XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 929

Development and Evaluation of a Generic Group
Communication Layer

Leandro Sales', Henrique Teéfilo?, Nabor C. Mendonga?

! Dipartimento di Elettronica e Informazione — Politecnico di Milano
Via Ponzio, 34/5 — 20133 Milano — Italy

leandro.shp@gmail.com

Mestrado em Informdtica Aplicada — Universidade de Fortaleza (UNIFOR)
Av. Washington Soares, 1321 — 60811-905 Fortaleza — CE — Brazil

henriquetft@gmail.com, nabor@unifor.br

Abstract. Generic group communication frameworks offer several bene-
fits to developers of clustered applications, including better software modu-
larity and greater flexibility in selecting a particular group communication
system. However, current generic frameworks only support a very limited
set of group communication primitives, which has hampered their adoption
by many “real-world” clustered applications that require higher-level group
communication services, such as state transfer, distributed data structures
and replicated method invocation. This paper describes the design, im-
plementation and initial evaluation of G2CL, a Generic Group Commu-
nication Layer that offers a set of commonly used high-level group com-
munication services implemented on top of an existing generic framework.
Compared to current group communication solutions, GCL offers two main
contributions: (i) its services can be configured to run over any group com-
munication system supported by the underlying generic framework; and (ii)
it implements the same service API used by JGroups, a popular group com-
munication toolkit, which may reduce its learning curve and make the task
of migrating to G2CL particularly attractive for JGroups users.

1. Introduction

Group communication, i.e., the ability to reliably transmit messages amongst a
group of processes, plays an important role in the design of dependable distributed
system [Couloris et al. 2005]. This form of communication has been particularly
valuable in clustered environments, where classical group communication applica-
tions include replication, load balancing, resources management and monitoring,
and highly available services [Chockler et al. 2001].

A group communication system (GCS) implements a set of group communica-
tion services that can be reused across many different applications. Some of the most
popular GCSs currently in use are JGroups [Ban 1998], Spread [Amir et al. 2000]
and Appia [Miranda et al. 2001], each providing its own set of communication prim-
itives and protocols. Choosing an appropriate GCS for a given clustered application
is an important design decision that can be made difficult by the fact that those
systems tend to vary widely not only in terms of the communication abstractions



930 Anais

they implement, but also in terms of the delivery semantics and quality-of-service
(QoS) guarantees they provide [Chockler et al. 2001]. Another difficulty is that,
once a developer commits to a particular GCS, her application code becomes tightly
coupled to that system’s API. From a software engineering perspective, this level
of coupling is undesirable since it requires changing the application code every time
the target API evolves; even worse, it makes it extremely hard to migrate the ap-
plication to a different GCS, which may discourage developers from experimenting
with new (possibly more effective) GCSs in future versions of their software.

To avoid coupling their application code to a specific GCS, developers can
rely on generic group communication frameworks, such as Hedera [Hedera 2008],
jGCS [Carvalho et al. 2006] and Shoal [Shoal 2008].! Each of those systems provides
a common API for a number of existing GCSs, and a plug-in mechanism that can be
used to select a particular GCS or to incorporate new GCSs. The main advantage
of using a generic framework is that developers can easily switch between different
GCSs (for instance, to meet new communication requirements or to accommodate
changes in the application’s execution environment) simply by selecting a different
GCS plug-in at configuration time, without the need to change the application code.

Despite their obvious benefits, current generic frameworks only support a
limited set of group communication primitives aimed at basic services such as
group management (creation, change notification, etc.) and message transmis-
sion [Sales et al. 2009a, Sales et al. 2009b]. This limitation has hampered their
adoption by many “real-world” clustered applications that require higher-level group
communication services, such as state transfer, distributed data structures and repli-
cated method invocation. Services of this kind are already provided by some existing
GCSs, most notably JGroups [Ban 1998], whose building blocks have been exten-
sively used in the development of a number of mature middleware technologies (for
example, JBoss [JBoss 2009] and JOnAS [JOnAS 2009]). However, since JGroups
was not developed with a generic API in mind, its high-level services are tightly-
coupled to its own protocol stack, which makes them virtually impossible to reuse
with a different GCS. Therefore, there is a natural need to extend existing generic
frameworks with support for high-level group communication services, such as those
provided by JGroups, but whose implementation is not coupled to any particular
GCS implementation.

