
Adaptive Convergecast by Distributed Topology Switching

Suchetana Chakraborty, Sushanta Karmakar

1 Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Assam, India

{suchetana,sushantak}@iitg.ernet.in

Abstract. Convergecast in a wireless sensor network is a process in which each

sensor node senses the environment and forwards that information to a base sta-

tion in some way. For correct data gathering using convergecast there should

be no data loss and no delivery of redundant data. Sensors can form a spanning

tree rooted at the sink (base station) to perform the convergecast in an efficient

way. Leaves of the tree can sense and forward data independently. However

an internal node forwards data to its parent only after receiving data from all

its children. It has been observed that a Breadth-First-Search (BFS) tree is a

better choice for convergecast under low system load because the depth of any

node from the root is always minimum. However under higher load a Depth-

First-Search (DFS) tree may be a better option as the degree of any node in a

DFS tree is generally lower than that in a BFS tree. Hence load of each node is

lower in case of a DFS tree than that in a BFS tree. Therefore it may be desir-

able to dynamically switch between a BFS tree and a DFS tree based on load.

In this paper we propose a scheme for adaptive convergecast that dynamically

switches between a BFS tree and a DFS tree. The switching mechanism remains

transparent to the convergecast. Also each convergecast message is correctly

delivered to the base station eventually without any loss or redundancy.

1. Introduction

A sensor is a device which is capable of sensing, processing and transmitting data to other

sensors. A group of such sensors form a network which can be used to monitor environ-

ment, health, military or critical resources. Sensors have limited processing capacity,

memory and they are generally battery powered. Data gathering using convergecast is an

important application in sensor networks. In convergecast, each node senses some data,

gets data from some other sensors, and fuses them to forward to the base-station. In re-

cent years convergecast has received increasing attention because of significant number of

practical applications. One way to achieve an efficient convergecast is to model a sensor

network as a tree rooted at the sink. All the leaf nodes of the tree collect and forward data

independently, but an intermediate node can forward data to its parent only after receiv-

ing from all its children. A correct convergecast process guarantees that all the data from

different nodes must reach the sink without any data loss or data redundancy.

1.1. Motivation

The performance of a distributed system depends on its environment which can change

with time. For example, average load of a distributed system varies with time as the num-

ber of users changes. Therefore it is desirable to design protocols for distributed systems

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 545

that can adapt to changing environments. Convergecast generally uses a rooted spanning

tree. A fixed data-gathering tree may not be suitable for convergecast under various load

conditions. If there exist more than one tree each rooted at the sink node, and each of

them is better suited to a particular environment then the system may dynamically switch

from one tree to another based on change in environment and thereby can implement an

efficient convergecast that adapts to the changes in the environment and thus provides

better performance. In this work we consider the existence of two trees, a BFS tree and a

DFS tree, both rooted at the sink for data gathering. The convergecast application uses the

desired tree based on load. If load is low, it uses a BFS tree as the distance from any node

to the root is always minimum in a BFS tree. However for higher load the application

uses a DFS tree because the degree of any node is generally lower in a DFS tree than that

in a BFS tree. If load changes from low to high, the system switches from the BFS tree to

the DFS tree, and similarly vice-versa.

A random switching between these two data-gathering trees would result in an

incorrect convergecast due to data redundancy or loss of data. The problems are illustrated

in Figure 1 and Figure 2. In the figures a dashed link indicates a communication link

between two nodes and an arrow indicates an edge of the tree.

• Redundant data: Let at time t convergecast was using the BFS tree of Figure

1(a) and at that moment leaf node 7 has sent data to node 3. Now suppose the

system starts using the DFS tree of Figure 1(b) due to a random switching. So

at time t + 1, node 3 will try to forward the data to its current parent, which
has changed from node 1 to node 7. Hence the same data that node 7 had sent

to node 3 will come back to node 7 as a duplicate. Thus in general, whenever

the parent-child relationship between any two nodes gets reversed due to a

random switching, the correctness of the convergecast will be compromised due

to redundant data transmission in the network.

