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Abstract. This paper discusses the rate resource allocation with power con-
straint in multiple access multi-class networks under heuristic optimization per-
spective. Multirate users associated with different types of traffic are aggregated
to distinct user’ classes, with the assurance of minimum target rate allocation
per user and QoS. Therein, single-objective optimization (SOO) methodology
under swarm intelligence approach was carried out aiming to achieve promis-
ing performance-complexity tradeoffs. The results are promising in terms of sum
rate maximization while simultaneously minimizing the total power allocated to
the multirate mobile terminals is minimized.

1. Introduction
The code division multiple access (CDMA) networks increasingly gain prominence in
the scenario of multiple access networks, due to its flexible resource allocation, high
spectrum efficiency and soft capacity [Al-Hezmi et al. 2007]. In the current telecom-
munications scenario, companies must deal with spectrum scarcity, power consumption
issues and quality of service (QoS) requirements, associated with minimum rates, maxi-
mum allowed delay, and so on. In order to satisfy consumers necessities, while keeping
companies’ profits the resource allocation issues, mainly the spectrum and power1 allo-
cation, in these networks must be optimized. Thus, many researchers have been seeking
resource allocation algorithms that could be easily applied to CDMA systems with high
performance guarantee, i.e. low complexity combined with high solution quality.

In this paper, optimization approach based on particle swarm intelligence is inves-
tigated in order to efficiently solve the rate allocation problem (throughput maximization)
with power constraint in multiclass DS/CDMA wireless networks, which show different
quality of service requirements (QoS), related to different user classes, making the re-
source allocation optimization procedure a more challenging problem. Furthermore, a
rigorous and extensive analysis for the input parameters of proposed heuristic algorithm
solution were carried out. It is important to note that swarm intelligence was chose due

1Power allocation procedures imply in battery autonomy improvement.
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to its low computational complexity and less input parameters when compared to other
evolutionary algorithms, e.g. genetic algorithms, and its high capacity to scape from local
optima.

This paper is organized as follows. In Section 2 an overview of the classical solu-
tion for the power control problem, how it is adapted to multirate scenarios, as well as an
explanation of the throughput maximization multirate problem is given. In Section 3 the
rate allocation based on swarm optimization approach is discussed. Single-objective opti-
mization (SOO) criteria for throughput maximization using PSO algorithm are analyzed.
Numerical results with corresponding simulation parameters setup are treated in Section
4. Finally, the conclusions are offered in Section 5.

1.1. Related Work

In the current telecommunications scenario, a lot of efforts in terms of research and new
algorithms has been spent in order to satisfy the new telecommunication services require-
ments, such as growing capacity, availability, mobility, and multiclass services (i.e., mul-
tirate users) with different quality of service (QoS). Hence, inspired by this scenario,
a different optimization approach based on heuristic procedures has been investigated.
The application of heuristic optimization to the power allocation in CDMA systems was
discussed in [Moustafa et al. 2000, Elkamchouchi et al. 2007]. In [Moustafa et al.
2001, Moustafa et al. 2000], a genetic approach, named genetic algorithm for mobiles
equilibrium (GAME), was considered in order to control two main resources in a wire-
less network: bit rate and corresponding transmitting power level from mobile terminals.
The basic idea is that all the mobile terminals have to harmonize their rate and power ac-
cording to their location, QoS, and density. However, due to the centralized nature of the
power-rate allocation problem and the complexity aspects, the GAME algorithm is suit-
able to be implemented in the base station only, which forwards the controlling signals to
the mobile terminals.

Another heuristic solution that solve efficiently the power allocation problem,
while resulting in lower computational complexity than genetic schemes, involves the
swarm intelligence principle. In [Elkamchouchi et al. 2007], particle swarm optimiza-
tion (PSO) algorithm was used to solve the power allocation problem, while in [Zielinski
et al. 2009] the power control scheme with PSO was associated with parallel interference
cancelation multiuser detector.

From another perspective, the classical power allocation problem in wireless net-
works, posed two decades ago, has been analyzed and investigated over the years and
many algorithms were proposed to solve this specific problem. One of these algorithms
was proposed by Foschini and Miljanic [Foschini and Miljanic 1993], and can be consid-
ered foundation of many well-known distributed power control algorithms (DPCA).