In this paper, we describe the design, implementation and initial evaluation
of G2CL, a Generic Group Communication software Layer that implements a set
of commonly used high-level group communication services on top of an existing
generic framework. Compared to current group communication alternatives, GCL
offers two main benefits:

1. Its set of high-level services can be easily (re)configured to run over any GCS
supported by the underlying generic framework. For example, a G2CL state
transfer service implemented on top of jGCS [Carvalho et al. 2006] could
be run over either Spread, Appia or JGroups, which are three of the GCSs
currently supported by jGCS.

Tn this paper, we use the term generic to convey the notion of greater implementation flexibility
and portability.



XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 931

2. It implements the same building block API used by the popular JGroups
toolkit. This means that migrating an existing clustered application to G2CL
should be particularly easy for JGroups users. In addition, developers not
familiar with JGroups could still benefit from JGroups’ extensive API docu-
mentation and code base as a guide to use G2CL, thus reducing their learning
curve.

We have successfully applied G2CL to replace JGroups as the group commu-
nication mechanism in the cluster architecture of the JOnAS Java EE application
server [JOnAS 2009]. The migration from JGroups to G2CL in the JOnAS source
code has been done with relatively little programming effort, and has allowed us
to evaluate the impact of G2CL, when configured with different GCS plug-ins, on
the performance of JOnAS under a variety of load conditions. These results build
our confidence that G2CL can be an effective addition to set of programming tools
currently available for developers of clustered applications.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of two technologies that have greatly influenced our work on G2CL, namely JGroups
and jGCS. Section 3 describes the main design decisions and implementation strate-
gies used in the development of G2CL. Section 4 reports on our initial evaluation
of G2CL using JOnAS as a case study. Finally, Section 5 concludes the paper and
outlines our future research agenda.

2. Related Technologies
2.1. JGroups

JGroups [Ban 1998] was one of the first group communication toolkits written en-
tirely in Java. It provides a simple API for accessing its basic group communication
services, whose main component is the Channel interface. This interface is used to
send /receive messages asynchronously to/from a group of processes, and to moni-
tor group changes by means of the Observer design pattern [Gamma et al. 1995].
Currently, JGroups offers a single implementation of the Channel interface, called
JChannel ?

The Channel interface hides the actual protocol stack used by JGroups for
message transmission. However, JGroups allows developers to configure their own
protocol stack, by combining different protocols for message transmission (for in-
stance, TCP or UDP over IP Multicast), data fragmentation, reliability, security,
failure detection, membership control, etc. This can be done via an external XML
file, whose properties are loaded by JGroups at initialization time, thus avoiding the
need to change the application code directly.

On top of the basic services provided by the Channel interface, JGroups im-
plements another set of higher-level services, called building blocks [JGroups 2009],
which offer more sophisticate group communication abstractions for application de-
velopers. These include services such as MessageDispatcher, which implements prim-
itives for synchronous message transmission; RPCDispatcher, which implements a

2In our work, we have used JGroups version 2.6.10, released on April 28, 2009. JGroups is
available at http://www. jgroups.org.



932 Anais

remote invocation mechanism for replicated objects on top of the MessageDispatcher
service; and ReplicatedHashMap, which implements a distributed version of the
HashMap class of Java on top of the RPCDispatcher service.

Due to its great flexibility in defining customized protocol stacks, and also
to its rich set of building blocks, JGroups has been a popular choice amongst clus-
tered application developers, having recently been incorporated as part of the JBoss
project [JBoss 2009].

2.2. jGCS

The Group Communication Service for Java (jJGCS) [Carvalho et al. 2006] is a
generic group communication framework that aims at providing a common Java
API to several existing GCSs. Its ultimate goal is to facilitate reuse of the different
services implemented by those systems without requiring substantial changes in the
source code of the target application.