• Data loss: Suppose the system is using a DFS tree as shown in Figure 2(b).

At some time t node 3 has sent data to its parent, node 5. However the data has

not yet reached node 5 because of the asynchronous property of network channel.

Now a random switch occurs from the DFS tree to the BFS tree (Figure 2(a)) .

After the switching node 5 has got two children i.e. node 6 and node 7. As soon

as it receives data from both of its children it will fuse and forward to its parent

which is node 2. So even if data from node 3 reaches to node 5 eventually, it will

not consider it as node 3 is not its child any more. So the data that node 3 sent to

node 5 will be lost in this process and will never reach to the sink.

1.2. The Problem Definition

A correct convergecast requires that all the data from the different nodes must reach the

sink without any data loss or redundancy. Also each node can send data only once. Differ-

ent topologies of the underlying data-gathering network will be useful in different scenar-

ios. The main objective of the work is to propose a scheme for convergecast that adapts

to the load of the network by dynamically switching between different topologies and

still guarantees a correct convergecast. Depending on the system load the adaptive con-

vergecast protocol uses either a BFS tree (at lower load) or a DFS tree (at higher load).

However a random switching from a BFS tree to a DFS tree or vice-versa can cause the

546 Anais

Figure 1. Redundant Data Delivery Figure 2. Data Loss

problem of redundant data delivery, data loss, or an indefinite stall of data flow. In this pa-

per a distributed message-passing algorithm has been proposed to switch from a BFS tree

to a DFS tree (similarly vice-versa) such that the application layer convergecast remains

unaffected. The proposed algorithm performs the switching between a BFS tree and a

DFS tree while assuring that all the properties of a correct convergecast are maintained.

Even if there is a temporary blocking of data at some particular node, it resumes within a

finite amount of time without any data loss. Also the stall is temporary and local to some

node.

2. Related Work

Convergecast in wireless sensor network has received significant research attention.

[Annamalai et al. 2003] proposed an algorithm for tree construction and TDMA based

channel allocation for collision free convergecast to achieve greater efficiency in terms of

latency and power consumption. The algorithm constructs a tree level by level and allo-

cates a schedule for each node that specifies the time-slot(s) in which it can transmit data.

[Upadhayayula et al. 2003] proposed another algorithm to minimize energy consumption

during communication, while ensuring low-latency through faster data transfer and relia-

bility through collision-free transmission. The motivation for improving the latency is by

constructing a balanced tree such that it enhances the likelihood of multiple simultaneous

transmissions in a given time slot. [Krishnamachari et al. 2002] proposed a data-centric

routing scheme and studied the energy-latency trade-off involved in data-aggregation that

includes the effect of source-sink placements, communication network topology and den-

sity of the network on convergecast. They have shown that the latency of convergecast

is proportional to the number of hops between the sink and the furthest source and the

formation of an optimal data-gathering tree is a NP-hard problem. So they proposed a

heuristic based polynomial time algorithm to create a data-aggregation tree. However

none of the aforesaid works proposed an adaptive model of convergecast which can cope

with changing environments.

[Heinzelman et al. 1999] proposed a family of adaptive protocols, named SPIN

(Sensor Protocols for Information via Negotiation), for data dissemination in wireless

sensor network. To eliminate the transmission of redundant data flow in the network, the

protocol uses high level data descriptors called meta-data. The performance of SPIN out-

performs the traditional approaches like flooding or gossiping using its key features such

as meta-data negotiation and resource adaptation. The proposed algorithm is energy-

aware but useful only for highly available bandwidth. Also communication cost is com-

paratively higher.

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 547

[Liu and van Renesse 2000] worked on the adaptivity and coordination among

running protocols. They have built a hybrid protocol that can make smooth adaptation

at run-time. The algorithm works in three steps and has small switching overhead and

is scalable and delay-efficient compared to the traditional two-phase commit protocol.

However the protocols used are abstract in nature, homogeneous and application specific.

