

An Evaluation of the Performance Impact of Generic APIs
on Two Group Communication Systems

Leandro Sales, Henrique Teófilo, Jonathan D’Orleans,
Nabor C. Mendonça, Rafael Barbosa, Fernando Trinta

Mestrado em Informática Aplicada, Universidade de Fortaleza
Av. Washington Soares, 1321, CEP 60811-905 Fortaleza – CE

leandro@enovar.com.br, henriquetft@gmail.com,

jonathan.dorleans@gmail.com, nabor@unifor.br,

trinta@unifor.br, bgrafael@gmail.com

Abstract. This paper presents an evaluation of the performance impact of two

generic group communication APIs, namely Hedera and jGCS, over two well-

known group communication systems, namely JGroups and Spread. The

evaluation compared the performance of different configurations of the two

group communication systems in a four-node cluster, under different message

sizes, both in standalone mode and when used as plug-ins for the two generic

APIs. The results show that there are significant differences in the overhead

imposed by each generic API with respect to the performance of both JGroups

and Spread, when used in standalone mode, and that those differences are

strongly related to variations in message size and also to the way the generic

APIs and their plug-in mechanisms are implemented. Based on those results,

this paper discusses some of the circumstances upon which it would be worth

implementing group communication using the systems and APIs investigated.

1. Introduction

Group communication plays an important role in the design of fault-tolerant distributed
systems [Coulouris et al. 2005]. Classical group communication applications include
replication; support for distributed and clustered processing; distributed transactions;
resource allocation; load balancing; system management and monitoring; and highly
available services [Chockler et al. 2001].

However, implementing a fully-fledged group communication system (GCS) from
scratch can be a daunting (and therefore error-prone) task. To overcome this situation,
distributed systems researchers and tool developers have created a number of reusable
GCSs, providing a variety of group communication primitives and protocols that can be
used as powerful building blocks for the development of reliable distributed
applications. Some of the most popular GCSs currently in use are JGroups [Ban 1998],
Spread [Amir et al. 2000], Appia [Miranda 2001], and NeEM [Pereira et al. 2003].

While developers can certainly benefit from such a diversity of GCSs, for example by
choosing a solution that best suits their application’s needs and constraints, they also
face a new challenge: which GCS to use? Choosing an appropriate GCS for a
distributed application is an important design decision that can be made difficult by the
fact that those systems tend to vary widely in terms of the features they provide,
including communication abstractions, quality-of-service guarantees and delivery
semantics [Chockler et al. 2001]. In addition, once a developer commits to a particular

27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 801

GCS implementation, the distributed application source code becomes tightly coupled
to that system’s API. This level of coupling is undesirable in a distributed application
for at least two main reasons: (i) it requires changes to the application code every time
the chosen GCS’s API evolves; and, most importantly, (ii) it may discourage developers
from experimenting with new GCSs in future versions of their application.

An interesting solution to decouple a given distributed application from a specific GCS
implementation is to rely on generic APIs, such as those offered by Hedera
[Hedera 2008], jGCS [Carvalho et al. 2006] and Shoal [Shoal 2008]. Each of those
systems provides a common programming interface and a plug-in mechanism that
allows that common interface to be easily (re)implemented using the services of
different existing GCSs. The use of a generic group communication API is also
attractive from a performance perspective, as it frees developers to switch to the fastest
GCS plug-in available, without the need to change their application code.

Even though there is an extensive body of work on the performance of individual GCSs
in the literature (e.g., [Abdellatif et al. 2004; Amir et al. 2004; Baldoni et al. 2000]),
some fundamental questions regarding the use generic APIs are yet to be fully explored.
For instance, how those generic APIs impact the performance of the different GCSs
they encapsulate? How is that impact influenced by factors such as message size, group
size, and transport protocol? Apart from the clear software engineering benefits, would
there be any performance gain in replacing the services of a given GCS for those
provided by a generic API? Clearly, this kind of knowledge would be of great value to
distributed application developers, who could decide more confidently about when it is
more appropriate (or mandatory) to use a particular GCS, and when it would be worth
migrating to a generic API.

