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Abstract. This paper presents an evaluation of the performance impact of two 

generic group communication APIs, namely Hedera and jGCS, over two well-

known group communication systems, namely JGroups and Spread. The 

evaluation compared the performance of different configurations of the two 

group communication systems in a four-node cluster, under different message 

sizes, both in standalone mode and when used as plug-ins for the two generic 

APIs. The results show that there are significant differences in the overhead 

imposed by each generic API with respect to the performance of both JGroups 

and Spread, when used in standalone mode, and that those differences are 

strongly related to variations in message size and also to the way the generic 

APIs and their plug-in mechanisms are implemented. Based on those results, 

this paper discusses some of the circumstances upon which it would be worth 

implementing group communication using the systems and APIs investigated. 

1. Introduction 

Group communication plays an important role in the design of fault-tolerant distributed 
systems [Coulouris et al. 2005]. Classical group communication applications include 
replication; support for distributed and clustered processing; distributed transactions; 
resource allocation; load balancing; system management and monitoring; and highly 
available services [Chockler et al. 2001]. 

However, implementing a fully-fledged group communication system (GCS) from 
scratch can be a daunting (and therefore error-prone) task. To overcome this situation, 
distributed systems researchers and tool developers have created a number of reusable 
GCSs, providing a variety of group communication primitives and protocols that can be 
used as powerful building blocks for the development of reliable distributed 
applications. Some of the most popular GCSs currently in use are JGroups [Ban 1998], 
Spread [Amir et al. 2000], Appia [Miranda 2001], and NeEM [Pereira et al. 2003].  

While developers can certainly benefit from such a diversity of GCSs, for example by 
choosing a solution that best suits their application’s needs and constraints, they also 
face a new challenge: which GCS to use? Choosing an appropriate GCS for a 
distributed application is an important design decision that can be made difficult by the 
fact that those systems tend to vary widely in terms of the features they provide, 
including communication abstractions, quality-of-service guarantees and delivery 
semantics [Chockler et al. 2001]. In addition, once a developer commits to a particular 
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GCS implementation, the distributed application source code becomes tightly coupled 
to that system’s API. This level of coupling is undesirable in a distributed application 
for at least two main reasons: (i) it requires changes to the application code every time 
the chosen GCS’s API evolves; and, most importantly, (ii) it may discourage developers 
from experimenting with new GCSs in future versions of their application. 

An interesting solution to decouple a given distributed application from a specific GCS 
implementation is to rely on generic APIs, such as those offered by Hedera 
[Hedera 2008], jGCS [Carvalho et al. 2006] and Shoal [Shoal 2008]. Each of those 
systems provides a common programming interface and a plug-in mechanism that 
allows that common interface to be easily (re)implemented using the services of 
different existing GCSs. The use of a generic group communication API is also 
attractive from a performance perspective, as it frees developers to switch to the fastest 
GCS plug-in available, without the need to change their application code. 

Even though there is an extensive body of work on the performance of individual GCSs 
in the literature (e.g., [Abdellatif et al. 2004; Amir et al. 2004; Baldoni et al. 2000]), 
some fundamental questions regarding the use generic APIs are yet to be fully explored. 
For instance, how those generic APIs impact the performance of the different GCSs 
they encapsulate? How is that impact influenced by factors such as message size, group 
size, and transport protocol? Apart from the clear software engineering benefits, would 
there be any performance gain in replacing the services of a given GCS for those 
provided by a generic API? Clearly, this kind of knowledge would be of great value to 
distributed application developers, who could decide more confidently about when it is 
more appropriate (or mandatory) to use a particular GCS, and when it would be worth 
migrating to a generic API.    