More recently, many researchers have proposed new algorithms to solve the re-
source allocation problem in wireless networks. A distributed power control algorithm
for the downlink of multiclass wireless networks was proposed in [Lee et al. 2005]. Also,
under specific scenario of interference-limited networks, a power allocation algorithm to
achieve global optimality in weighted throughput maximization based on multiplicative
linear fractional programming (MLFP) was proposed in [Li Ping Qian 2009]. Moreover,
in [Dai et al. 2009] the goal is to maximize the fairness between users in the uplink of
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CDMA systems, satisfying different QoS requirements.

In [Gross et al. 2006] the Verhulst mathematical model, initially designed to de-
scribe population growth of biological species with food and physical space restriction,
was adapted to a single rate DS/CDMA system DPCA. The work was the first to propose
a Verhulst equilibrium equation adaptation to resource allocation problems in DS/CDMA
networks.

2. Power-Rate Allocation Problem

In a multiple access system, such as DS/CDMA, the power control problem is of great
importance in order to achieve relevant system capacity2 and throughput. The power
allocation issue can be solved by finding the best vector that contains the minimum power
to be assigned in the next time slot to each active user, in order to achieve the minimum
quality of service (QoS) through the minimum carrier to interference ratio (CIR).

In multirate multiple access wireless communications networks, the bit error rate
(BER) is often used as a QoS measure and, since the BER is directly linked to the signal
to interference plus noise ratio (SNIR), we are able to use the SNIR parameter as the QoS
measurement. Hence, associating the SNIR to the CIR at time slot n results:

δi[n] =
Rc

Ri[n]
× Γi[n], n = 0, 1, . . . N (1)

where δi[n] is the SNIR of user i at the nth iteration, Rc is the chip rate and approximately
equal to the system’s spreading bandwidth; Ri[n] is the data rate for user i, Γi[n] is the
CIR for user i at iteration n, and N is the maximal number of iterations.

In multirate DS/CDMA systems with multiple processing gains (MPG), where
each user class has a different processing gain G > 1, defined as a function of the chip
rate by:

G`
i =

Rc

R`
i

, ` = 1, 2, . . . , L, (2)

where L is the number of total user’s classes defined in the system (voice, data, video).
Hence, in MPG-DS/CDMA multiple access systems, the SNIR and CIR for the `th user’s
class are related to the processing gain of that service class: δ`

i = G`
i × Γi.

From (1) we are able to calculate the data rate for user i at iteration n:

Ri[n] =
Rc

δi[n]
× Γi[n], n = 0, 1, . . . , N (3)

The CIR for the ith user can be calculated as [Gross et al. 2006, Elmusrati and
Koivo 2003]:

Γi[n] =
pi[n]gii[n]

K∑
j=1
j 6=i

pj[n]gij[n] + σ2

, i = 1, . . . , K (4)

2In this paper the term capacity is employed to express the total number of active users in the system.
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where pi[n] is the power allocated to the ith user at iteration n and is bounded by Pmax,
the channel gain (including path loss, fading and shadowing effects) between user j and
user (or base station) i is identified by gij , K is the number of active users in the system
(considering all user’s classes), and σ2

i = σ2
j = σ2 is the average power of the additive

white Gaussian noise (AWGN) at the input of ith receiver, admitted identical for all users.
Therefore, in DS/CDMA multirate systems the CIR relation to achieve the target rate can
be calculated to each user class as follows [Elmusrati et al. 2008]:

Γ`
min =

R`
minδ

∗

Rc

, ` = 1 · · ·L (5)

where Γ`
min and R`

min is the minimum CIR and minimum user rate3 associated to the
`th user class, respectively, δ∗ is the minimum (or target) signal to noise ratio (SNR) to
achieve minimum acceptable BER (or QoS). Besides, the power allocated to the kth user
belonging to the `th class at nth iteration is:

p`
k[n], k = 1 · · ·K`; ` = 1 · · ·L. (6)

Hence, the total number of active users in the system is given by K = K1 ∪ . . . ∪K` ∪
. . . ∪ KL. Note that indexes associated to the K users are obtained by concatenation of
ascending rates from different user’s classes. Thus, K1 identifies the lowest user’s rate
class, and KL the highest.