In another paper, [Liu et al. 2001] designed a generic switching protocol which assures

to preserve some of the communication properties like reliability, total order, integrity, no

replay, confidentiality etc. The switching protocol runs below the application layer and

is transparent. However the properties considered are application specific and thus have

limited applicability in general. [Mocito and Rodrigues 2006] have proposed an adaptive

protocol that is able to dynamically switch between different total-order algorithms. The

assurance is that the flow of application messages do not stop even during the switching.

To achieve smooth transition, all nodes need to agree on the point in the message flow

where they switch. Also, the proposed protocol does not allow concurrent adaptation and

offers low overhead as long as there is enough network bandwidth to support the trans-

mission of data in parallel during the reconfiguration. Furthermore this is applicable only

for broadcast.

[Yacoab and Sundaram 2010] proposed an adaptive traffic-aware data aggregation

technique for wireless sensor network. In the proposed scheme, a traffic monitoring agent

is used to monitor the load and a multipath structured tree is constructed in which nodes

are selected based on their residual energy level. If the total traffic load of the system

is less than a threshold value, then the structured lossless aggregation is applied, oth-

erwise the aggregation technique is adaptively changed to structure-free lossy aggrega-

tion. [Chen et al. 2008] proposed an adaptive data-gathering scheme for clustered WSN.

The objective was to shift the burden of computation from ordinary sensor nodes to the

resource-rich sink node through proper adjustment of aggregation ratio and reporting fre-

quency. The spatial and temporal aggregation degree is adaptive to the dynamic state of

WSN via the interaction between the sink node and the clusterheads.

[Karmakar and Gupta 2007] designed a distributed protocol switching algorithm

for broadcast applications that switches between a BFS tree and a DFS tree for adapting to

the system load. At low load a BFS tree is used as it reduces the broadcast delay. However

at higher load a DFS tree is used to since the degree of node in a DFS tree is generally

lower than that of a BFS tree. In the proposed algorithm, the switching is done adapting

to the network load as well as without affecting the application layer broadcasting. The

algorithm also ensures the correct delivery of each broadcast packet and guarantees that

some spanning tree of the graph is always maintained even at the time of switching.

However, this problem gets more challenging when the application is convergecast. Data

packets are forwarded from the leaf nodes to the root in case of convergecast. If the

switching occurs in the reverse direction, then a lot of co-ordinations among the nodes are

needed to achieve a successful switching while assuring the correctness of the algorithm.

The challenge also lies in the fact that for convergecast there are multiple initiators of the

data-gathering process i.e. multiple leaf nodes in the system.To the best of our knowledge

there is no algorithm for adaptive convergecast that switches between two trees. In this

paper we have proposed a distributed algorithm for load-adaptive convergecast using tree

switching.

548 Anais

3. System Model

Let there be n number of sensor nodes placed randomly in the environment that is being

monitored. The random distribution of the sensor nodes are represented by a commu-

nication graph G(V,E) where V represents the set of sensor nodes and E be the set of
communication links between the nodes. N(v) denotes the neighbor set for any node v.
The switching algorithm is used to switch between a BFS tree and a DFS tree (or vice-

versa) depending on the load of the system. The BFS tree and the DFS tree are assumed

to be precomputed for a given network topology using some standard algorithm and both

are rooted at the sink node. The computation model is assumed to be asynchronous and

the network is static. So the per hop message delay is finite but unbounded. Also it is

assumed that the channel is reliable and FIFO as well as there is no node or link failure in

the network.

4. Algorithm Design

4.1. Tree Switching Algorithm

The task of switching between a BFS tree and a DFS tree has two components. The first

component is about when to switch. This component detects the change in environment

that triggers the switching. In this work we assume that there exists an oracle at the

sink node that decides the time when the switching should start. The second component

deals with how to switch from one tree to another. In this paper we concentrate on this

component. The proposed algorithm is a distributed message passing algorithm which

works in two phases. Let T and T ′ denote the BFS and DFS tree respectively.

• First Phase: For a switch from tree T to T ′, sink node (root) passes a TOKEN to

its children of new tree T ′. As the TOKEN traverses downwards, the virtual new

tree T ′ is constructed from the root to the leaves. However the convergecast still

follows the old tree T .