In our previous work [Sales et al. 2008] we have started to shed some light on some of 
the above questions by presenting the results of an initial study where we have 
evaluated the performance impact of two generic group communication APIs, namely 
Hedera [Hedera 2008] and jGCS [Carvalho et al. 2006], over JGroups [Ban 1998]. In 
this paper, we have extended that study by (i) including a new GCS implementation in 
the evaluation, namely Spread [Amir et al. 2000]; (ii) correlating the results of the two 
GCSs evaluated in order to investigate whether it would be worth migrating to a faster 
solution using a generic API; and (iii) providing a more thorough discussion of the 
merits and limitations of our work. In essence, our new results show that there are 
significant differences in the overhead imposed by each generic API with respect to the 
performance of both JGroups and Spread, when used in standalone mode, and that those 
differences are strongly related to variations in message size and to the way the generic 
APIs and their plug-in mechanisms are implemented. We also have found that migrating 
from a moderately slow group communication solution (such as JGroups) to high-
performance one (such as Spread) using a lightweight generic API (such as jGCS) may 
be a viable alternative with clear performance and software engineering gains to the 
target distributed application.   

The rest of the paper is organized as follows. Section 2 gives a quick overview of the 
two GCSs and the two generic APIs investigated. Sections 3 and 4 describe our 
evaluation method and results, respectively. Section 5 discusses the implications and 
limitations of our study. Section 6 covers related work. Finally, section 7 concludes the 
paper and outlines our future work. 
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2. Systems and APIs Evaluated 

2.1. JGroups 

JGroups is an open source reliable group communication toolkit written entirely in Java 
[Ban 1998]. It offers a high level communication abstraction, called Channel, which 
works like a group communication socket through which applications can send and 
receive messages to/from a process group. With this abstraction, the different protocol 
implementations than can be used by JGroups become totally transparent to application 
developers, who can reuse their application code across different communication 
scenarios and network configurations, just by reconfiguring JGroups’s underlying 
protocol stack. 

One of the most powerful features of JGroups is that it allows developers to write their 
own protocol stack, by combining different protocols for message transport (for 
instance, TCP or UDP over IP Multicast), fragmentation, reliability, failure detection, 
membership control, etc. This flexibility has made JGroups particularly popular 
amongst middleware developers, with the system having been used to implement the 
clustering solution for a number of open source JEE applications servers, including 
JOnAS [JOnAS 2008] and JBoss [JBoss 2008]. 

In our study, we used JGroups version 2.6.2, released on February 26, 2008. JGroups is 
available at http://www.jgroups.org. 

2.2. Spread 

Spread is another open source group communication toolkit that provides a high 
performance messaging service that is resilient to faults across local and wide area 
networks [Amir et al. 2000]. It offers a range of reliability, ordering and stability 
guarantees for message delivery. Spread is aimed at improved scalability and 
performance, and implements a rich fault model that supports process crashes recoveries 
and network partitions and merges under the extended and standard virtual synchrony 
semantics [Amir et al. 2000]. 

Spread adopts a client-server architecture, where the server (called a Spread daemon) is 
responsible for handling all communication amongst group members. Spread can be 
configured to use a single daemon in the network or to use one daemon in every 
computer node running group communication applications. That server-centered 
communication architecture avoids having heavyweight group communication 
protocols, like membership management, message ordering and flow control, running 
on all group nodes.  

Although its server component is written in C, Spread provides native APIs for a 
number of different programming languages, including C++, C#, Java, Perl, Python and 
Ruby. It also supports cross-platform operation between Unix/Linux and Windows. 

In our study, we used Spread version 4.0, released on December 4, 2006 (the latest 
version available at the time of the study). Spread is available at http://www.spread.org. 

2.3. Hedera 

Hedera is an open-source Java framework designed to provide a uniform API to 
different group communication toolkits [Hedera 2008]. Although it can be used in 
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different application scenarios and network configurations, Hedera was originally 
targeted at reliable group communication within clustered environments. 

Hedera has been used by the Sequoia project [Sequoia 2008] as its group 
communication layer. Sequoia is a transparent middleware solution offering clustering, 
load balancing and failover services for replicated databases, originally developed as a 
continuation of C-JDBC [C-JDBC 2008]. 

In our study, we used the Hedera plug-ins for JGroups and Spread distributed with 
version 1.6.3, released on February 8, 2008. Hedera is available at 
http://hedera.continuent.org. 