The K × K channel gain matrix, considering path loss, shadowing and fading
effects, between user j and user i (or base station) is given by:

G =




g11 g12 · · · g1K

g21 g22 · · · g2K
...

... . . . ...
gK1 gK2 · · · gKK


 , (7)

which could be assumed static or even dynamically changing over the optimization win-
dow (T time slots).

Assuming multirate user classes, we are able to adapt the classical power con-
trol problem to achieve the target rates for each user, simply using the Shannon capacity
relation between minimum CIR and target rate in each user class, resulting:

Γ`
k,min = 2

R`
k,min
Rc − 1 = 2r`

k,min − 1 (8)

where r`
i,min is the normalized minimum capacity for the kth user from `th user class, ex-

pressed by bits/sec/Hz. This equation can be obtained directly from the Shannon capacity
equation:

ri,min(p) = log2 [1 + Γi,min(p)] (9)

Now, considering a K ×K interference matrix B, with

Bij =





0, i = j;
Γi,mingji

gii

, i 6= j;
(10)

3Or target rate, for single (fixed) rate systems.
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where Γi,min can be obtained from (5), taking into account each rate class requirement and
the column vector u = [u1, u2, . . . , uK ]T , with elements:

ui =
Γi,minσ

2
i

gii

, (11)

we can obtain the analytical optimal power vector allocation p∗ = [p1, p2, . . . , pK ]T sim-
ply by matrix inversion as:

p∗ = (I−B)−1 u (12)

if and only if the maximum eigenvalue of B is smaller than 1 [Seneta 1981]; I is the
K × K identity matrix. In this situation, the power control problem shows a feasible
solution.

2.1. Throughput Maximization for Multirate Systems under Power Constraint

The aiming herein is to incorporate multirate criterion with throughput maximization for
users with different QoS, while the power consumption constraint at mobile terminals
is bounded by a specific value at each user. As a result, the optimization problem can
be formulated as a special case of generalized linear fractional programming (GLFP)
[Phuong and Tuy 2003]. So, the following optimization problem can be posed:

max
K∏

i=1

[
fi(p)

gi(p)

]wi

(13)

s.t. 0 < p`
i ≤ Pmax;

fi(p)

gi(p)
≥ 2r`

i,min , ∀i ∈ K`, and ∀ ` = 1, 2, · · ·L

where r`
i,min ≥ 0 is the minimum normalized (by CDMA system bandwidth, Rc) data

rate requirement of ith link, including the zero-rate constraint case; and wi > 0 is the
priory weight for the ith user to transmit with minimum data rate and QoS guarantees,
assumed normalized, so that

∑K
i=1 wi = 1. Moreover, note that the second constraint in

(13) is obtained directly from (8), (4), and (1), where the minimum data rate constraints
was transformed into minimum SNIR constraints through Shannon capacity equation:

Ri = Rc log2


1 + θBERiG`

i × pigii ×
(

K∑

j 6=i

pjgij + σ2

)−1

 , (14)

for i = 1, . . . , K, with θBERi = − 1.5
log(5BERi)

, BERi is the maximal allowed bit error rate
for user i,

fi(p) = θBERiG`
i × pigii +

K∑
j=1
j 6=i

pjgij + σ2, and gi(p) =
K∑

j=1
j 6=i

pjgij + σ2 (15)

for i = 1, . . . , K. The objective function in (13) is a product of exponentiated linear frac-
tional functions, and the function ΠK

i=1(zi)
wi is an increasing function on K-dimensional
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nonnegative real domain [Li Ping Qian 2009]. Furthermore, the optimization problem
(13) can be rewritten using the basic property of the logarithmic function, resulting:

J(p) = max
K∑

i=1

wi [log2 fi(p)− log2 gi(p)] = max
K∑

i=1

wi

[
f̃i(p)− g̃i(p)

]

s.t. 0 < p`
i ≤ Pmax; (16)

f̃i(p)− g̃i(p) ≥ r`
i,min, ∀i ∈ K`, ` = 1, 2, · · ·L

2.2. Quality of Solution × Convergence Speed

The quality of solution achieved by any iterative resource allocation procedure could be
measured by how close to the optimum solution is the found solution, and can be quan-
tified by means of the normalized squared error (NSE) when equilibrium is reached. For
power allocation problem, the NSE definition is given by:

NSE[n] = E

[
‖p[n]− p∗‖2

‖p∗‖2

]
, (17)

where ‖ · ‖2 denotes the squared Euclidean distance to the origin, and E[·] the expectation
operator.

