its

region is 10ms.

Figure 5. Web Server Replicas.

3http://www.planet-lab.org
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Table 1. Table of latencies among the replicas (in milliseconds).

S1 N1 E1 E2 A1

N1 89

E1 138 48

E2 140 58 18

A1 193 109 151 162

A2 272 156 114 122 68

Although we used fixed latencies in our simulations, their magnitudes are real and

we believe that small variations that do not affect the magnitude of the latencies would

not affect our results. Since we consider the entire response time (network + service)

to make decisions in the policies, from the client’s perspective, it does not matter if the

differences in response time are caused by network latency variations or due to variable

server workload. Thus, we believe that, varying network latencies would not change the

overall results.

In order to consider the latency of the TCP protocol, we adopted the analytic

model proposed by Cardwell et al. ([Cardwell et al. 2000]). This work extended previous

models for TCP steady-state by deriving models for two other aspects that can domi-

nate TCP latency: the connection establishment three-way handshake and the TCP slow

start [RFC793 1981]. Therefore, the model proposed by Cardwell et al. can predict the

performance of both short and long TCP flows under varying rates of packet loss.

In practice, the TCP model estimates the time needed to transfer data from one

endpoint to another in terms of: (i) the size of the data to be transferred; (ii) the network

latency between the two endpoints; and (iii) the packet loss rate probability.

4.3. Configuration

We compared our solution (AD) with two other server selection policies:

• Round Robin (RR): Each client sends requests to all servers in a rotative way;

• Best Server (BS): Each client uses RR to probe all servers. The server that presents

the best mean response time is selected. Next, the client keeps sending all requests

to the selected server until its mean response time exceeds the mean response time

of other server. In this case, the client starts probing again, in order to avoid using

out-of-date mean response times.

In order to present the flexibility of our solution, we performed our experiments

considering two scenarios, one that favors BS and another that favors RR. In the first, the

total capacity of the servers was set to 1200 requests per second (rps) divided among the

servers as follows: S1 = 100 rps, N1 = 300 rps, E1 = 200 rps, E2 = 300 rps, A1 = 200

rps, and A2 = 100 rps. The clients were configured to generate approximately 72% of the

total capacity. In the second scenario, the total capacity was divided equitably among the

servers and the aggregated load was set to approximately 90% of the total capacity.

The parameters used in the heuristic are shown in Table 2. Note that, since DEC
needs to be sufficiently large to alleviate the load of an overloaded server, we adopted a

DEC proportional to Pi.
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Table 2. AD Simulation Parameters.

Parameter Value Description

INC 0.01 Probability increment.

DEC 0.3Pi Probability decrement.

t UPDATE 1s Time between probability updates.

WSIZE 30 requests Window size for response time slide mean.

5. Results

Figure 6 presents the mean response times for Scenario 1. This scenario is unfavorable for

RR (Round Robin), that does not have any information about server capacity. Although

the total capacity of the system is much higher than the load, the server capacities are

heterogeneous. Two servers (A1 and E2) have capacities lower than the equitable fraction

of load distributed by RR. This lead A1 and E2 to become overloaded, making their

queues grow faster than others queues and, consequently, affecting the system response

times.

The bad performance of RR is also the result of its lack of adaptability to the

overloading of the servers. Also, RR does not benefit from the small network latencies

offered by nearby servers, because it blindly distributes the requests among all servers.

Figure 6. Mean response times for scenario 1.

For the sake of visualization, we replotted the mean response times of BS (Best

Server) and AD (Adaptive) in Figure 7. As we can see, AD presented better response

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 625



times in all simulations. In more than 85% of the simulations, AD presented mean re-

sponse times more than 25% smaller than BS. In some cases, the difference was more

than 40%.

This result was expected because, although BS tries to select the server with best

response times, once the nearby server becomes overloaded, BS deviates the entire load

of the client to farther servers that are lightly loaded. Although the best server decision is

continuously re-evaluated by clients, the time it takes to change its decision is enough to

overload the current chosen server. In the same situation, AD deviates only a fraction of

the load, keeping as much requests as possible to be served by the nearby servers.

Figure 7. Mean response times for scenario 1.

The results obtained in scenario 1 may suggest that server selection policies that

equitably distribute the load are useless if compared to policies that dynamically adapts

to sever condition changes. However, the simulations of scenario 2 show that it is not a

general rule.

In scenario 2, the system is almost saturated – the load corresponds to 90% of

the capacity. Nevertheless, since the servers have similar capacities, RR’s equitable dis-

tribution grants that no server becomes overloaded. On the other hand, the higher load

amplifies the effect of chasing the best server implemented by BS. For this reason, BS

presented the worst performance in this scenario, with mean response times 18% larger

than RR and 48% larger than AD on the average.

Even though RR does not cause server overloading in this scenario, it still does

not benefit from the small network latencies offered by nearby servers. This makes AD
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to perform better than RR, presenting mean response times more than 25% smaller than

RR in more than 85% of the simulations.

Figure 8. Mean response times for scenario 2.

While the first scenario is characterized by a lightly loaded system with heteroge-

neous servers, the second presents an almost saturated system with homogeneous servers.

It is clear that, in the first case, due to its adaptability to server state changes, BS per-

formed better than RR. In the second case, the equitable load distribution produced by

RR outperformed BS’s greedy strategy. Nevertheless, AD produced the best response

times in both scenarios. This indicates that our solution successfully adapted to the sys-

tem states while the other solutions did not. The results suggests that, in the considered

scenarios, our hypothesis is valid.

6. Conclusion

A main advantage of client-side server selection policies is that clients can monitor end-

to-end response times in a better way than server-side solutions. Besides, sometimes,

client-side policies are the only option available. Most of the client-side policies proposed

so far select one server to which the client should send all requests or equitably distribute

the load among all of them.

Our simulations have shown that in scenarios where several clients use the same

server selection policy, these two types of solution can lead to load-unbalanced states and,

consequently, to the worsening of response times.

In this paper, we argue that if clients collaborate in order to balance server load

they can obtain better response times. Our solution adaptively changes the fraction of
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load each client sends to each server giving higher priorities to nearby servers. Although

this less greedy strategy of sending fractions of the load to worser servers seems to be

counterintuitive, our experiments have shown that our solution overcomes the two types

of policies proposed so far, even in scenarios that favors one type or another.

Future work include: (i) the evaluation of the sensitivity of our solution through

an even more comprehensive set of simulations; and (ii) the deployment and evaluation

of our solution in a real testbed [Nakai et al. 2009b].
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