2.4. jGCS 

jGCS is another generic group communication toolkit written in Java, that offers a 
common API to several existing GCSs [Carvalho et al. 2006]. jGCS can be used by 
distributed applications with different group communication needs, from simple IP 
Multicast to virtual synchrony or atomic broadcast. The architecture of jGCS relies on 
the inversion of control design pattern [Fowler 2005] to decouple service 
implementation from service use, thus allowing the same API to be used to access the 
services of different GCSs. The actual service implementation that is used by jGCS is 
defined at configuration time. 

jGCS has been originally developed within the context of the GORDA project [GORDA 
2008], which, like Sequoia, also aims at providing solutions for transparent database 
replication, but with a particular focus on large-scale systems.  

In our study, we used the jGCS plug-ins for jGroups and Spread distributed with version 
0.6.1, released on October 29, 2007. jGCS is available at http://jgcs.sourceforge.net/ 

3. Evaluation Method 

Our evaluation was carried out in a clustered environment composed of four computer 
nodes connected through a dedicated 10/100 Mbps Fast Ethernet switch. Each node had 
the following configuration: Linux Ubuntu 7.10 (2.6.22.14-generic kernel) operating 
system; Intel Pentium IV (3.00 GHz) processor; 2 GB (DDR2) RAM; and SUN’s Java 
Virtual Machine version 1.6.0_03 (executed in server-side mode).  

This environment was setup to emulate typical clustering scenarios used by JEE 
application servers, in which process groups are expected to be relatively stable and 
moderate in size [Lodi et al. 2007].  

To run our experiments, we used an extended version of the Java application developed 
by the JGroups team for their performance tests [JGroups 2007]. Our extension 
consisted of modifying the application source code so that it could also work with 
Hedera, jGCS and Spread (through its provided Java API).  

In each experiment, our test application was executed at each cluster node, with each 
node being configured to concurrently multicast 1000 messages of equal size to all 
nodes in the cluster, including its own local node, which means that a total of 4000 
messages were delivered at each node during each experiment. This particular group 
communication pattern was chosen to emulate a highly-available JEE clustered scenario 
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where each individual application server broadcasts its state changes to all the other 
servers in the cluster [Lodi et al. 2007]. 

We ran different sets of experiments for JGroups and Spread, both in standalone mode 
and when used as plug-ins for Hedera and jGCS, respectively, using messages of 1, 10, 
100, 1000 and 10000 bytes in size. These numbers were selected so that we could 
observe the behavior of the two systems under a broad range of message sizes. A similar 
range of message sizes was also used in a previous evaluation of JGroups in the context 
of clustered J2EE application servers [Abdellatif et al. 2004]. 

We evaluated two JGroups configurations: one with the transport protocol setup to UDP 
over IP Multicast, and the other with the transport protocol setup to TCP. In both 
configurations we used SEQUENCER as the total order protocol, with message 
fragmentation and bundle disabled. The other configuration parameters were defined 
according to JGroups’ test configuration parameters [JGroups 2007]. 

In the case of Spread, we evaluated a single configuration since it implements a fixed 
protocol stack. The configuration used Spread’s own total order protocol and had a fully 
decentralized architecture, with one Spread daemon running in each cluster node.  

Finally, we used message delivery rate as our performance metric [Jain 1991]. In our 
study, this metric was computed by calculating the average number of messages 
delivered per second at each node, at each experiment. To achieve a confidence level of 
95% in our results, each experiment was repeated at least 30 times, with extreme 
outliers being removed using the boxplots method [Triola 1997]. 

4. Results 

We first show the impact observed for the two generic APIs over the performance of 
each one of the two selected GCSs. We then correlate those results with the way 
messages are transmitted at the transport layer using each generic API, as a way to 
explain their performance differences. 

Because Spread is known to outperforms JGroups by a significant margin [Baldoni 
2002], we also compared the performance of the two JGroups configurations, in 
standalone mode, against the performance of Spread when used as a plug-in for the best 
performing generic API. This analysis was meant to evaluate whether migrating from a 
JGroups-based solution to a generic API implemented on top of Spread would bring any 
notable performance again (i.e., whether Spread’s improved performance would 
compensate for any potential overhead imposed by the generic API). 