In our previous work [Sales et al. 2008] we have started to shed some light on some of
the above questions by presenting the results of an initial study where we have
evaluated the performance impact of two generic group communication APIs, namely
Hedera [Hedera 2008] and jGCS [Carvalho et al. 2006], over JGroups [Ban 1998]. In
this paper, we have extended that study by (i) including a new GCS implementation in
the evaluation, namely Spread [Amir et al. 2000]; (ii) correlating the results of the two
GCSs evaluated in order to investigate whether it would be worth migrating to a faster
solution using a generic API; and (iii) providing a more thorough discussion of the
merits and limitations of our work. In essence, our new results show that there are
significant differences in the overhead imposed by each generic API with respect to the
performance of both JGroups and Spread, when used in standalone mode, and that those
differences are strongly related to variations in message size and to the way the generic
APIs and their plug-in mechanisms are implemented. We also have found that migrating
from a moderately slow group communication solution (such as JGroups) to high-
performance one (such as Spread) using a lightweight generic API (such as jGCS) may
be a viable alternative with clear performance and software engineering gains to the
target distributed application.

The rest of the paper is organized as follows. Section 2 gives a quick overview of the
two GCSs and the two generic APIs investigated. Sections 3 and 4 describe our
evaluation method and results, respectively. Section 5 discusses the implications and
limitations of our study. Section 6 covers related work. Finally, section 7 concludes the
paper and outlines our future work.

802 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

2. Systems and APIs Evaluated

2.1. JGroups

JGroups is an open source reliable group communication toolkit written entirely in Java
[Ban 1998]. It offers a high level communication abstraction, called Channel, which
works like a group communication socket through which applications can send and
receive messages to/from a process group. With this abstraction, the different protocol
implementations than can be used by JGroups become totally transparent to application
developers, who can reuse their application code across different communication
scenarios and network configurations, just by reconfiguring JGroups’s underlying
protocol stack.

One of the most powerful features of JGroups is that it allows developers to write their
own protocol stack, by combining different protocols for message transport (for
instance, TCP or UDP over IP Multicast), fragmentation, reliability, failure detection,
membership control, etc. This flexibility has made JGroups particularly popular
amongst middleware developers, with the system having been used to implement the
clustering solution for a number of open source JEE applications servers, including
JOnAS [JOnAS 2008] and JBoss [JBoss 2008].

In our study, we used JGroups version 2.6.2, released on February 26, 2008. JGroups is
available at http://www.jgroups.org.

2.2. Spread

Spread is another open source group communication toolkit that provides a high
performance messaging service that is resilient to faults across local and wide area
networks [Amir et al. 2000]. It offers a range of reliability, ordering and stability
guarantees for message delivery. Spread is aimed at improved scalability and
performance, and implements a rich fault model that supports process crashes recoveries
and network partitions and merges under the extended and standard virtual synchrony
semantics [Amir et al. 2000].

Spread adopts a client-server architecture, where the server (called a Spread daemon) is
responsible for handling all communication amongst group members. Spread can be
configured to use a single daemon in the network or to use one daemon in every
computer node running group communication applications. That server-centered
communication architecture avoids having heavyweight group communication
protocols, like membership management, message ordering and flow control, running
on all group nodes.

Although its server component is written in C, Spread provides native APIs for a
number of different programming languages, including C++, C#, Java, Perl, Python and
Ruby. It also supports cross-platform operation between Unix/Linux and Windows.

In our study, we used Spread version 4.0, released on December 4, 2006 (the latest
version available at the time of the study). Spread is available at http://www.spread.org.

2.3. Hedera

Hedera is an open-source Java framework designed to provide a uniform API to
different group communication toolkits [Hedera 2008]. Although it can be used in

27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 803

different application scenarios and network configurations, Hedera was originally
targeted at reliable group communication within clustered environments.