3. Particle Swarm Optimization Approach
In this section, a different approach for throughput maximization under power constraint
problems, described by (16) will be considered using swarm intelligence optimization
method [Kennedy and Eberhart 2001]. Single-objective optimization (SOO) approach
was adopted. The convexation of the original multi-class throughput maximization prob-
lem, obtained in (16), is employed hereafter as cost function for the PSO.

3.1. PSO Algorithm

Particle swarm optimization (PSO) was developed after some researchers have analyzed
birds behavior and discern that the advantage obtained through their group life could be
explored as a tool for a heuristic search. Considering this new concept of interaction
among individuals, in 1995 J. Kennedy and R. Eberhart developed a new heuristic search
based on a particle swarm [Kennedy and Eberhart 1995].

The PSO principle is the movement of a group of particles, randomly distributed in
the search space, each one with its own position and velocity. The position of each particle
is modified by the application of velocity in order to reach a better performance [Kennedy
and Eberhart 1995]. The interaction among particles is inserted in the calculation of
particle velocity. The problem described in (16) indicated an optimization developed in
the R set. Hence, in the PSO strategy, each power candidate-vector defined as pi[n], of
size4 K, is used for the velocity calculation of next iteration:

vi[n+1] = ω[n] ·vi[n]+φ1 ·Ui1 [n](pbest
i [n]−pi[n])+φ2 ·Ui2 [n](pbest

g [n]−pi[n]) (18)

4Remember, as defined previously, for multirate power optimization problem: K = K1 ∪ . . . ∪ K` ∪
. . . ∪KL.
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where ω[n] is the inertia weight of the previous velocity in the present speed calculation;
Ui1 [n] and Ui2 [n] are diagonal matrices with dimension K, and elements are random
variables with uniform distribution ∼ U ∈ [0, 1], generated for the ith particle at iteration
n = 1, 2, . . . , N ; pbest

g [n] and pbest
i [n] are the best global position and the best local po-

sitions found until the nth iteration, respectively; φ1 and φ2 are acceleration coefficients
regarding the best particles and the best global positions influences in the velocity update,
respectively.

The particle(s) selection for evolving under power-multirate adaptation strategy
is based on the lowest fitness values satisfying the constraints in (16). The ith particle’s
position at iteration n is a power candidate-vector pi[n] of size K × 1. The position of
each particle is updated using the new velocity vector (18) for that particle:

pi[n + 1] = pi[n] + vi[n + 1], i = 1, . . . , M (19)

The PSO algorithm consists of repeated application of the update velocity and
position update equations. A pseudo-code for the single-objective PSO power-multirate
allocation problem is presented in Algorithm 1.

Algorithm 1 SOO PSO Power-Multirate Allocation
Input: p, M , N , ω, φ1, φ2, Vm; Output: p∗
begin
1. initialize first population: n = 0;

P[0] ∼ U [Pmin; Pmax]
pbest

i [0] = pi[0] and pbest
g [0] = pmax;

vi[0] = 0: null initial velocity;
2. while n ≤ N

a. calculate J(pi[n]), ∀pi[n] ∈ P[n] using (16);
b. update velocity vi[n], i = 1, . . . , F , through (18);
c. update best positions:

for i = 1, . . . , M
if J(pi[n]) < J(pbest

i [n]) ∧Ri[n] ≥ ri,min,
pbest

i [n + 1] ← pi[n]
else pbest

i [n + 1] ← pbest
i [n]

end
if ∃ pi[n] such that

[
J(pi[n]) < J(pbest

g [n])
] ∧Ri[n] ≥ ri,min

∧ [J(pi[n]) ≤ J(pj [n]), ∀ j 6= i],
pbest

g [n + 1] ← pi[n]
else pbest

g [n + 1] ← pbest
g [n]

d. Evolve to a new swarm population P[n + 1], using (16);
e. set n = n + 1.

end
3. p∗ = pbest

g [N ].
end
−−−−−−−−−−−−−−−−−−−−−−−−−
p: power input vector, K × 1 dimension, uniformly distributed in ∼ U [Pmin;Pmax].
M : population size.
P = [p1, . . . ,pi, . . . ,pM ] particle population matrix, dimension K ×M .
N : maximum number of swarm iterations.
pmax: maximum power vector considering each mobile terminal rate class.