• Second Phase: Leaf nodes start passing back the TOKEN to their respective par-
ents for the switched tree T ′ through the return paths. Each node thus on receiving

TOKEN back from all its children makes the link to its parent permanent, which

is an edge of the new tree T ′. Now the data packets start flowing through these

newly built paths. In this way the switching from T to T ′ occurs gradually from

the bottom of the tree towards the root.

Therefore it is evident that at some point of time data gathering is using T ′ at the

bottom levels of the tree and T at the the upper ones. However the algorithm assures

that convergecast process does not get affected in any way and also the tree properties

are maintained all the time. Three types of messages are exchanged among the nodes to

complete the switching process.

• Each node sends TOKEN message to all its children for the switched tree and thus
making a virtual construct of the switched tree. Also each node receives back the

TOKEN from all its children in second phase to make sure that the paths from

the leaves to that particular node have already been permanent. The TOKEN is

generated by the root to initiate the switching and finally consumed back by the

root itself completing the process.

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 549

• When a node wants to change its parent pointer due to switching, it first sends a
CANCEL message to its old parent. Also when an intermediate node becomes a

leaf node for the switched tree, it sends CANCEL to all its old children from whom

it used to receive data packets. Upon receiving CANCEL from a child, a node

removes that particular node from its child set. Again upon receiving CANCEL

from parent, a node starts buffering incoming application data.

• A node sends ACKC to its parent as an acknowledgment to the CANCELmessage.
Upon receiving ACKC from all the expected neighbors, a node can guarantee that

it is not going to receive any more data packets from any of those neighbors and

hence changes its parent pointer for the sake of switching.

Each node has a set a of variables whose descriptions are as follows:

• pcurr : Parent variable for the current tree T .

• pnew : Parent variable for the switched tree T
′.

• Ccurr : Set of children for the current tree T .

• Cnew : Set of children for the switched tree T
′.

• Counter1 : Integer variable, keeps the track of the cardinality of the set Cnew.

• Counter2 : Integer variable, keeps the track of the cardinality of the set Ccurr.

• BLOCK : Boolean variable, if FALSE then the system dequeues application

messages from the Buffer.

Counter1 and Counter2 are initialized to 0 and pnew to NULL. pcurr and pnew

is NULL for the root node. Root node initiates the algorithm by sending TOKEN to all

v where v ∈ Cnew and when it receives back the TOKEN from all v where v ∈ Cnew

then the algorithm terminates. The formal description of the algorithm for BFS to DFS

switching or vice-versa is given in Figure 3, 4 and 5

Let each convergecast message coming from the application layer be denoted by

M . The tree switching algorithm runs as a middleware layer below the application layer.

So upon receivingM from the application layer, the switching algorithm, based on local

computation, either forwards it or starts buffering. If BLOCK = FALSE then it simply

forwards to its current parent, otherwise it starts buffering. Each node has a buffer to store

incoming data from application layer. The buffer is implemented as a queue. FRONT and

REAR denote the first and last pointers of the queue respectively and both are initialized

to 0. The formal algorithm for handling application messages is given in Figure 6.

4.2. Correct Delivery of Convergecast Messages

The problem of application data loss due to switching can be easily avoided through

duplicate transmission. However this may increase the latency and traffic overhead of the

system. Hence in this work we assume that a node does not send the same convergecast

message to its parent more than once. With this condition, only the proper design of the

switching algorithm can guarantee a correct convergecast. The illustration in Figure 7 is

for the switching from a BFS tree to a DFS tree to show that the switching gets completed

successfully as well as the properties of the convergecast are also satisfied.

• No Redundant Data: For T node 3 is the parent of node 4, but in T ′ this parent-

child relationship gets reversed. So duplicate data may generate as a consequence.