The jGCS architecture relies on a plug-in mechanism based on the Inversion
of Control (1IoC) design pattern [Fowler 2004]. This mechanism is used by jGCS to
decouple its service API from the underlying service implementation, thus allowing
the same API to be reused across different GCSs. The actual service implementa-
tion (plug-in) used by jGCS can be defined at initialization time, via an external
configuration file. The current version of jGCS offers plug-ins for several GCSs,
including JGroups, Spread [Amir et al. 2000] and Appia [Miranda et al. 2001].3

The jGCS API is divided into four complementary interfaces, namely con-
figuration interface, common interface, data interface, and control interface. These
are described in more details below.

Configuration Interface This interface decouples the application code from
implementation-dependent group communication concerns, such as group config-
uration and specification of message delivery guarantees. The actual GCS plug-in
to be used is defined at configuration time, by means of an external configuration
file. At execution time, the jGCS services are instantiated according to the specified
configuration, using a dependency injection mechanism [Fowler 2004] or a service
locator [Alur et al. 2001].

The main classes of this interface are ProtocolFactory, which implements the
Abstract Factory design pattern [Gamma et al. 1995] to allow the initialization of
new protocol instances based on the underlying plug-in configuration; GroupCon-
figuration, which encapsulates group information (e.g., the group ID) necessary to
open a new group session through which the application can exchange messages with
other group members and monitor group membership changes; and Service, which
encapsulates the specification of message delivery guarantees to be used during mes-
sage transmission.

3In our study, we have used jGCS version 0.6.1, released on October 29, 2007. jGCS is available
at http://jgcs.sourceforge.net/.



XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 933

Common Interface This interface contains common classes shared by all other
interfaces. The main class of this interface is Protocol, whose instances are created
by the ProtocolFactory classe from the configuration interface. A Protocol object is
used to create, for a given GroupConfiguration object, the objects responsible for
message exchange and group membership management, of types DataSession and
ControlSession, respectively, described next.

Data Interface This interface contains classes responsible for sending and receiv-
ing group messages. The main classes of this interface are DataSession, which is
used to send messages to a group and also to register observers (Gamma et al. 1995]
to handle messages received from that same group; Message, which encapsulates a
message to be sent or received from a group and the address of the sender; and
MessageListener, which must be implemented by all observers registered with a
DataSession.

To avoid forcing any specific data format or serialization mechanism on the
application, the message body is stored as a byte array inside Message, with the
application being responsible for serializing the message before transmission and
deserializing it after receipt.

Control Interface This interface contains classes responsible for group manage-
ment, from simple notifications of members joining or leaving a group to the creation
of new virtual group views. The main classes of this interface are ControlSession,
which provides methods for members to join or leave a group and also to register ob-
servers to listen to notifications of membership changes (e.g., join, leave and failure
of members); ControlListener, which must be implemented by all observers regis-
tered with a ControlSession; MembershipSession, which is an extension of class Con-
trolSession used to obtain a list of members currently connected to a group and also
to register observers to listen to changes in group views; and MembershipListener,
which must be implemented by all observers registered with a MembershipSession.

3. G2CL

G2CL is an extensible group communication software layer that sits on top of ex-
isting generic frameworks. Its main design goal is to offer a more sophisticated set
of generic group communication services, similar to those provided by the building
blocks of JGroups, but with all the benefits associated with the use of a loosely-
coupled software architecture. In this regard, G2CL main advantage is the greater
flexibility for configuring its underlying group communication mechanism, which can
be any GCS supported by its underlying generic framework.

During the development of G2CL we have taken some important design de-
cisions, discussed below.



934 Anais

3.1. Main Design Decisions

3.1.1. Choice of Generic Framework

Our first design decision was concerned with selecting the generic framework to
be used as the basis for the implementation of G2CL. Of the three generic frame-
works currently available, i.e., Hedera [Hedera 2008], jGCS [Carvalho et al. 2006]
and Shoal [Shoal 2008], only Hedera and jGCS were considered mature enough for
our purposes, with both providing plug-ins for several existing GCSs. Shoal, on the
other hand, only provides support for a single GCS (namely, JXTA [JXTA 2008])
and thus was discarded as a possible generic framework candidate. In the end, we
chose jGCS over Hedera because the former implements a well-designed API, based
on sound object-oriented design principles and patterns, and also because it imposes
a much lower performance overhead compared to the overhead observed for Hedera,
particularly for small messages [Sales et al. 2009a, Sales et al. 2009b].