In order to reduce the likelihood that the particle might leave the search universe,
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maximum velocity Vm factor is added to the PSO model (18), which will be responsible
for limiting the velocity in the range [±Vm]. The adjustment of velocity allows the particle
to move in a continuous but constrained subspace, been simply accomplished by:

vi[n] = min {Vm; max {−Vm; vi[n]}} (20)

From (20) it’s clear that if |vi[n]| exceeds a positive constant value Vm specified by
the user, the ith particle’ velocity is assigned to be sign(vi[n])Vm, i.e. particles velocity
on each of K−dimension is clamped to a maximum magnitude Vm. If we could define
the search space by the bounds [Pmin; Pmax], then the value of Vm will be typically set so
that Vm = τ(Pmax − Pmin), where 0.1 ≤ τ ≤ 1.0, please refer to Chapter 1 within the
definition of reference [Nedjah and Mourelle 2006].

To elaborate further about the inertia weight we note that a relatively larger value
of w is helpful for global optimum, and lesser influenced by the best global and local
positions5, while a relatively smaller value for w is helpful for convergence, i.e., smaller
inertial weight encourages the local exploration as the particles are more attracted towards
pbest

i and pbest
g [Eberhart and Shi 2001, Shi and Eberhart 1998].

Hence, in order to achieve a balance between global and local search abilities, a
linear inertia weight decreasing with the algorithm evolving, having good global search
capability at beginning and good local search capability latter, was adopted herein:

w[n] = (winitial − wfinal) ·
(

N − n

N

)m

+ wfinal (21)

where winitial and wfinal is the initial and final weight inertia, respectively, winitial > wfinal,
N is the maximum number of iterations, and m ∈ [0.6; 1.4] is the nonlinear modulation
index [Chatterjee and Siarry 2006].

3.2. PSO Parameters Optimization

Simulation experiments were carried out in order to determine the suitable values for
the PSO input parameters, such as acceleration coefficients, φ1 and φ2, maximal velocity
factor, Vm, weight inertia, ω, and population size, M , regarding the throughput multirate
optimization problem.

Under discrete optimization problems, such as DS/CDMA multiuser detection, it
is known that fast PSO convergence without losing certain exploration and exploitation
capabilities could be obtained increasing the parameter φ2 [de Oliveira et al. 2006] while
holding φ1 into the low range values. However, for the continuous optimization prob-
lem investigated herein, numerical results presented in Section 4.1 indicate that after an
enough number of iterations (N ) for convergence, the maximization of cost function were
obtained within low values for both acceleration coefficients.

The Vm factor is then optimized. The diversity increases as the particle velocity
crosses the limits established by [±Vm]. The range of Vm determines the maximum change
one particle can take during iteration. Without inertial weight (w = 1), Eberhart and Shi

5Analogous to the idea of the phenomenon that it is difficult to diverge heavier objects in their flight
trajectory than the lighter ones.
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[Eberhart and Shi 2001] found that the maximum allowed velocity Vm is best set around
10 to 20% of the dynamic range of each particle dimension. The appropriate choose
of Vm avoids particles flying out of meaningful solution space. Herein, for multirate
DS/CDMA rate allocation problem, a non exhaustive search has indicated that the better
performance×complexity trade-off was obtained setting the maximal velocity factor value
to Vm = 0.2× (Pmax − Pmin).

For the inertial weight, ω, simulation results has confirmed that high values imply
in fast convergence, but this means a lack of search diversity, and the algorithm can easily
be trapped in some local optimum, whereas a small value for ω results in a slow conver-
gence due to excessive changes around a very small search space. In this work, it was
adopted a variable ω, as described in (21), but with m = 1, and initial and final weight
inertia setting up to winitial = 1 and wfinal = 0.01. Hence, the initial and final maximal
velocity excursion values were bounded through the initial and final linear inertia weight
multiplied by Vm, adopted as a percentage of the maximal and minimal power difference
values:

winitial×Vm = 0.2 (Pmax−Pmin), and wfinal×Vm = 0.002 (Pmax−Pmin) (22)