But on receiving CANCEL from node 3, node 4 starts buffering data. Receiving

550 Anais

ON RECEIVING TOKEN FROM U

1 if u ∈ Cnew

then

2 Ccurr ← u

3 Counter1← Counter1− 1
4 if Counter1 = 0

then

5 if pcurr 6= pnew

then

6 Send (CANCEL,pcurr)

7 pcurr ← pnew

8 endif

9 endif

10 Send (TOKEN,pnew)

11 if BLOCK = TRUE

then

12 BLOCK ← FALSE

13 endif

14 else

15 pnew ← u

16 Send (TOKEN,v) where v ∈ Cnew

17 Counter1← |Cnew|
18 if Cnew = φ

then

19 if Ccurr = φ

then

20 if pcurr 6= pnew

then

21 Send (CANCEL,pcurr)

22 endif

23 else

24 Send (TOKEN,pnew)

25 endif

26 else

27 Send (CANCEL,v) where v ∈ Ccurr

28 Counter2← |Ccurr|
29 endif

30 endif

Figure 3. On receiving TOKEN from u

ACKC confirms node 3 that no more data is going to come from node 4. Before

receiving ACKC, node 3 forwards all data through its old parent node 1, and after

receiving ACKC, to its new parent node 4. So no data sent from node 4 to node 3

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 551

ON RECEIVING CANCEL FROM U

1 if u = pcurr

then

2 BLOCK ← TRUE

3 Send (ACKC,u)

4 endif

5 if u = Ccurr

then

6 Ccurr ← {Ccurr − u}
7 endif

Figure 4. On receiving CANCEL

ON RECEIVING ACKC

1 Counter2← Counter2− 1
2 if Counter2 = 0

then

3 Send (CANCEL,pcurr)

4 Send (TOKEN,pnew)

5 endif

Figure 5. On receiving ACKC

ON RECEIVING M

1 Buffer[REAR]←M

2 REAR← REAR + 1
3 if BLOCK = FALSE

then

4 Send (M, pcurr)

5 FRONT ← FRONT + 1
6 endif

Figure 6. On receiving application message

can come back to node 4 as duplicate.

• No Data Loss: Node 3 had two children, node 4 and node 7 in T , whereas it

is a leaf node in T ′. Data sent from a child could get lost if its parent does not

exist any more due to a random switch. However node 3 first makes sure through

ACKC that no more data is going to come from its current child and then only it

can remove the link to its current parent. All the data received before receiving

ACKC is thus forwarded through the old path.

• No Indefinite Stall: A node starts buffering data after receiving either a TOKEN
from its Cnew or a CANCEL from its pcurr. Also a node informs its pcurr through

CANCEL message before changing its parent variable. Thus a node does not wait

indefinite time (network stall) expecting data from its child.

4.3. Proof of Correctness

Lemma 4.3.1 Each node receives TOKEN exactly |Cnew|+1 times, one from its pnew and

each one from u where u ∈ Cnew.

Proof The root node initiates the switching algorithm by sending TOKEN to all u where

u ∈ Cnew(root) independently. At the second phase of the algorithm leaf nodes send back
TOKEN to their respective pnew independently. Each intermediate node receives TOKEN

552 Anais

Figure 7. Sample Run of the Switching Algorithm

from its pnew when the TOKEN traverses through the forward paths from the root node

to the leaves and from each u where u ∈ Cnew when the TOKEN traverses through the

backward paths from the leaves to the root node.

Lemma 4.3.2 The COUNTER1 value at each node eventually becomes 0 and the node

sends back TOKEN to its pnew.

Proof Each leaf node sends back TOKEN to its pnew independently as their COUNTER1

value is 0 always. For any intermediate node u, COUNTER1 value is decremented when

u receives TOKEN back from each v where v ∈ Cnew. So the COUNTER1 becomes 0

when the TOKEN is received from all v where v ∈ Cnew and as a consequence it sends

back TOKEN to its pnew.

Lemma 4.3.3 When an intermediate node becomes a leaf node for the switched tree, then

eventually its Ccurr becomes EMPTY.

Proof When an intermediate node u becomes a leaf of the switched tree, then all v where

v ∈ Ccurr send TOKEN to their respective pnew by Lemma 4.3.2. Also each v sends

CANCEL to its pcurr u. On receiving CANCEL from a node v where v ∈ Ccurr, node u

removes v from Ccurr. Thus Ccurr becomes empty eventually.