3.1.2. Service Implementation Model

Another important design decision was concerned with defining an appropriate im-
plementation model for G2CL. Given the rich set of group communication building
blocks offered by JGroups, and its popularity amongst clustered application develop-
ers, we have decided to implement the G2CL services following, whenever possible,
the same building block API (including class names and method signatures) used
by JGroups. As we have explained previously, this decision has the potential to
facilitate the task of migrating an existing clustered application based on JGroups
to G2CL, since both systems implement similar APIs. Another benefit is that G2CL
users could greatly reduce their learning curve by leveraging on JGroups’ extensive
API documentation and code base.

3.1.3. jGCS Extensions

During the design of G2CL we have identified the need to make some minor exten-
sions to the classes and interfaces originally provided by jGCS. These extensions are
described below.

As it is typical with other communication abstractions that encapsulate
lower-level services, to implement some of the G2CL services we needed a way to add
service-specific headers to application messages in a manner that is separate from
their body. Such headers would be used to store control information relevant to the
implementation of some services, but which could not be exposed to the application.
Since this facility is not readily supported by the Message class currently provided
by jGCS, we had to define a new message class, called G2CLMessage.

In order to maintain compatibility with the DataSession classe of jGCS,
G2CLMessage implements jGCS’s Message interface. This allows G2CLMessage
objects to be transmitted as any other message using any jGCS plug-in.

Another extension made to jGCS was the implementation of a



XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 935

new DataSession class, called MarshalDataSession, which works like an
adapter [Gamma et al. 1995] between the G2CL services and the original DataSes-
sion used by the jGCS plug-ins. The main responsibility of this new class is to
intercept all message transmission calls made to the plug-in by the application and
then execute the necessary transformations to convert between a message of type
G2CLMessage and another message of type Message. In this way, all G2CL ser-
vices must rely only on MarshalDataSession for message transmission (instead of
the original DataSession class of jGCS).

3.2. Implemented Services

The initial set of group communication services implemented as part of G2CL was
selected based on an informal analysis of the JGroups services that are most com-
monly used in practice. The selected services were classified into two groups, named
high-level services and service decorators, described below.

3.2.1. High-level Services

These services encapsulate a MarshalDataSession instance by hiding its basic mes-
sage transmission functionality, so as to provide application developers with a more
sophisticated group communication API. Four services were initially implemented
as part of this group: MessageDispatcher, RpcDispatcher, ReplicatedHashMap and
State TransferDataSession.

Due to space limitations, and because those services provide the same set of
functionalities provided by their corresponding services in JGroups, with a similar
API, we will omit the details of their implementation from the paper. For a more
detailed account of those services, including their semantics and APIs, the interested
reader is referred to [JGroups 2009).

3.2.2. Service Decorators

Services of this group add extra functionalities (such as message fragmentation and
encryption) to the basic message transmission service provided by the Marshal-
DataSession class. As the group name implies, these services are based on the Dec-
orator design pattern [Gamma et al. 1995]. Their implementation keeps the same
interface provided by MarshalDataSession, so that their use is completely transpar-
ent to the application.

Currently, G2CL provides four service decorators, namely FragDataSession,
BundleDataSession, CompressDataSession and CryptoDataSession. These services
provide mechanisms for message fragmentation, message bundle, message compres-
sion and message encryption, respectively.

Each service decorator can be used either in isolation, or combined with other
service decorators, forming a chain of responsibility [Gamma et al. 1995] where dif-
ferent decorators can be added or removed from the chain without affecting the
application code.



936 Anais

To facilitate the use and configuration of service decorators, G2CL provides a
MarshalDataSessionFactory class whose main responsibility is to creat a new Mar-
shalDataSession instance. If necessary, the MarshalDataSessionFactory can also
instantiate a chain of decorators for the new MarshalDataSession object.

The creation of both the MarshalDataSession instance and its chain of dec-
orators can be configured by the user in a manner that is independent of the appli-
cation code, using a dependency injection mechanism or a service locator.

