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Abstract. This paper introduces the use of an XOR-based flat routing mecha-

nism for server-centric data centers (DCs) organized in 3-cube topologies. Es-

sentially, the networking DC architectures available in the literature create a

black box network unaware about the servers, increasing the complexity to de-

ploy services inside DCs. The main reason for this black box is the lack of scal-

ability when the servers are inserted in the forwarding tables of the switches.

The server-centric 3-cube topology used in this work directly connects servers,

removing the need for switches and/or routers in order to forward traffic inside

the DC, approximating the servers to the networking infrastructure. The pro-

posed XOR-based flat routing mechanism introduces a new semantic for rout-

ing, where a small information about the entire network allows traffic forward-

ing across the DC, providing the required scalability for inserting the servers in

the routing tables. This paper presents the proposed 3-cube server-centric DC

networking architecture, the XOR-based flat routing mechanism, and evalua-

tions demonstrating the achieved scalability in terms of signaling, routing table

entries, stretch and load distribution.

1. Introduction

Nowadays, innumerable applications demanding massive storage, memory and process-

ing support are executed in large-scale DCs deployed by companies such as Microsoft,

Amazon, Google and Yahoo. To cope with this scale and lower total ownership costs,

these DCs use custom software such as BigTable [Chang et al. 2006], Google File Sys-

tem (GFS) [Ghemawat et al. 2003], Map-Reduce [Dean and Ghemawat 2008], and cus-

tomized hardware encompassing servers [Cisco 2010, Google 2010], racks and power

suppliers. However, the only component that has not really changed yet is the network,

which usually leverages the current available Internet-related routing technologies.

As detailed in [Esteve et al. 2010], there is a set of requirements for the devel-

opment of new DC architectures. For example, it is needed to consider how the DC

communicates with external networks, such as the Internet, accepting external requests,

homogeneously spreading these requests among the servers (normally using the Valiant
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Load Balance (VLB) and/or Equal Cost Multi Path (ECMP)), and adopting hash-based

mechanisms in order to preserve the communication sessions. In this way, there have

been a number of proposals for redesigning DC networking architectures, many of them

focusing on fat-tree topologies for scaling IP and/or Ethernet forwarding to large-scale

DCs [Greenberg et al. 2008, Greenberg et al. 2009]. Nevertheless, the routing solutions

used in these proposals are basically mapping services, in which the IPs and/or MAC ad-

dresses of servers are associated to the MAC addresses of ingress, intermediary and egress

switches through the fat-tree topology. Consequently, this scenario achieves scalability by

creating a black box totally unaware about the servers present in the DC, delegating the

maintenance costs related to changes in the servers’ structure to the mapping service. Ba-

sically, servers and network infrastructure maintain an oblivious relationship, increasing

the complexity to deploy services inside the DCs.

This paper presents a server-centric DC architecture in which an XOR-based flat

routing mechanism provides direct server-to-server communication at the layer 2, as an

alternative to the scalability problems faced in other DC proposals. In the proposed sce-

nario, a 3-cube topology is used to connect servers due to its intrinsic higher path re-

dundancy, simplicity for wiring and fault resilience. The proposed approach, using the

XOR-based flat routing mechanism in conjunction with the 3-cube topology, removes

all the dependence on traditional switches and/or routers for server-to-server traffic for-

warding inside the DC, closing the gap between servers and network infrastructure and,

in this way, creating a server-aware DC for the deployment of services. Essentially,

the proposed XOR-based flat routing mechanism, already instantiated in other scenarios

[Pasquini et al. 2009, Pasquini et al. 2010a, Pasquini et al. 2010b], uses a metric based

on the bitwise XOR operation to organize the routing tables in columns (called buckets).

The main contribution of the proposed XOR-based mechanism is the capability of per-

forming routing with a small knowledge about the entire network, providing the required

scalability for integrating servers with the DC networking infrastructure.