Hedera has been used by the Sequoia project [Sequoia 2008] as its group
communication layer. Sequoia is a transparent middleware solution offering clustering,
load balancing and failover services for replicated databases, originally developed as a
continuation of C-JDBC [C-JDBC 2008].

In our study, we used the Hedera plug-ins for JGroups and Spread distributed with
version 1.6.3, released on February 8, 2008. Hedera is available at
http://hedera.continuent.org.

2.4. jGCS

jGCS is another generic group communication toolkit written in Java, that offers a
common API to several existing GCSs [Carvalho et al. 2006]. jGCS can be used by
distributed applications with different group communication needs, from simple IP
Multicast to virtual synchrony or atomic broadcast. The architecture of jGCS relies on
the inversion of control design pattern [Fowler 2005] to decouple service
implementation from service use, thus allowing the same API to be used to access the
services of different GCSs. The actual service implementation that is used by jGCS is
defined at configuration time.

jGCS has been originally developed within the context of the GORDA project [GORDA
2008], which, like Sequoia, also aims at providing solutions for transparent database
replication, but with a particular focus on large-scale systems.

In our study, we used the jGCS plug-ins for jGroups and Spread distributed with version
0.6.1, released on October 29, 2007. jGCS is available at http://jgcs.sourceforge.net/

3. Evaluation Method

Our evaluation was carried out in a clustered environment composed of four computer
nodes connected through a dedicated 10/100 Mbps Fast Ethernet switch. Each node had
the following configuration: Linux Ubuntu 7.10 (2.6.22.14-generic kernel) operating
system; Intel Pentium IV (3.00 GHz) processor; 2 GB (DDR2) RAM; and SUN’s Java
Virtual Machine version 1.6.0_03 (executed in server-side mode).

This environment was setup to emulate typical clustering scenarios used by JEE
application servers, in which process groups are expected to be relatively stable and
moderate in size [Lodi et al. 2007].

To run our experiments, we used an extended version of the Java application developed
by the JGroups team for their performance tests [JGroups 2007]. Our extension
consisted of modifying the application source code so that it could also work with
Hedera, jGCS and Spread (through its provided Java API).

In each experiment, our test application was executed at each cluster node, with each
node being configured to concurrently multicast 1000 messages of equal size to all
nodes in the cluster, including its own local node, which means that a total of 4000
messages were delivered at each node during each experiment. This particular group
communication pattern was chosen to emulate a highly-available JEE clustered scenario

804 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

where each individual application server broadcasts its state changes to all the other
servers in the cluster [Lodi et al. 2007].

We ran different sets of experiments for JGroups and Spread, both in standalone mode
and when used as plug-ins for Hedera and jGCS, respectively, using messages of 1, 10,
100, 1000 and 10000 bytes in size. These numbers were selected so that we could
observe the behavior of the two systems under a broad range of message sizes. A similar
range of message sizes was also used in a previous evaluation of JGroups in the context
of clustered J2EE application servers [Abdellatif et al. 2004].

We evaluated two JGroups configurations: one with the transport protocol setup to UDP
over IP Multicast, and the other with the transport protocol setup to TCP. In both
configurations we used SEQUENCER as the total order protocol, with message
fragmentation and bundle disabled. The other configuration parameters were defined
according to JGroups’ test configuration parameters [JGroups 2007].

In the case of Spread, we evaluated a single configuration since it implements a fixed
protocol stack. The configuration used Spread’s own total order protocol and had a fully
decentralized architecture, with one Spread daemon running in each cluster node.

Finally, we used message delivery rate as our performance metric [Jain 1991]. In our
study, this metric was computed by calculating the average number of messages
delivered per second at each node, at each experiment. To achieve a confidence level of
95% in our results, each experiment was repeated at least 30 times, with extreme
outliers being removed using the boxplots method [Triola 1997].