4. Evaluation

To assess the migration effort and potential performance impact associated with
the use of G2CL in a real clustered application, we have conducted a case study
involving the JOnAS Java EE application server [JOnAS 2009].

The reason for selecting JOnAS as our target application is two-fold: (i) it
is a mature clustered technology of non-trivial size (in the order of 230.000 lines of
Java code); and (ii) it makes intensive use of a number of group communication ser-
vices and building blocks provided by JGroups, which have similar services already
implemented as part of G2CL.

4.1. JOnAS Overview

The Java Open Application Server (JOnAS) is an open source implementation of
the Java EE 5 specification [SUN 2006]. This specification includes a number of
Java-based technologies, such as EJB, JMS, Servlets, JSP, JSF, JPA, JAX-WS and
JAX-RPC, all of which are fully supported by JOnAS.4

JOnAS supports the creation of reliable EJB applications by providing a
high-availability (HA) service based on a cluster of JOnAS instances. When a client
application requests the creation of a Stateful Session Bean (SFSB) component, one
of the servers in the cluster is chosen to respond to that client’s invocations until the
client requests the removal of that SFSB. Before sending a response to the client,
the server propagates any change in the state of the SFSB to the other servers in
the cluster, which act as backup servers for that component. If the server initially
allocated to a replicated component fails, the state of the SFSB can be recovered
by one of its backup servers, which will start handling future invocations for that
component on behalf of the failed server.

To implement its HA service JOnAS relies on a RMI-like replication pro-
tocol called Clustered Method Invocation (CMI), which is specifically tailored for
transparently invoking replicated objects. The CMI protocol uses several high-level
group communication services provided by JGroups to implement a number of fea-
tures, including a distributed version of a JNDI-based resource registry, and a state
propagation mechanism. More specifically, the distributed registry uses the RPCDis-
patcher and State Transfer services of JGroups to guarantee that any changes made
to registry by one of the servers are reliably propagated to the other servers (for
instance, when a new object is created). The state propagation mechanism, in turn,

“In our work, we have used JOnAS version 5.1.0-M5. JOnAS is available at http://jonas.
ow2.org.



XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 937

uses the MessageDispatcher service of JGroups to guarantee that, whenever the
server responsible for a replicated object fails, at least one of the remaining servers
in the cluster will will have all the necessary information to continue responding to
any ongoing or future client request on behalf of the failed server.

In the next subsection we describe how we have replaced, in the JOnAS
source code, all JGroups services used in the implementation of the CMI protocol
with the corresponding generic services provided by G2CL.

4.2. Migration Process

Our migration process was concentrated on two JOnAS classes, namely Syn-
chronyzedDistributed Tree and JGMessageManager. These are the main classes in-
volved in the implementation of the distributed registry and the state propagation
mechanism of CMI, respectively.

In both classes our migration strategy consisted, essentially, of changing all
lines of code (and, when necessary, their associated configuration files) responsible
for initializing the target JGroup services (i.e., RPCDispatcher, StateTransfer and
MessageDispatcher), in order to replace them with the necessary code to initialize
the corresponding services of G2CL.

One notable exception was the need to implement a new message serialization
mechanism for JOnAS. This was required because the original version of JOnAS uses
the serialization mechanism provided by JGroups, while jGCS (and, consequently,
G2CL) leaves the serialization process to be implemented by the application.

Finally, we also had to change the way JOnAS handles the identification of
group members. In the original version of JOnAS, group members are identified
by the Address class of JGroups. In the new version, based on G2CL, this class
was replaced by the SocketAddress class, which is the class used to identify group
members in jGCS.

It is interesting to note that, even though the JGroups services we have
replaced are actually used in many other parts of the JOnAS source code, we did
not have to change any of those parts. This was due to our decision to keep the
same JGroups API when implementing the corresponding services in G2CL.