Afterwards, the proposed XOR-based mechanism only requires uniqueness while

assigning flat identifiers (IDs) to servers, being a totally random distribution of IDs ideal

for its operation, i.e., no topological or semantical IDs organization is required. In this

way, the IDs are assigned to serves inside the DC by simply selecting the smallest MAC

address among the NICs present on each server, creating a plug-and-play environment

for the configuration of new 3-cube-based DCs. Moreover, since it operates at layer 2,

it transparently supports all the applications running on upper layers or inside virtual

machines. According to it, this paper is focused on describing the proposed server-centric

DC architecture, detailing the internal server-to-server communication using the XOR-

based flat routing mechanism at the layer 2. Consequently, other architectural details,

such as external communication with the Internet, are kept out of the scope of this paper.

The evaluations present in this work consider 3-cube topologies with 64, 128, 256,

512, 1024 and 2048 servers. All of them were evaluated using a developed emulation tool,

where each server is executed as an independent thread, being able to exchange signaling

messages to build the routing tables and forward traffic. The results detail the number of

signaling messages, the number of entries in each routing table, the route stretch and the

load distribution among servers while forwarding traffic inside the DC. Essentially, the

results reveal a flexible and scalable routing mechanism where the number of signaling
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messages and routing tables do not grow linearly with the size of the DC network, indicat-

ing the feasibility of using this proposal in large-scale DCs (ten of thousands of servers).

Furthermore, it offers small stretch and adequate load distribution.

The remainder of this paper is organized as follows. Section 2 focuses on pre-

senting the main server-centric related work which uses cube-based topologies. Section 3

details the proposed 3-cube server-centric DC networking architecture. Section 4 formal-

izes the proposed XOR-based flat routing mechanism. Section 5 presents the evaluations

focusing on the performance levels achieved by the XOR-based flat routing mechanism

in the proposed DC architecture. Section 6 brings the next steps and concludes the paper.

2. Related Work

The work presented in [Costa et al. 2009] proposes the concept of server-to-server com-

munication, eliminating the use of intermediary switches and routers. The rationale is that

since the DC infrastructure is owned and controlled by a single entity, it is easy to create

topologies optimized to obtain the best performance while forwarding traffic through the

network. In such work, routing is done on the Network Interface Card (NIC) itself, with

packets forwarded directly from server NIC to server NIC by using a multi-port network

interface card. In fact, there is a service responsible for processing and forwarding the

packets between servers. This routing on the NIC approach is possible through commer-

cially available NICs, capable of running computing capabilities [NIC 2010].

Another related work is presented in [Guo et al. 2009]. Such proposal also uses a

server-centric approach, in which servers are equipped with multiple network ports that

connect to few commodity and low cost mini-switches. The idea is to provide multiple

parallel paths in order to increase the bandwidth and improve fault-tolerance.

Both works use the cube-based topology, which naturally offers a better path diver-

sity in the network. By having such path diversity, the bisection bandwidth is increased,

fault-tolerance is obtained, wiring complexity and the total cost are reduced, and load

balance can be better exploited, potentially providing energy savings. The cube topol-

ogy has been seen as an excellent alternative for attending the metrics mentioned above

[Costa et al. 2009, Guo et al. 2009]. Although fat-trees topologies are commonly used

in DC networks, they suffer from low resilience to failures and high wiring complexity

[Costa et al. 2009]. Therefore, our work applies the XOR-based flat routing in 3-cube

topologies focused on the server-centric approach.

3. Proposed 3-cube server-centric DC networking architecture

According to the networking architecture proposed in this paper, the DC is composed of

a set of servers organized in a 3-cube topology, where all the servers are topologically

distributed in three axis (x, y and z). In such server-centric scenario, servers are the fun-

damental elements in the DC, not requiring the use of other network elements, such as

routers and/or switches to provide traffic forwarding during server-to-server communi-

cation. To this aim, each server comprises a general purpose multi-core processor, with

memory, persistent storage and six NICs named from eth0 to eth5. In order to be

settled in the 3-cube topology, each server uses the NICs eth0 and eth1 in the x axis,

the NICs eth2 and eth3 in the y axis, and the NICs eth4 and eth5 in the z axis, as

illustrated in Figure 1.
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Figure 1. How to settle the NICs of server a in the 3-cube topology.