Finally, stopping criterion can be the maximum number of iterations (velocity
changes allowed for each particle) or reaching the minimum error threshold, e.g.:

∣∣∣∣
J [n]− J [n− 1]

J [n]

∣∣∣∣ < εstop (23)

where typically εstop ∈ [0.001; 0.01]. Alternately, if we want to evaluate the average
percent of success6, taken over T runs to arrive at the global optimum, and considering a
fixed number of iterations N , we can evaluate a convergence test. A test is considered to
be 100% successful if the following relation holds:

|J [N ]− J [p∗]| < ε1J [p∗] + ε2 (24)

where, J [p∗] is the global optimum of the objective function under consideration, J [N ]
is the optimum of the objective function obtained by the algorithm after N iterations, and
ε1, ε2 are accuracy coefficients, usually in the range [10−6; 10−2]. In this study we have
set T = 100 trials and ε1 = ε2 = 10−2.

4. Numerical Results
In order to validate the proposed swarm optimization approach in solving resource al-
location problems on multiple access CDMA wireless networks, simulations were car-
ried out through MatLab ver.7.3 platform, with system parameters indicated in Table 1.
In all simulation results discussed in this section, it was assumed a retangular multicell
geometry with a number of base station (BS) equal to 4 and mobile terminals (mt) uni-
formly distributed over 25Km2 area. Besides, the initial rate assignment for all multirate
users was admitted discretely and uniformly distributed over three chip rate submultiple,
Rmin = [ 1

128
; 1

32
; 1

16
]Rc [bps].

6In terms of the PSO algorithm achieves full convergence.
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Table 1. Multirate DS/CDMA system parameters
Parameters Adopted Values

DS/CDMA Power-Rate Allocation System
Noise Power Pn = −63 [dBm]
Chip rate Rc = 3.84× 106

Min. Signal-noise ratio SNRmin = 4 dB
Max. power per user Pmax ∈ [30, 35] [dBm]
Min. Power per user Pmin = SNRmin + Pn [dBm]
Time slot duration Tslot = 666.7µs or Rslot = 1500 slots/s
# mobile terminals K ∈ [5, 250]
# base station BS = 4
Cell geometry rectangular, with xcell = ycell = 5 Km
Mobile term. distrib. ∼ U [xcell, ycell]

Fading Channel Type
Path loss ∝ d−2

Shadowing uncorrelated log-normal, σ2 = 6 dB
Fading Rice: [0.6; 0.4]
Max. Doppler freq. fD max = 11.1 Hz
Time selectivity slow

User Types
# user classes L = 3 (voice, video, data)
User classes Rates Rmin = [ 1

128 ; 1
32 ; 1

16 ]Rc [bps]
User classes BER θBER = [5× 10−3; 5× 10−5; 5× 10−8]

Swarm Power-Rate Algorithm
Accel. Coefs. φ1 = 1 φ2 = 2
Max. veloc. factor Vm = 0.2× (Pmax − Pmin)
Weight inertia (linear decay) winitial = 1; wfinal = 0.01
Population Size M = K + 2
Max. # iterations N ∈ [500, 2000]

Simulation Parameter
Trials number T = 1000 samples

A number of mobile terminals ranging from K = 5 to 250 was considered, which
experiment slow fading channels, i.e., the following relation is always satisfied:

Tslot < (∆t)c (25)

where Tslot = R−1
slot is the time slot duration, Rslot is the transmitted power vector update

rate, and (∆t)c is the coherence time of the channel7. This condition is part of the SINR
estimation process, and it implies that each power updating accomplished by the DPCA
happens with rate of Rslot, assumed here equal to 1500 updates per second.

The optimization process J(p) in (16) should converge to the optimum point be-
fore each channel gain gij experiments significant changing. Note that satisfying (25) the
gain matrices remain approximately static during one convergence process interval, i.e.,
666.7µs.

In all of the simulations the entries values for the QoS targets were fixed in δ∗ = 4
dB, the adopted receiver noise power for all users is Pn = −63 dBm, and the gain matrix
G have intermediate values between those used in [Uykan and Koivo 2004] and [Elmusrati
et al. 2008].

7Corresponds to the time interval in which the channel characteristics do not suffer expressive variations.
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Finally, the PSO resource allocation performance analysis was characterized con-
sidering static channels condition. In this scenario, the channel coefficients remain con-
stant during all the convergence process (N iterations), i.e., for a time interval equal or
bigger than Tslot. However, the extension of the presented numerical results to dynamic
channels is straightforward.