4.1. API Impact over JGroups 

Figures 1 and 2 show the average message delivery rates observed for the two JGroups 
configurations, respectively, both in standalone mode and as Hedera and jGCS plug-ins, 
across all five message sizes. In each figure confidence intervals for each mean value 
are shown as upper and lower limits drawn around the top of their respective bar.  
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As we can see from Figures 1 and 2, for messages up to 100 bytes in size the impact of 
jGCS over JGroups, in either configuration, is relatively small, with jGCS delivering 
about 10-20% less messages on average than JGroups in standalone mode. One notable 
exception was observed for the UDP configuration with 100 byte messages, where 
jGCS’ delivery rate is about 40% lower than that of JGroups in standalone mode. 

Hedera, on the other hand, imposes a huge impact over the performance of the two 
JGroups configurations for the same range of message sizes, with that generic API 
delivering about 60-70% less messages than JGroups in standalone mode. Figures 1 
and 2 also show that the two generic APIs appear to be generating a constant overhead 
per message, independently of message size. 

For greater messages (in the order of thousands bytes) we observe a steep performance 
drop for the three systems, with their delivery rate differences falling to less than 30%. 
Note that the drop is even steeper for the UDP configuration, with the delivery rates of 
the three systems rapidly falling below the 2000 messages per second mark. We 
attribute these results to the fact that, for larger messages, the increasing traffic 
overhead generated by JGroups (due to the increasing message fragmentation happening 

 

Figure 1. Message delivery rates for JGroups (UDP configuration). 

 

 

Figure 2. Message delivery rates for JGroups (TCP configuration). 
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at the transport and network layers) starts to dominate the processing overhead imposed 
by the two generic APIs at the application layer. 

Note from Figures 1 and 2 that JGroups performs better using TCP than using UDP. 
This finding has also been observed in previous performance studies of JGroups (see 
[Abdellatif et al. 2004; JGroups 2007]). The explanation for that slight performance 
gain offered by TCP over UDP lies in the way JGroups implements flow control. With 
UDP, JGroups implements flow control at the middleware (i.e. application) layer, while 
with TCP it takes advantage of TCP's native (i.e., faster) flow control implementation at 
the transport layer. 

4.2. API Impact over Spread 

Figure 3 shows the average message delivery rates observed for Spread, in standalone 
mode, and its Hedera and jGCS plug-ins, across the five message sizes. Confidence 
intervals are shown in the same way as in the previous figures. 

As with the two JGroups configurations, we can observe that jGCS’s impact over 
Spread is non substantial for messages up to 100 bytes in size, although this time the 
performance differences between that generic API and its underlying GCS 
implementation are even smaller, with the jGCS Spread plug-in delivering about 5-10% 
less messages than Spread in standalone mode. As before, Hedera offered the worst 
results by a large margin, with its Spread plug-in delivering about 80-85% less 
messages than Spread in standalone mode for 1-10 byte messages. On the other hand, 
Spread was found to be less scalable than JGroups for larger messages, with its 
performance dropping rapidly (either in standalone mode or as a Hedera or jGCS plug-
in) as message sizes reach 1000 bytes. For 10000 byte messages, the performance of 
Spread drops even further in all three modes, with the impact caused by the two generic 
APIs being completely dominated by the network overhead. These results corroborate 
the finding observed with JGroups that the two generic APIs are generating a constant 
overhead per message. This also means that the impact imposed by the generic APIs 
may not be dependent on a particular plug-in implementation, and so is likely to apply 
to other GCSs. 

 
Figure 3. Message delivery rates for Spread. 
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4.3. Transport Layer Overhead 

To investigate the possible cause for Hedera’s substantial overhead compared to that of 
jGCS, as described in the previous subsections, we formulated the following hypothesis: 
For some reason, Hedera could be generating a considerably higher network overhead 
than jGCS, even for smaller messages, independently of the specific GCS being used as 
its underlying plug-in. To investigate this hypothesis, we compared the size of every 
message sent at the application layer with the size of the message that was actually 
being sent to the other nodes using the Hedera and jGCS plug-ins at the transport layer. 
The results are shown in Table 1.   