Table 1 quantifies our migration effort in terms of the number of JOnAS
packages, classes and lines of code (LoC) that had to be modified as part of our
G2CL migration strategy. From that table we can see that most of the changes were
performed in the CMI module, where about 2.5% of its packages, 2.8% of its classes
and 11% of its lines of code had to be modified. These numbers reflect the fact that
CMI makes intensive use of JGrous in its implementation, as we have explained
above. Even though many of the changes made to the CMI module were certainly
non-trivial, we can still see these numbers in a positive light if we consider that
nearly 98% of the packages and classes of that module (comprising about 90% of its
lines of code) were left unchanged after the migration. The percentage of changes in
the other modules was much smaller, as expected, varying between 0.06 and 0.8%.
Overall, we only had to change about 1% of the total of lines in the JOnAS source
code.



938 Anais

Table 1. JOnAS migration numbers

# Packages # Classes # LoC
Module Total | Changed (%) | Total | Changed (%) | Total | Changed (%)
CMI 80 2 (2,50%) | 216 6 (2,78%) | 18.691 | 2.106 (11,28%)
OW2-UTIL 235 1 (0,42%) 596 5 (0,84%) 33.538 270 (0,80%)
JOnAS 396 1 (0,25%) 2133 1 (0,04%) | 180.030 111 (0,06%)
All | 7| 4(0,56%) | 2045 | 12 (041%) | 232.259 | 2.487 (1,01%) |

The above numbers are indicative that the programming effort required by
the G2CL migration process was relatively low compared to the full size of the
JONAS source code. They also reflect the fact that group communication, although
crucial to the provisioning of some important services of JOnAS, is only used scarcely
in its implementation.

4.3. Performance Impact Analysis

Despite the clear software engineering benefits that can be associated with the use
of generic APIs, one cannot neglect the inevitable performance impact that those
systems may impose on the services they generalize.

With this concern in mind, we have analyzed the potential overhead caused
by G2CL on the performance of JOnAS. Our analysis compared the performance of
the original version of JOnAS, based on JGroups, against that of the new version,
based on G2CL, using three different jGCS plug-in configurations.

4.3.1. Method

Our analysis was carried out in local cluster environment, which was configured
in a manner to emulate a typical JEE clustering scenario [Lodi et al. 2007]. This
environment was composed of nine PCs connected through a dedicated 10/100 Mbps
Fast Ethernet switch. Each PC had the following configuration: Intel Core 2 Duo
processor; 2 GB RAM (DDR2); and Linux Debian (version 5.0) operating system.

Six PCs were used in the business layer, each one running a separate JOnAS
instance with CMI and the HA service enabled, playing the role of replicated EJB
containers. Two other PCs were used in the presentation layer, each one also running
a separate JOnAS instance, but now playing the roles of both web containers and
CMI clients. Finally, one PC was used to run the Apache server (version 2.2.11),
which was responsible for balancing the load amongst the servers of the presentation
layer (see Figure 1).

To compare the performance of the different JOnAS versions, we have devel-
oped a simple EJB application with a single SFSB. This SFSB implements the basic
functionalities of a shopping cart in an e-commerce application, offering operations
to insert, update and remove items from the shopping cart. For persistence, we used
the PostgreSQL relational database system (version 8.3) [PostgreSQL 2009]. This
EJB application was installed in all the six servers of the business layer, with its



XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 939

PRESENTATION BUSINESS LAYER
LAYER

CLIENT
APACHE

Figure 1. JOnAS evaluation environment

SEFSB component being configured as a replicated CMI object.

We have also developed a simple web-based client application to continuously
invoke a series of operations provided by the replicated object (shopping cart) at
the business layer. Both the EJB application and the client application were imple-
mented in a way to create an execution scenario similar to the one used by Lodi et
al. in [Lodi et al. 2007], where the authors have compared the performance of an
enhanced version of the JBoss application server [JBoss 2009].

We ran multiple sets of experiments, with each experiment involving a dif-
ferent version of JOnAS. In total, we analyzed the performance of four JOnAS
versions: the original version, based on JGroups, and three variations of the new
version, based on G2CL, using the jGCS plug-ins for JGroups, Spread and Appia,
respectively. In all experiments we varied the number of clients from 50 to 100,
so as to observe the performance of the different versions of JOnAS under differ-
ent load conditions. To generate the client loads we used the ApacheBench(ab)
benchmarking tool (version 2.0) [Apache 1996].