Considering the use of the NICs in each one of the three axis, wiring the proposed

DC network become a simple task as exemplified in Figure 2. In this figure, there are

three servers (a, b and c) located in the same row of the DC along the x axis. Basically, the

required connections in a given axis are established using the two interfaces assigned to it,

also considering servers located in the edges as neighbors. According to these procedures,

it is possible to check the desirable organization in Figure 2, where eth0 of server a is

connected to eth1 of server b, eth0 of server b is connected to eth1 of server c, and

eth0 of server c is connected to eth1 of server a, wrapping the x axis to establish this

last link. The same pattern is used for wiring the y and z axis, where eth2 is connected

to eth3 and eth4 is connected to eth5, respectively.

Figure 2. Wiring servers a, b and c in the x axis.

When compared to other topologies, the 3-cube topology not only offers simpler

wiring and higher path redundancy, but also reduces to half the maximum distance (the ra-

dius) between servers, which is obtained by wrapping the links between the edge servers.

In order to simplify the perception of the benefits of the links established between edge

servers, Figure 3 presents a 3-cube topology composed of 27 servers. Note in this figure

the existence of six NICs in all servers, the linkage between all the servers in the three

axis, and the wrapping connections between the edge servers. Such wrapping connections

raise the edge servers to a special condition in the DC, since they are able to invert traffic

in the extremities of the axis.

Essentially, in the server-centric 3-cube topology, there are three different levels

of edge servers as seen in Figure 3. The levels are relative to the ability that each edge

server has to invert traffic along the three axis used in the topology. In the first level are

the edge servers located in the inner parts of the 3-cube surface, labeled as S servers in

the figure. These servers are able to perform traffic inversion in a single axis. After, in the

second level are the edge servers located in the borders (B servers) of the 3-cube. These

servers are able to perform traffic inversion in two axis. Finally, in the third level are the

eight edge servers located in the corners (C servers) of the 3-cube. These eight servers

are able to perform traffic inversion in all the three axis. In this way, when compared

to other topologies, the 3-cube topology also offers higher resilience. For example, the
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Figure 3. Example of a 3-cube topology where the axis are x = 3, y = 3 and z = 3.

DCell [Guo et al. 2004] network can be partitioned even if less than 5% of the servers or

links fail. The server-centric 3-cube topology is able to operate even if nearly to 50% of

the servers or links fail, its symmetrical and redundant structure allows failures in some

regions of the topology, without impacting the performance of the remaining servers.

Regarding the DC configuration, there are available in the literature several tech-

niques to bootstrap the configuration of all elements comprising the DC, such as servers,

routers and switches. For example, in Portland [Mysore et al. 2009] it is used a hierarchi-

cal addressing scheme to assign Pseudo MACs to all servers according to their position in

the DC. Afterwards, a Location Discovery Protocol (LDP) is used to help switches com-

posing the fat tree topology to realize their role in the network, whether they are edge,

aggregation or core switches.

In this work, due to the proposed XOR-based flat routing mechanism, unique-

ness is the only requirement to assign flat identifiers to servers. Despite uniqueness,

none topological adherence or semantic organization is required for the IDs. Actually,

a total random distribution of IDs creates the ideal scenario for routing using the XOR-

based mechanism. In this way, each server selects the smallest MAC address (among

its six NICs) to be its 48-bits flat ID. Although such mechanism is simplistic, it suffices

to achieve the routing mechanism requirements, and avoids the use of human interven-

tion and/or bootstrap mechanism in order to configure the servers, i.e., all the required

configuration is plug-and-play. Furthermore, switches and routers are not required to pro-

vide server-to-server communication, avoiding the use of special protocols to configure

these equipments. However, if such equipments are used, they are intended to just offer a

network bus connecting servers.

In order to perform server-to-server traffic forwarding, this proposal adopts MAC-

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 211



in-MAC encapsulation, due to the fact that the proposed flat routing mechanism is de-

signed to operate using MACs as flat IDs of all servers inside the DC. Besides the legacy

support to all applications running on upper layers of the network stack or inside virtual

machines, the option for performing routing at the layer 2 in conjunction with the MAC-

in-MAC technology has the advantage of fixing in two the number of packet headers

from source to destination. Such characteristic simplifies the definition of the maximum

payload size and avoids segmentation of packets on the path traversed inside the DC.