By analyzing the numbers in Table 1, it is clear that the two Hedera plug-ins always 
send messages much larger in size than those sent at the application layer, while no 
significant transport layer overhead was observed for jGCS with either JGroups or 
Spread.  In fact, Hedera always sends messages with least 878 bytes, independently of 
the message size at the application layer. 

A Further inspection of the Hedera source code revealed that its extra bytes are used as 
control data, and include, amongst other information, the IDs of all group members to 
which the message is being transmitted. Given that jGCS also implements a similar set 
of generic group communication primitives without incurring in any message size 
overhead, we believe that an important first step towards improving Hedera’s 
performance would be to drastically reduce its communication overhead at the transport 
layer. In the particular case of Hedera’s JGroups plug-in, adding the group members IDs 
to every message is completely unnecessary, since membership information is already 
maintained by JGroups as part of the attributes of its Channel abstraction [Ban 1998]. 

4.4. JGroups vs. jGCS/Spread 

Figure 4 plots the average message delivery rates observed for the two JGroups 
configurations, in standalone mode, versus the average message delivery rates observed 
for the jGCS Spread plug-in, across the five message sizes investigated. From that 
figure, we can see that the Spread plug-in implemented by jGCS can deliver from 3 to 4 
times more messages than the two JGroups configurations in standalone mode, for 
messages up to 100 bytes in size, and up to 1.7 more messages than the UDP 

Table 1. Comparison between message sizes for the Generic APIs’ plug-ins at the 
application and transport layers (in bytes). 

Application 
layer 

Transport layer 

Hedera jGCS 

JGroups 
plug-in 

Spread 
plug-in 

JGroups 
plug-in 

Spread 
plug-in 

1 878 1147 1 1 
10 887 1156 10 10 

100 977 1246 100 100 
1000 1877 2146 1000 1000 

10000 10877 11146 10000 10000 
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configuration of JGroups for messages of 1000 bytes in size. Note from Figures 1-3 that 
the same cannot be said about the Spread plug-in implemented by Hedera, whose 
delivery rates are lower than those observed for both JGroups configurations in either 
mode. As the message size approaches 10000 bytes, the two systems suffer from severe 
performance losses, as their implementation differences start to be dominated by the 
increasing network overhead. 

These results show that migrating from a standalone group communication solution to a 
generic API can be an attractive alternative to improve application performance, as long 
as: (i) messages are small (in the order of tens of bytes); (ii) the target generic API 
imposes a low performance overhead (as it is the case with jGCS); and (ii) that API 
offers another GCS plug-in that is significant faster than the original GCS used by the 
application (enough to compensate for the performance overhead of the generic API, as 
it is the case of the jGCS Spread plug-in when compared with the performance of 
JGroups in standalone mode). 

5. Discussion 

There are number of factors that should be considered by a distributed application 
developer when contemplating the possibility of using a generic group communication 
API. Perhaps the most important one is to consider whether having a loosely coupled 
communication architecture is a major design concern (for example, if the developer 
foresees the possibility of switching to or experimenting with new GCSs in the future). 
This decision is important because generic APIs, such as Hedera or jGCS, as we have 
shown along the paper, always impose extra levels of indirection between the 
application and the underlying GCS implementation, thus inevitably resulting in some 
performance loss. 

Another factor that the developer must take into account is message size. In particular, 
based on the results reported in the previous section, and assuming similar execution 
and network environments, for messages up to 100 bytes, we can argue that it would be 
worth replacing an existing GCS (e.g., JGroups) by a lightweight generic API (such as 
jGCS), from a straight performance perspective, as this would make it easier for the 
developer to improve the application’s performance by switching to a faster GCS 
implementation (such as Spread). However, for message sizes in the order of thousands 

 
Figure 4. Message delivery rates for JGroups and the jGCS Spread plug-in. 
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of bytes, the choice between using a particular GCS (such as JGroups or Spread) 
directly, in stand-alone mode, or indirectly, encapsulated behind a generic API (such as 
Hedera or jGCS), should be made based entirely on the software needs and constraints 
of the application at hand. The reason is that, within that message size range, network 
transmission costs tend to predominate over the performance overhead imposed by the 
generic API over their underlying GCS implementation, thus reducing the possibility of 
improving application performance by simply switching to a different GCS plug-in. 