4. Results

We first show the impact observed for the two generic APIs over the performance of
each one of the two selected GCSs. We then correlate those results with the way
messages are transmitted at the transport layer using each generic API, as a way to
explain their performance differences.

Because Spread is known to outperforms JGroups by a significant margin [Baldoni
2002], we also compared the performance of the two JGroups configurations, in
standalone mode, against the performance of Spread when used as a plug-in for the best
performing generic API. This analysis was meant to evaluate whether migrating from a
JGroups-based solution to a generic API implemented on top of Spread would bring any
notable performance again (i.e., whether Spread’s improved performance would
compensate for any potential overhead imposed by the generic API).

4.1. API Impact over JGroups

Figures 1 and 2 show the average message delivery rates observed for the two JGroups
configurations, respectively, both in standalone mode and as Hedera and jGCS plug-ins,
across all five message sizes. In each figure confidence intervals for each mean value
are shown as upper and lower limits drawn around the top of their respective bar.

27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 805

As we can see from Figures 1 and 2, for messages up to 100 bytes in size the impact of
jGCS over JGroups, in either configuration, is relatively small, with jGCS delivering
about 10-20% less messages on average than JGroups in standalone mode. One notable
exception was observed for the UDP configuration with 100 byte messages, where
jGCS’ delivery rate is about 40% lower than that of JGroups in standalone mode.

Hedera, on the other hand, imposes a huge impact over the performance of the two
JGroups configurations for the same range of message sizes, with that generic API
delivering about 60-70% less messages than JGroups in standalone mode. Figures 1
and 2 also show that the two generic APIs appear to be generating a constant overhead
per message, independently of message size.

For greater messages (in the order of thousands bytes) we observe a steep performance
drop for the three systems, with their delivery rate differences falling to less than 30%.
Note that the drop is even steeper for the UDP configuration, with the delivery rates of
the three systems rapidly falling below the 2000 messages per second mark. We
attribute these results to the fact that, for larger messages, the increasing traffic
overhead generated by JGroups (due to the increasing message fragmentation happening

Figure 1. Message delivery rates for JGroups (UDP configuration).

Figure 2. Message delivery rates for JGroups (TCP configuration).

806 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

at the transport and network layers) starts to dominate the processing overhead imposed
by the two generic APIs at the application layer.

Note from Figures 1 and 2 that JGroups performs better using TCP than using UDP.
This finding has also been observed in previous performance studies of JGroups (see
[Abdellatif et al. 2004; JGroups 2007]). The explanation for that slight performance
gain offered by TCP over UDP lies in the way JGroups implements flow control. With
UDP, JGroups implements flow control at the middleware (i.e. application) layer, while
with TCP it takes advantage of TCP's native (i.e., faster) flow control implementation at
the transport layer.

4.2. API Impact over Spread

Figure 3 shows the average message delivery rates observed for Spread, in standalone
mode, and its Hedera and jGCS plug-ins, across the five message sizes. Confidence
intervals are shown in the same way as in the previous figures.

As with the two JGroups configurations, we can observe that jGCS’s impact over
Spread is non substantial for messages up to 100 bytes in size, although this time the
performance differences between that generic API and its underlying GCS
implementation are even smaller, with the jGCS Spread plug-in delivering about 5-10%
less messages than Spread in standalone mode. As before, Hedera offered the worst
results by a large margin, with its Spread plug-in delivering about 80-85% less
messages than Spread in standalone mode for 1-10 byte messages. On the other hand,
Spread was found to be less scalable than JGroups for larger messages, with its
performance dropping rapidly (either in standalone mode or as a Hedera or jGCS plug-
in) as message sizes reach 1000 bytes. For 10000 byte messages, the performance of
Spread drops even further in all three modes, with the impact caused by the two generic
APIs being completely dominated by the network overhead. These results corroborate
the finding observed with JGroups that the two generic APIs are generating a constant
overhead per message. This also means that the impact imposed by the generic APIs
may not be dependent on a particular plug-in implementation, and so is likely to apply
to other GCSs.