Figure 4 exemplifies the traffic forwarding from server a towards server e. In this

figure, it is possible to verify that the inner header carries the server-to-server information

(SRC Flat ID and DST Flat ID). This header is preserved during the entire packet trans-

mission and, essentially, it is used by all the servers on the path to perform the XOR-based

routing (detailed in Section 4). On the other hand, the outer header has only local link

scope, being changed in all the links from source to destination. This header carries the

MAC address of the server currently forwarding the packet, and the MAC address of the

next server (next hop) present on the path towards the destination, i.e., it is used to transfer

traffic between two adjacent servers.

Figure 4. Traffic forwarding from server a to server e using MAC-in-MAC.

Finally, although it is kept out of the scope of this work, the proposed DC net-

working architecture predicts that among all the servers present in the DC, a fraction of

the servers has one extra NIC to forward traffic in and out of the DC. For example, one

possible solution for placing these nodes considers the edge servers, once they are able

to invert traffic along the axis of the 3-cube topology. In this case, the designer of the

DC can start by using servers located in the corners (C servers - 3 axis inversion), after

servers located in the borders (B servers - 2 axis inversion) and, finally, servers located in

the surface (S servers - 1 axis inversion) of the 3-cube topology.

4. XOR-based Flat Routing Mechanism

The proposed XOR-based routing discards the use of mapping services required in

other proposals found in the literature [Greenberg et al. 2008, Greenberg et al. 2009,

Mysore et al. 2009]. Usually, these mapping services provide source routing and/or tun-

neling information required to forward packets inside the DC network, characterizing an

oblivious relation between servers and network structure.

The routing mechanism proposed uses n-bit flat identifiers to organize the routing

tables in n columns and route packets through the network. Its routing principle uses the

distance between two flat identifiers a and b as their bitwise exclusive or (XOR), which is

represented by d(a, b) = a ⊕ b, being d(a, a) = 0 and d(a, b) > 0, ∀a, b. Given a packet

originated by server x and destined to server z, and denoting Y as the set of identifiers
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contained on x’s routing table, the XOR-based routing mechanism applied at server x

selects the server y ∈ Y that minimizes the distance towards z, which is expressed by the

following routing policy

R = argmin
y∈Y

{d(y, z)}. (1)

Each server maintains a routing table in which its knowledge about neighbor

servers is spread in n columns denominated buckets and represented by βi, 0 ≤ i ≤ n−1.

Table 1 presents an example of a routing table for server 0001 in an identity space where

n = 4. Each time a server a knows a novel neighbor b, it stores that information in the

bucket βn−1−i given the highest i that satisfies the following condition1

d(a, b) div 2i = 1, a 6= b, 0 ≤ i ≤ n− 1. (2)

For example, consider a = 0001 and b = 0010. The distance d(a, b) = 0011 and

the highest i that satisfies condition (2) is i = 1, concluding that the identifier b = 0010
must be stored in the bucket βn−1−i = β2. Basically, condition (2) denotes that server a

stores server b in the bucket βn−1−i, where n− 1− i is the length of the longest common

prefix (lcp) existent between both identifiers of servers a and b. This can be observed in

Table 1, where the buckets β0, β1, β2, β3 store the identifiers having lcp of length 0, 1, 2,

3 with server 0001. Such routing tables approach is one of the main advantages of the

XOR-based mechanism, since a server only needs to know n (1 neighbor per bucket) of

the possible 2n servers available in the network to successfully route packets.

Table 1. Hypothetic routing table for server 0001 in an identity space where n = 4.

β0 β1 β2 β3

1000 0100 0010 0000

1001 0101 0011

1010 0110

The proposed mechanism considers a K factor which defines the minimum

amount of information required per bucket. Since a bucket βi has at most 2n−1−i entries,

if K > 2n−1−i we limit K for that bucket to K = 2n−1−i. By varying K, servers have

wider or narrower view of the DC network. In this way, during the process for building

the routing tables, servers are aimed at finding K neighbors for each bucket. Essentially,

a server a can know a server b from two distinct ways in the proposed process for building

the routing tables: 1) a discovery process in which servers actively search for neighbors

to fill the buckets and 2) a learning process, where servers use the information contained

in the signaling messages that cross them to add more information to their buckets in a

costless passive fashion.