In terms of group communication features, we configured the three jGCS
plug-ins to provide the same set of guarantees that is provided by JGroups in the
original version of JOnAS. This was necessary to make sure that the new version of
JOnAS, based on G2CL, would behave, at least functionally, in a similar fashion to
its original version.

Finally, we wused the client response time as our performance mea-
sure [Jain 1991]. In our analysis, this measured as computed by calculating the
average response time observed across all clients during the same experiment. To
achieve a confidence interval of 95%, each experiment was executed at least 30 times,
with extreme outliers being removed using the boxplots method [Triola 1997].

4.3.2. Results

Figure 2 shows the average client response time observed for the four versions of
JOnAS as a function of the number simultaneous client requests handled by the
EJB application. As we can see, the different JOnAS versions are non-uniformly
affected as the number of client requests grows. In addition, when we compare the



940 Anais

1000
900
800

700 W JGroups

&
&
1
600 T B G2CL/IGroups
&=
50 z G2CL/Appia
W G2CL/Spread
) II I I ;
300
50 60 70 80 90 100

Simultaneous client requests

Client response time (ms)
o

o

Figure 2. Performance analysis results.

original version of JOnAS, which uses JGroups directly, against the new version,
based on G2CL configured with the JGroups plug-in, we note that their perfor-
mances is very close, with a slight advantage to the former. This shows that the
performance overhead imposed by G2CL on JOnAS is minimal (for 50 simultane-
ous requests, their performance differ by about 27% in favor of the original version,
with that difference quickly falling below 5% as the number of simultaneous requests
approaches the 70 mark).

We also observed that the new JOnAS version configured with the Appia
plug-in imposes a virtually constant performance loss (in the order of 25%) when
compared with its original version. When the new version is configured with the
Spread plug-in, the observed performance loss is even higher (up to 42% for 100
simultaneous requests).

Even though none of the modified versions of JOnAS, based on G2CL, was
able to beat the performance of the original version, we believe that the use of a
generic API can still pay-off in terms of performance. As we have already shown
elsewhere [Sales et al. 2009a, Sales et al. 2009b], Spread can outperform JGroups
by a large margin under certain application scenarios, which means that for some
distributed applications that use JGroups, the migration to a G2CL configuration
based on Spread might actually result in a real performance gain. In this regard,
we believe G2CL can offer a real contribution towards more effective clustering
solutions, since it liberates developers to experiment with new group communication
mechanisms without requiring a significant programming effort.

5. Conclusion

In this paper, we have presented our work on G2CL, a generic software layer provid-
ing a rich set of high-level group communication services. Our early experience in
using G2CL in the the JOnAS application server as well as in other middleware tech-
nologies suggests that it can be effectively used as a generic group communication
solution for existing clustered technologies, requiring a relatively modest migration
effort and imposing a minimal performance overhead, particularly for those appli-



XXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 941

cations originally based on JGroups.

A natural line for future research is to improve G2CL with new group commu-
nication services and features. We are also conducting more case studies, involving
open source clustered applications of varying sizes and domains, in order to better
analyze its benefits and limitations. In particular, we plan to further investigate the
conditions upon which migrating to G2CL would improve application performance.

Similarly to the other technologies it is based or relies upon, G2CL is being
developed as an open source project. Its source code is freely available at http:
//g2cl.googlecode.com, under the GNU General Public License (version 2). We
invite the interested readers to try it and also to contribute to its development.

References

[Alur et al. 2001] Alur, D., Malks, D., Crupi, J., Booch, G., and Fowler, M. (2001).
Core J2EFE Patterns: Best Practices and Design Strategies. Sun Microsystems,
Inc., Mountain View, CA, USA, 2nd. edition.

[Amir et al. 2000] Amir, Y., Danilov, C., and Stanton, J. (2000). A Low Latency,
Loss Tolerant Architecture and Protocol for Wide Area Group Communication.
In Proceedings of the 2000 International Conference on Dependable Systems and
Networks (FTCS-30, DCCA-8), pages 327-336, New York, NY, USA. IEEE CS
Press.

[Apache 1996] Apache. Apache HTTP server benchmarking tool [online]. (1996).
Available from: http://httpd.apache.org/docs/2.0/programs/ab.html.