Theorem 4.3.4 The switching algorithm will be eventually terminated.

Proof Depending on the network load, the root node takes the decision of switching and

starts the switching procedure by sending TOKEN to each node v ∈ Cnew. Each node u

on receiving TOKEN from its pnew, forwards it to all v ∈ Cnew. The variable Counter1
at u tracks the cardinality of the set Cnew. This phase of the algorithm terminates if

Cnew = φ for the node u; or in other words u is a leaf node. At the second phase each

leaf node u sends back the TOKEN message to a node v where v = pnew. Thus the

link between u and v becomes permanent according to Lemma 4.3.2. Let Ncount(l)
be the nodes at level l of the tree. Further, let all the links between Ncount(l + 1) and

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 553

Ncount(l) be already permanent. Then according to Lemma 4.3.2, the COUNTER1
value at each u where u ∈ Ncount(l) becomes 0 eventually. They sent back the TOKEN
to v where v ∈ Ncount(l − 1) and v = pnew(u). Then all the links between Ncount(l)
and Ncount(l − 1) become permanent. Thus a node u at level l does not transmit any

more messages to a node at level (l+1), or at level (l−1) once all the edges incident on u
have become the part of the new tree. This phase of the algorithm terminates producing a

switched tree correctly when the root at level 0 receives back TOKEN from all its children.

The variableCounter1 at the root becomes 0 as a consequence. Thus there exists no more
control messages in the system and all the nodes and edges become stable at this point.

Hence the algorithm terminates successfully.

Theorem 4.3.5 There will always be a path from any node to the root node at the time of

switching.

Proof When a node u needs to change its parent due to switching, it has to be assured

that there exists a path from pnew(u) to the root. Now a node u sends TOKEN to a node v
where v = pnew(u) to make a permanent link only when it has already received TOKEN
from v through forward TOKEN traversal. That means node v had a path to the root.

v could change its path to the root only after receiving TOKEN from all w ∈ Cnew(v).
Node u sending TOKEN back to its pnew, v implies that the path from v to the root has not

been changed yet. This implies that there exists a path from any node to the root always,

irrespective of the switching.

Theorem 4.3.6 No cycle will be created in the system due to switching.

Proof All the leaf nodes u, whether it is newly created or already existing one, indepen-

dently send back TOKEN to its pnew to build up a permanent link. According to Theorem

4.3.5 that node v, where v = pnew is a part of the new tree and hence has a path to the root.

A cycle can only form if v ∈ Ccurr(u) or there was a path P = {v, v + 1, ..., u − 1, u}
from v to node u according to old tree construct. From Lemma 4.3.3, Ccurr(u) will be-
come empty eventually breaking the cycle. Now suppose node v made a link to a node x,

where x ∈ P and also x = pnew(v) making a cycle C = {v, v + 1, ..., x, ..., u − 1, u, v}.
But there must be at least one node y where y = x or x is a descendant of y such that there

exists a path from node y to the root. This is because the TOKEN has already traversed

from the root to the node v through node y along the forward path. So node y will even-

tually make a permanent link to its parent along the path to the root and thus breaking the

cycle C. Thus no cycle will be formed due to the switching.

Theorem 4.3.7 Each convergecast message will be eventually delivered to the root node.

Proof When an intermediate node u becomes a leaf of the switched tree, first it assures

that all v where v ∈ Ccurr is blocked by sending CANCEL to them and changes its parent

after receiving ACKC as response. So all the data received from v ∈ Ccurr are forwarded

to its pcurr using the old link and no more data is received after receiving ACKC from all

v ∈ Ccurr. Thus no data is lost in this case.

When a node u needs to change its parent due to switching, first it informs the

node v where v = pcurr(u) by sending CANCEL message. No more data is sent to v after
that. All the future data are forwarded using the link to the node w where w = pnew(u).
By Theorem 4.3.5 there exists a path from w to the root. So no data will be lost during

554 Anais

the switching process.