4.1. Discovery Process

In the discovery process a HELLO message is used to insert servers directly (physically)

connected in the routing tables, such servers are denominated as physical neighbors. Each

1div denotes the integer division operation on integers.
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discovered physical neighbor is then stored in the bucket having the greatest i that solves

condition (2). After introducing all the physical neighbors in the routing table, a server

that still has buckets with less information than the defined K factor, actively searches for

neighbors that can fill such buckets. Since such neighbors are not physically connected,

they are called virtual neighbors.

In this way, servers start to send QUERY messages to the neighbors already stored

in the buckets (in the initial step the buckets only contain physical neighbors), describing

the buckets which still require information. The neighbor servers that receive the QUERY

message and have at least one neighbor that fills in one of the requested buckets, an-

swer with a RESPONSE message. After receiving the RESPONSE message, servers store

the discovered virtual neighbors in the respective buckets. New queries are sent to the

discovered neighbors if at least one of the buckets is still requiring information.

The following information are associated to each entry of the routing table: 1)

the physical neighbor (next hop) towards the discovered neighbor, 2) the NIC used to

establish the link with the physical neighbor (next hop) and 3) the physical distance in

number of hops to the discovered neighbor. Afterwards, if a server a discovers a server b

through different NICs, it can store all the information for path diversity purposes.

4.2. Learning Process

Figure 5 is used to explain the learning process. In this figure, server 1 sends a QUERY

message to server 2, and server 2 sends back a RESPONSE message informing server 1

about the existence of server 3. Assuming that server 1 still needs information to satisfy

the K factor in some of its buckets, it sends a QUERY message to server 3 just discovered,

and server 3 sends back a RESPONSE informing server 1 about the existence of servers 4

and 5 (considering that both servers 4 and 5 satisfy what server 1 is looking for).

Figure 5. Exemplification scenario for the Learning Process.

The learning process takes place in two distinct moments. Firstly, it occurs when

server 3 receives the QUERY message from server 1. At that instant, server 3 knows

server 1 in a passive way, using the source ID present in the QUERY message. Sec-

ondly, the learning process occurs when server 3 sends the RESPONSE message to server

1 containing information about servers 4 and 5. In this case, the RESPONSE message

crosses server 2 which, also passively, learns about both servers based on the informa-

tion contained in the RESPONSE message destined to server 1. Essentially, the discovery

and learning processes were designed to assure symmetry between the routing tables of

servers in the DC network, as defined in Property 1. Afterwards, the process for building

the routing tables is designed to prioritize the discovery of neighbors physically near (in
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number of hops), contributing in this way to the convergence of the routing tables, and

reducing the required number of signaling messages.

Property 1 If a server a has a server b in its routing table, then server b has server a in

its own routing table.

4.3. Routing Process

Each time a server receives/generates a packet to forward, it tries to route the packet by

applying the routing policy R defined in (1). The routing process starts by identifying

the bucket to be used. Considering that a server a is routing a packet destined to b, as

exemplified in Figure 6, it defines the bucket βi, where the index i is the highest one that

solves condition (2). Then server a routes the packet to the server available in its routing

table that is closest to server b. In other words, the packet is routed to nR, which is selected

by server a computing the following solution

nR = argmin
id∈βi

{d(id, b)}, (3)

where id represents each one of the identifiers contained in the bucket βi.

Since nR is the identifier of a server that can be a virtual neighbor j−hops away

(j > 1), server a uses the information associated to nR in its routing table entry to forward

the packet. Essentially, the information associated is the physical next hop g and the

NIC linking both servers (previously detailed in Section 4.1), which are resultant of the

discovery and learning processes for building the routing tables.

Figure 6. Example of the XOR-based routing process.

When the packet arrives at g, it also computes (3) and, again, due to the process

for building the routing tables, it finds nR in its bucket βi, delivering the packet to nR.

Finally, nR is the server which represents progress towards the destination server b in the

flat identity space, i.e., the server pointed by the previous routing decision, firstly taken

at source server a, which reduces the distance towards server b according to the routing

policeR defined in (1). In this way, based on the example of Figure 6, server nR computes

(3) and finds the destination server b in its routing table, towards its NIC connected to the

physical neighbor h. Consequently, the remaining actions are responsible for delivering

the packet to server b passing through server h.