Figure 3. Message delivery rates for Spread.

27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 807

4.3. Transport Layer Overhead

To investigate the possible cause for Hedera’s substantial overhead compared to that of
jGCS, as described in the previous subsections, we formulated the following hypothesis:
For some reason, Hedera could be generating a considerably higher network overhead
than jGCS, even for smaller messages, independently of the specific GCS being used as
its underlying plug-in. To investigate this hypothesis, we compared the size of every
message sent at the application layer with the size of the message that was actually
being sent to the other nodes using the Hedera and jGCS plug-ins at the transport layer.
The results are shown in Table 1.

By analyzing the numbers in Table 1, it is clear that the two Hedera plug-ins always
send messages much larger in size than those sent at the application layer, while no
significant transport layer overhead was observed for jGCS with either JGroups or
Spread. In fact, Hedera always sends messages with least 878 bytes, independently of
the message size at the application layer.

A Further inspection of the Hedera source code revealed that its extra bytes are used as
control data, and include, amongst other information, the IDs of all group members to
which the message is being transmitted. Given that jGCS also implements a similar set
of generic group communication primitives without incurring in any message size
overhead, we believe that an important first step towards improving Hedera’s
performance would be to drastically reduce its communication overhead at the transport
layer. In the particular case of Hedera’s JGroups plug-in, adding the group members IDs
to every message is completely unnecessary, since membership information is already
maintained by JGroups as part of the attributes of its Channel abstraction [Ban 1998].

4.4. JGroups vs. jGCS/Spread

Figure 4 plots the average message delivery rates observed for the two JGroups
configurations, in standalone mode, versus the average message delivery rates observed
for the jGCS Spread plug-in, across the five message sizes investigated. From that
figure, we can see that the Spread plug-in implemented by jGCS can deliver from 3 to 4
times more messages than the two JGroups configurations in standalone mode, for
messages up to 100 bytes in size, and up to 1.7 more messages than the UDP

Table 1. Comparison between message sizes for the Generic APIs’ plug-ins at the
application and transport layers (in bytes).

Application
layer

Transport layer

Hedera jGCS

JGroups
plug-in

Spread
plug-in

JGroups
plug-in

Spread
plug-in

1 878 1147 1 1
10 887 1156 10 10

100 977 1246 100 100
1000 1877 2146 1000 1000

10000 10877 11146 10000 10000

808 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

configuration of JGroups for messages of 1000 bytes in size. Note from Figures 1-3 that
the same cannot be said about the Spread plug-in implemented by Hedera, whose
delivery rates are lower than those observed for both JGroups configurations in either
mode. As the message size approaches 10000 bytes, the two systems suffer from severe
performance losses, as their implementation differences start to be dominated by the
increasing network overhead.

These results show that migrating from a standalone group communication solution to a
generic API can be an attractive alternative to improve application performance, as long
as: (i) messages are small (in the order of tens of bytes); (ii) the target generic API
imposes a low performance overhead (as it is the case with jGCS); and (ii) that API
offers another GCS plug-in that is significant faster than the original GCS used by the
application (enough to compensate for the performance overhead of the generic API, as
it is the case of the jGCS Spread plug-in when compared with the performance of
JGroups in standalone mode).

5. Discussion

There are number of factors that should be considered by a distributed application
developer when contemplating the possibility of using a generic group communication
API. Perhaps the most important one is to consider whether having a loosely coupled
communication architecture is a major design concern (for example, if the developer
foresees the possibility of switching to or experimenting with new GCSs in the future).
This decision is important because generic APIs, such as Hedera or jGCS, as we have
shown along the paper, always impose extra levels of indirection between the
application and the underlying GCS implementation, thus inevitably resulting in some
performance loss.