4.1. Numerical Results for the Multirate SOO Throughput Maximization

A parameters analysis was done in order to determine the best combination of φ1 and φ2

parameters under multirate SOO throughput maximization problem. Simulations were
carried out using the same configuration, i.e., channel conditions, number of users in the
system, users QoS requirements and users services classes.

Table 2 and Figure 1 illustrate the different solution qualities in terms of cost
function value, when different values for φ1 and φ2 are combined in a system with K = 5
users. The average cost function values where taken as the average over 1000 trials.
Furthermore, the cost function values showed in Table 2 were obtained at the 1000th
iteration. User’s rates were assigned following just one class rate: Rmin = 1

128
Rc [bps].

Table 2. Acceleration coefficients choice for K = 5 users, single-rate problem.
(φ1, φ2) (1, 2) (2, 1) (2, 2) (4, 2) (2, 8) (8, 2)
J [N ] 4.2866 4.3131 4.2833 4.3063 4.2532 4.3091

N = 1000 Its, average value taken over 1000 trials.

From Table 2 and Figure 1 it is clear that for K = 5 users the parameters φ1 = 2 and φ2 =
1 result in an average cost function value higher than other configurations at the 1000th
iteration. Thus, the use of this parameters for a small system loading is the best in terms
of rate-power allocation optimization problem. It is worth to note that the differences
between the results shown in Table 2 are equivalent to a sum rate difference raging from
∆ΣR = 60 kbps to ∆ΣR = 670 kbps, Figure 1.
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Figure 1. Cost function evolution through 1000 iterations, averaged over 1000
realizations. K = 5 users under the same channel conditions for different φ1 and
φ2 parameters.
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Figure 2.a shows typical sum rate and sum power allocation evolution through
iterations with K = 20 users, φ1 = 2 and φ2 = 1 and population size M = K + 2.
Observe that the power allocation updates after ≈ 385th iteration are almost insignificant
in terms of sum rate values. This happens due to the small increments on each user rate,
ranging from 1 to 10 kbps, when compared to the system throughput.
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Figure 2. Typical sum rate and sum power evolution with φ1 = 1, φ2 = 2. a) K = 20
users; b) K = 100 users

The proposed algorithm has been found robust under a high number of multirate
active users in the system. Figure 2.b shows typical sum rate and sum power allocation
evolution through iterations for K = 100 users. As expected, the algorithm needs more
iterations to achieve convergence (around 500 iterations), regarding to K = 20 users
case, but the gain in terms of throughput increasing combined to power reduction after
optimization is significant.

Additionally, a small increase in the maximum power per user, i.e. from 30dBm
to 35dBm, allows the algorithm to easily find a solution to the throughput optimization
problem for a huge system loading, i.e 250 multirate users in a 25Km2 rectangular cell
geometry. Figure 3 shows a typical sum power and sum rate evolution through iterations
for K = 250 users. Observe that the algorithm achieves convergence around 750 itera-
tions, which implies that convergence speed, in terms of iterations, grows with the number
of active users in the system.

5. Conclusions
Numerical results showed that searching for the global optimum over a high dimensional
resource allocation problem is a hard task. The search universe is denoted as RK and
constrained by power, rate and SNR ranges. Since the search space is continuous we
can conclude that there is an infinite number of solutions, even if all these solutions are
constrained.

The simulations results revealed that the proposed PSO approach can be easily
applied to the throughput maximization problem under power consumption constraint in
a large multirate system loading and realistic fading channel conditions. The algorithm
has been found robust under a high number of active users in the systems, e.g. K ≥ 200,
while held the efficient searching feature and quality solutions. Those features make the
PSO resource allocation algorithm a strong candidate to be implemented in real multiple
access networks.
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Figure 3. Typical sum rate and sum power evolution with K = 250 users, Pmax =
35dBm per user.

Further work and directions include a) the discretization of the search space, in
order to reduce the problem dimension, and as a consequence. the complexity order;
b) the application of the heuristic optimization techniques to solve resource allocation
problems under the multi-objective optimization perspective; and c) the analysis of power
and rate allocation problems under dynamic channels condition.
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