5. Evaluations

This section presents the evaluations of the proposed XOR-based flat routing mechanism

in the proposed 3-cube server-centric DC networking architecture. The main objective of

this section is to demonstrate, through evaluations using a developed emulation tool, the

level of scalability achieved by the XOR-based routing mechanism in terms of number of

entries in the routing tables. Such information is essential to demonstrate the feasibility
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of integrating servers and networking, creating a server-aware DC architecture for the

deployment of services, opposing the oblivious approach found in the literature.

This section also details the required signaling to converge the flat routing mech-

anism, presents the route stretch incurred in such scenario of reduced routing tables, and

depicts the load distribution among all the servers during traffic forwarding inside the

proposed 3-cube DC network. These evaluations were performed using six networks of

different sizes – 64, 128, 256, 512, 1024 and 2048 servers – using the K factor set to 1,

3, 5 and 10, resulting in more than 22 million computed paths, i.e., it was computed the

full combination of source/destination paths.

The developed emulation tool has an important contribution in the evaluations,

since it offers the possibility of emulating individual servers provided with a full im-

plementation of the XOR-based flat routing mechanism. Basically, each server inside the

3-cube DC is instantiated as an individual thread, being able to perform all the required in-

teractions between the servers, exchanging signaling messages to build the routing tables

according to the protocol specification. Afterwards, the threads (the emulated servers)

are able to forward traffic inside the 3-cube DC, contributing with the analyzes related to

route stretch and load distribution. The tool also includes a topology generator capable of

creating 3-cube topologies, considering all the required links and assuring the occurrence

of uniqueness and randomness while assigning the flat IDs.

The first results are presented in Figure 7, where it is possible to find information

regarding the signaling complexity required to converge the XOR-based routing tables.

Figure 7(a) describes the average number of signaling messages generated per server in

all the six evaluated topologies. This number represents the exchange of QUERY and

RESPONSE messages from server-to-server during the discovery process, and shows that

as the size of the topologies and the value of the K factor increase, the number of signaling

messages also increases.
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Figure 7. Results regarding the average signaling exchanged per server.

However, analyzing the percentage of interaction between the servers present in

the six topologies, it is possible to verify that the percentage of interaction between the

servers does not increase linearly with the size of the topology, as shown in Figure 7(b).

This behavior has origin in the proposed discovery and learning processes designed to ex-

tract the maximum information from the signaling, prioritizing the exchange of messages

with servers located physically near to the requesting server.
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The next result detailed in Figure 8 presents the average number of entries re-

quired in the routing tables of all servers. Similar to the results obtained for the signaling

messages, the bigger the network and the K factor used, the higher the number of entries

present in the routing tables, as seen in Figure 8(a). However, the percentage of rout-

ing information required in the routing tables also decreases as the network topologies

increase, as presented in Figure 8(b). The main reason for this behavior is the proposed

XOR-based routing tables which require only a small fraction of the entire routing infor-

mation available in the network, in order to assure traffic delivery.
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Figure 8. Results regarding the average routing tables per server.

The results presented in Figure 8 not only demonstrate that the proposed flat rout-

ing mechanism is able to operate with a fraction of the overall routing information, offer-

ing better control for the rate at which the routing tables grow, but also prove its ability

for integrating servers and network structure in a scalable manner, offering the required

infrastructure for inserting information regarding the servers composing the DC in the

routing tables. Such condition is ideal for the development of new services totally inte-

grated with the available DC network structure.

Normally, based on the small number of entries present in the routing tables, it is

expected that the proposed XOR-based flat routing mechanism does not find the shortest

paths for all the server-to-server communication cases. Basically, route stretch is a trade-

off of the number of entries present in the routing tables. Nonetheless, Figure 9 details the

obtained stretch values, achieving values near to optimal (stretch 1). For example, con-

sidering the results obtained for the topology with 2048 servers using K = 1, the servers

exchanged approximately 40 signaling messages (see Figure 7(a)), corresponding to the

interaction with 2% of the servers, in order to create routing tables with approximately

100 entries (see Figure 8(a)). Such number of entries represents a knowledge of 5% of

the entire network, and even with this reduced number of entries the protocol is able to

deliver traffic with an average route stretch around 1.85, not even doubling the length of

the shortest paths available. In the sequence, according to the basic trade-off mentioned,

in the results obtained for the topology with 2048 servers using K = 10, it is possible

to check the bigger routing tables, containing approximately 25% of the entire routing

information, and the reduced stretch at the level of 1.17.