[Ban 1998] Ban, B. (1998). Design and Implementation of a Reliable Group Commu-
nication Toolkit for Java. Technical report, Cornell University, Cornell University.

[Carvalho et al. 2006] Carvalho, N., Pereira, J., and Rodrigues, L. (2006). Towards a
Generic Group Communication Service. In Proceedings of the Sth International
Symposium on Distributed Objects and Applications (DOA’06), pages 1485-1502,
Montpellier, France. Springer.

[Chockler et al. 2001] Chockler, G. V., Keidar, I., and Vitenberg, R. (2001). Group
Communication Specifications: A Comprehensive Study. ACM Computing Sur-
veys, 33(4):427-469.

[Couloris et al. 2005] Couloris, G., Dollimore, J., and Kindberg, T. (2005). Distributed
Systems — Concepts and Design. Addison-Wesley, Boston, MA, USA, 4th edition.

[Fowler 2004] Fowler, M. Inversion of Control — IoC [online]. (2004). Available from:
http://martinfowler.com/articles/injection.html.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Boston, MA, USA.

[Hedera 2008] Hedera. Hedera Group Communications Wrappers [online]. (2008).
Available from: http://hederagc.sourceforge.net/.



942 Anais

[Jain 1991] Jain, R. (1991). The Art of Computer Systems Performance Analysis:
Techniques for FExperimental Design, Measurement, Simulation, and Modeling.
Wiley-Interscience, New York, NY, USA.

[JBoss 2009] JBoss. JBoss Application Server [online]. (2009). Available from: http:
//www.jboss.org/jbossas/.

[JGroups 2009] JGroups. JGroups — Building Blocks [online]. (2009). Available from:
http://www.jgroups.org/blocks.html.

[JOnAS 2009] JOnAS. JOnAS — Java Open Application Server [online]. (2009). Avail-
able from: http://jonas.ow2.org/.

[JXTA 2008] JXTA. JXTA Community Project [online]. (2008). Available from:
https://jxta.dev.java.net/.

[Lodi et al. 2007] Lodi, G., Panzieri, F., Rossi, D., and Turrini, E. (2007). SLA-Driven
Clustering of QoS-Aware Application Servers. [EEFE Transactions on Software
Engineering, 33(3):186-197.

[Miranda et al. 2001] Miranda, H., Pinto, A., and Rodrigues, L. (2001). Appia — a
Flexible Protocol Kernel Supporting Multiple Coordinated Channels. In Pro-

ceedings of the 21st International Conference on Distributed Computing Systems
(ICDCS’01), pages 707-710, Phoenix (Mesa), Arizona, USA. IEEE CS Press.

[PostgreSQL 2009] PostgreSQL. PostgreSQL [online]. (2009). Available from: http:
//www.postgresql.org/.

[Sales et al. 2009a] Sales, L., Teéfilo, H., D’Orleans, J., Mendonga, N. C., Barbosa, R.,
and Trinta, F. (2009a). An Evaluation of the Performance Impact of Generic APIs
on Two Group Communication Systems. In Anais do XX VII Simpdsio Brasileiro
de Redes de Computadores e Sistemas Distribuidos (SBRC’09), pages 801-812,
Recife, PE, Brasil. SBC.

[Sales et al. 2009b] Sales, L., Tedfilo, H., D’Orleans, J., Mendonga, N. C., Barbosa,
R., and Trinta, F. (2009b). Performance Impact Analysis of Two Generic Group
Communication APIs. In Proceedings of the 1st IEEE International Workshop on
Middleware Engineering (ME’09), pages 148-153, Bellevue, WA, USA. IEEE CS
Press.

[Shoal 2008] Shoal. Shoal — A Dynamic Clustering Framework [online]. (2008). Avail-
able from: https://shoal.dev.java.net/.

[SUN 2006] SUN. Java platform, enterprise edition (java ee) [online]. (2006). Available
from: http://java.sun.com/javaee/.

[Triola 1997] Triola, M. F. (1997). Elementary Statistics. Addison-Wesley, Boston,
MA, USA, 7th edition.