Despites the merits of our results, we are aware that our study is still limited in a 
number of ways. Above all, we have only investigated the behavior of four group 
communication solutions under a single cluster environment. In this regard, we have 
deliberately selected two of the most well-known GCSs available, namely JGroups and 
Spread, and two existing generic APIs which provide plug-ins for those two systems, 
namely Hedera and jGCS. In addition, we have setup an experimental environment 
which emulates typical clustered JEE application servers, with similar characteristics to 
those of earlier studies reported in the literature. All these decisions increase our 
confidence that our experimental test bed is likely to be representative of the state-of-
the-practice in many real-world group communication applications.  

Another important limitation of our work is that we have only compared the existing 
GCS implementations from a performance standpoint. In practice, replacing one GCS 
for another requires a careful analysis of many other factors, such as fault-tolerance, 
memory footprint, and the syntactic and semantic differences between their respective 
APIs. We plan to address those limitations in our future work. 

6. Related Work 

Being two of the most popular GCSs currently available, JGroups and Spread have 
already been used as targets for a number of performance evaluation studies (e.g., 
[Abdellatif et al. 2004; Amir et al. 2004; Baldoni et al. 2000; JGroups 2007]). In 
[Abdellatif et al. 2004] and [JGroups 2007], the authors compare the performance of 
different JGroups configurations, under a variety of network conditions. A similar study 
has been described for Spread by Amir et al. [2004]. In contrast to those works, the 
primary aim of our study is not to analyze the performance of different GCSs 
configurations, in standalone mode, but rather to evaluate the impact that different 
generic APIs would impose on existing GCSs. In this way, we aim at providing relevant 
experimental information to help distributed application developers decide on when to 
use a concrete GCS implementation, such as JGroups or Spread, and when to hide such 
a system from the application code under a generic API, such as Hedera or jGCS. 

Another work comparing the performance of several GCSs written in Java (including an 
earlier version of JGroups, called JavaGroups), under different usage scenarios and 
different network conditions, is described by Baldoni et al. [2000]. However, that work 
is not concerned with evaluating the impact of any generic API on any particular GCS. 

7. Conclusions and Future Work 

This paper presented an evaluation of the performance impact of two generic APIs, 
namely Hedera and jGCS over two well-known GCSs, namely JGroups and Spread. In 
essence, our results show that there are significant differences in the overhead imposed 
by each generic API over the performance of both JGroups and Spread, when used in 
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standalone mode, with Hedera offering by far the worst results. The study also shows 
that the performance differences observed across all systems are strongly related to 
variations in message sizes (for messages sizes in the order of a few thousands of bytes 
those differences tend to be completely dominated by the systems’ increasing network 
overhead) and also to their implementation characteristics (Hedera’s dismal 
performance is largely due to its significant message size overhead imposed at the 
transport layer).      

We are currently pursuing two main research lines. The first one consists of replicating 
the same set experiments described here for other GCS implementations (e.g., Appia 
[Miranda et al. 2001] and NeEM [Pereira et al. 2003]) and generic APIs (e.g., Shoal 
[Shoal 2008]), under a wider variety of cluster scenarios. The idea is to investigate 
whether the results described in this paper can be generalized to those other systems and 
scenarios. The second research line aims at conducting similar experiments, but within 
the context of the clustered architecture of an existing JEE applications server, such as 
JBoss [JBoss 2008] or JOnAS [JOnAS 2008]. The idea, in this case, is to evaluate 
whether the same performance differences observed in our current test environment will 
also occur in this new context, where the size of the messages exchanged between group 
members will vary according to the size of the session states maintained by each 
replicated JEE server.  
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