From the above discussion and Theorem 4.3.5 and Theorem 4.3.6 it can be proved that

each convergecast message will be delivered to the root eventually.

Theorem 4.3.8 Each convergecast message will be delivered exactly once.

Proof Data redundancy occurs when parent-child relationship for any two nodes gets

reversed due to the switching. When a node v ∈ Ccurr(u) becomes pnew of a node u,

it is guaranteed that no data will be received after node u has sent CANCEL message to

v ∈ Ccurr. All the data received before will be forwarded through the old link. So no

data sent from v ∈ Ccurr to u will be forwarded back from u to v where v = pnew(u).
Therefore no duplicate data will be generated during the switching process. Also from

the Theorem 4.3.7 each message will be eventually delivered to the root. So it is implied

that each convergecast message will be delivered exactly once.

Theorem 4.3.9 There will be no indefinite stall in data gathering process.

Proof When an intermediate node u becomes a leaf of the switched tree, there may arise a

temporary stall in the data gathering process until Ccurr(u) becomes empty. From Lemma
4.3.3 it is observed that Ccurr of such an intermediate node becomes NULL eventually.

So there will be no indefinite blocking in data gathering process.

Theorem 4.3.10 The message complexity of the switching algorithm is O(|E|).

Proof Let n and E be the total number of nodes and edges in the network and dv be the

degree of node v. So v sends dv number of TOKEN messages and receives the same in

reverse direction. Hence the total number of TOKEN messages is,MT = 2×
∑

v∈V
dv =

4|E|. In the worst case scenario there will be (n − 2) number of nodes whose parents
can be changed and there will be always less than n number of nodes which have been

converted to leaf nodes from intermediate nodes due to the switching process. So there

will be O(n) numbers of CANCEL messages in worst case. Similarly there will be O(n)
number of ACKC messages. Hence the worst case message complexity for the switching

between a DFS and a BFS tree = 4|E|+O(n) +O(n) = O(|E|).

Theorem 4.3.11 The algorithm runs in O(D) steps, whereD denotes the diameter of the
network.

Proof Let D be the diameter of the network. At the first phase, TOKEN is forwarded to

all the nodes across the levels of the tree, starting from the root node towards the leaves.

Then the TOKEN is traversed back from the leaves to the root at the second phase. When

the root receives back the TOKEN, the algorithm terminates. So, as a whole it takes at

most 2×D steps to complete the switching process, where D ranges from log
2
n to n and

n is the total number of nodes in the network.

Theorem 4.3.12 The per node space complexity of the algorithm is O(δ) where δ is the
maximum degree among all the nodes in the network.

Proof Each node keeps the information about the set of current children as well as the

set of children for the switched tree and the current parent pointer. The total number of

neighbors for a node can be represented by its degree δ. As we have considered the static

nature of the network, any node will need to keep the information for 2 × δ number of

nodes in the worst case. So the per node space complexity is O(δ).

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 555

5. Discussion

Our goal was to investigate a correct convergecast in spite of dynamic switching between

the two precomputed trees. In a dynamic scenario, one or more nodes may fail, be added

to the network and/or removed from the network. Let us assume that one node crashes.

In this case, both the BFS and DFS tree become invalid. Also there will be loss of con-

vergecast messages. Also crash of an intermediate node may stall the convergecast. One

approach to the problem may be to recompute the BFS and DFS tree to take care of the

failure. However this may be expensive. Also this will cause a global freeze of the con-

vergecast process in the entire network. Another approach may be to locally repair the

failures (if possible) and allow the convergecast to take place even during failure recovery.

Our goal is to minimize the loss of messages.

The switching has two components. They are when to switch, and how to switch.

In this work we have assumed that there is an oracle at the root node to decide when

to initiate the switching. The idea is that the root will monitor the load of the network.

This can be done by piggybacking the load information of each node on the convergecast

message. Finally, the root can calculate the average load on a per-node basic. If the

average load is higher than a threshold then it may initiate a switching to the other tree

which is better for higher load. In this work we have concentrated on the direction of how

to switch in an efficient way to establish correct convergecast in spite of switching.