Finally, the next results demonstrate the load distribution among all the servers.

Figures 10(a), 10(b), 10(c) and 10(d) detail the load for all the evaluated topologies using
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Figure 9. Results for route stretch.

the K factor set to 1, 3, 5 and 10, respectively. Essentially, the results indicate that

approximately 80% of all servers, independent of the number of servers in the DC and

the K factor used, operate at a load level ranging from 0.8 to 1.2, i.e., most of the servers

deviate only 20% from the average traffic forwarding load. Firstly, such numbers indicate

the robustness of the 3-cube topology, a topology capable of providing an elevated path

redundancy ideal not only for load distribution, but also for fault resilience. Afterwards,

such numbers prove the perfect coupling between the 3-cube topology and the proposed

XOR-based flat routing mechanism, indicating that the plug-and-play scenario of totally

random distributed flat IDs is ideal to spread the forwarding load among all the servers,

not even requiring the usage of other load balancing mechanism, such as VLB or ECMP.

6. Conclusion and Future Work

This paper presented a new server-centric DC architecture where servers are organized in

a 3-cube topology. In this work, servers are the main elements of the DC, eliminating the

need for traditional network equipments such as switches and routers in order to provide

server-to-server communication. The main novelty is the integration between servers and

networking, which is done by the scalable XOR-based flat routing mechanism.

Among the benefits of the 3-cube topology are the higher path redundancy and the

simpler wiring. The establishment of wrapped links between the edge servers significantly

reduce the maximum distance between two servers, and increases the resilience of the DC.

Essentially, the edge servers are able to invert traffic in the three axis, assuring that the DC

operates even if approximately 50% of servers and/or links fail. The 3-cube topology in

conjunction with the XOR-based flat routing mechanism creates a plug-and-play scenario,

efficient for load distribution among all the servers in the DC, independent of the size of

the topology and of the K factor used.

Once the proposed routing mechanism requires only a fraction of the entire rout-

ing information, it provides the total integration between servers and network structure,

eliminating the concept of a black box network. As presented in the evaluations in this

paper, as the DC network grows in number of servers, the required signaling and the num-

ber of entries in the routing tables do not linearly follow such growth. At the same time,

although the routing tables have just a small percentage of information, the paths from

source to destination present a small stretch penalization.

As future work, one objective is to investigate the connectivity between 3-cubes.
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(a) Load distribution for K = 1.
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(b) Load distribution for K = 3.
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(c) Load distribution for K = 5.
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(d) Load distribution for K = 10.

Figure 10. Results for load distribution among all servers.

Nowadays, it is expected that enormous DCs (tens of thousands of servers) are modular-

ized, simplifying their deployment and maintenance. For example, it is possible to ship

these DCs in containers, simplifying their transport and reducing cots regarding energy

and cooling systems, as proposed in [Guo et al. 2009, Wu et al. 2009]. The idea is to use

some specific servers for inter-3-cube communication through fiber channels.

Acknowledgment

The authors would like to thank Ericsson Brazil and CNPq for supporting this work.

References

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,

T., Fikes, A., and Gruber, R. E. (2006). BigTable: A Distributed Storage System for

Structured Data. In Proceedings of OSDI 2006, Seattle, WA, USA.

Cisco (2010). Cisco Unified Computing System. Available at http://www.cisco.

com/go/unifiedcomputing.

Costa, P., Zahn, T., Rowstron, A., O’Shea, G., and Schubert, S. (2009). Why Should

we Integrate Services, Servers, and Networking in a Data Center? In Proceedings

of the 1st ACM Workshop on Research on Enterprise Networking (WREN’09), pages

111–118, New York, NY, USA. ACM.

XXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 219



Dean, J. and Ghemawat, S. (2008). DCell: A Scalable and Fault-Tolerant Network Struc-

ture for Data Centers. In Proceedings of ACM SIGCOMM 2008, Seattle, WA, USA.

Esteve, C., Pasquini, R., Verdi, F. L., and Magalhães, M. F. (2010). Novas Arquite-
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