6. Conclusion

In this paper, we have proposed a distributed tree switching algorithm for load adaptive

convergecast. The algorithm guarantees that even if a switching occurs between the under-

lying topologies, the application layer convergecast remains unaffected. We have shown

that each convergecast packet is eventually delivered to the sink without any data loss or

redundancy even during the switching. The switching algorithm eventually terminates.

The traditional approach for switching between two protocols is a method similar to the

two-phase-commit(2PC) protocol. In two phase commit based switching, a coordinator

first broadcasts a “prepare” message, and all the other processes pause their work and send

back acknowledgments. Each process is buffering messages from its own application at

this point. After receiving back all the acknowledgments, the coordinator broadcasts a

“switch” message. All the processes resume working using the new configuration upon

receiving that “switch” message. In this approach, all the nodes get involved in switching

at the same time blocking the whole system and therefore increasing the delay. Appli-

cation can not proceed during the switching. It is not scalable also. In the proposed

algorithm, the switching starts at all the leaf nodes of the tree and the switching wave

moves upward. It is already proved in Theorem 4.3.9 that the temporary blocking of the

application data is confined only to the local neighborhood of a new leaf node which was

an intermediate node before. So there is no global freeze and the system is available even

during the switching. The algorithm runs within O(D) steps, where D is the diameter of

the network and the message complexity is O(|E|). Thus in comparison to the traditional
method the proposed algorithm is more scalable and has small switching overhead and is

expected to perform better in real systems. It will be interesting to investigate the problem

when the trees used for the switching are not pre-computed.

556 Anais

References

Annamalai, V., Gupta, S., and Schwiebert, L. (2003). On tree-based convergecasting

in wireless sensor networks. In Proceedings of IEEE Wireless Communication and

Networking Conference, pages 1942–1947.

Chen, H., Mineno, H., and Mizuno, T. (2008). Adaptive data aggregation scheme in

clustered wireless sensor networks. Computer Communications, 31:3579–3585.

Heinzelman, W. R., Kulik, J., and Balakrishnan, H. (1999). Adaptive protocols for infor-

mation dissemination in wireless sensor networks. In Proceedings of the 5th annual

ACM/IEEE international conference on Mobile computing and networking, MobiCom

’99, pages 174–185, New York, USA. ACM.

Karmakar, S. and Gupta, A. (2007). Adaptive broadcast by distributed protocol switching.

In Proceedings of the 2007 ACM symposium on Applied computing, pages 588–589.

Krishnamachari, B., Estrin, D., and Wicker, S. B. (2002). The impact of data aggregation

in wireless sensor networks. In Proceedings of the 22nd International Conference

on Distributed Computing Systems, ICDCSW ’02, pages 575–578, Washington, DC,

USA. IEEE Computer Society.

Liu, X. and van Renesse, R. (2000). Fast protocol transition in a distributed environment

(brief announcement). In PODC ’00: Proceedings of the nineteenth annual ACM

symposium on Principles of distributed computing, page 341, New York, NY, USA.

ACM.

Liu, X., van Renesse, R., Bickford, M., Kreitz, C., and Constable, R. (2001). Protocol

switching: Exploiting meta-properties. In Proceedings 21st International Conference

on Distributed Computing Systems Workshops, pages 37–42, Mesa, AZ , USA.

Mocito, J. and Rodrigues, L. (2006). Run-time switching between total order algorithms.

In Euro-Par International 2006 Parallel Processing, Lecture Notes in Computer Sci-

ence, volume 4128/2006, pages 582–591, Dresden, Germany. Springer Berlin / Hei-

delberg.

Upadhayayula, S., Annamalai, V., and Gupta, S. (2003). A low-latency and energy-

efficient algorithm for convergecast in wireless sensor networks. In Proceedings of

IEEE Wireless Communication and Networking Conference, pages 1942–1947.

Yacoab, M. M. and Sundaram, V. (2010). An adaptive traffic aware data aggregation

technique for wireless sensor networks. American Journal of Scientific Research, pages

64–77.

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 557