Another factor that the developer must take into account is message size. In particular,
based on the results reported in the previous section, and assuming similar execution
and network environments, for messages up to 100 bytes, we can argue that it would be
worth replacing an existing GCS (e.g., JGroups) by a lightweight generic API (such as
jGCS), from a straight performance perspective, as this would make it easier for the
developer to improve the application’s performance by switching to a faster GCS
implementation (such as Spread). However, for message sizes in the order of thousands

Figure 4. Message delivery rates for JGroups and the jGCS Spread plug-in.

27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 809

of bytes, the choice between using a particular GCS (such as JGroups or Spread)
directly, in stand-alone mode, or indirectly, encapsulated behind a generic API (such as
Hedera or jGCS), should be made based entirely on the software needs and constraints
of the application at hand. The reason is that, within that message size range, network
transmission costs tend to predominate over the performance overhead imposed by the
generic API over their underlying GCS implementation, thus reducing the possibility of
improving application performance by simply switching to a different GCS plug-in.

Despites the merits of our results, we are aware that our study is still limited in a
number of ways. Above all, we have only investigated the behavior of four group
communication solutions under a single cluster environment. In this regard, we have
deliberately selected two of the most well-known GCSs available, namely JGroups and
Spread, and two existing generic APIs which provide plug-ins for those two systems,
namely Hedera and jGCS. In addition, we have setup an experimental environment
which emulates typical clustered JEE application servers, with similar characteristics to
those of earlier studies reported in the literature. All these decisions increase our
confidence that our experimental test bed is likely to be representative of the state-of-
the-practice in many real-world group communication applications.

Another important limitation of our work is that we have only compared the existing
GCS implementations from a performance standpoint. In practice, replacing one GCS
for another requires a careful analysis of many other factors, such as fault-tolerance,
memory footprint, and the syntactic and semantic differences between their respective
APIs. We plan to address those limitations in our future work.

6. Related Work

Being two of the most popular GCSs currently available, JGroups and Spread have
already been used as targets for a number of performance evaluation studies (e.g.,
[Abdellatif et al. 2004; Amir et al. 2004; Baldoni et al. 2000; JGroups 2007]). In
[Abdellatif et al. 2004] and [JGroups 2007], the authors compare the performance of
different JGroups configurations, under a variety of network conditions. A similar study
has been described for Spread by Amir et al. [2004]. In contrast to those works, the
primary aim of our study is not to analyze the performance of different GCSs
configurations, in standalone mode, but rather to evaluate the impact that different
generic APIs would impose on existing GCSs. In this way, we aim at providing relevant
experimental information to help distributed application developers decide on when to
use a concrete GCS implementation, such as JGroups or Spread, and when to hide such
a system from the application code under a generic API, such as Hedera or jGCS.

Another work comparing the performance of several GCSs written in Java (including an
earlier version of JGroups, called JavaGroups), under different usage scenarios and
different network conditions, is described by Baldoni et al. [2000]. However, that work
is not concerned with evaluating the impact of any generic API on any particular GCS.

7. Conclusions and Future Work

This paper presented an evaluation of the performance impact of two generic APIs,
namely Hedera and jGCS over two well-known GCSs, namely JGroups and Spread. In
essence, our results show that there are significant differences in the overhead imposed
by each generic API over the performance of both JGroups and Spread, when used in

810 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

standalone mode, with Hedera offering by far the worst results. The study also shows
that the performance differences observed across all systems are strongly related to
variations in message sizes (for messages sizes in the order of a few thousands of bytes
those differences tend to be completely dominated by the systems’ increasing network
overhead) and also to their implementation characteristics (Hedera’s dismal
performance is largely due to its significant message size overhead imposed at the
transport layer).

We are currently pursuing two main research lines. The first one consists of replicating
the same set experiments described here for other GCS implementations (e.g., Appia
[Miranda et al. 2001] and NeEM [Pereira et al. 2003]) and generic APIs (e.g., Shoal
[Shoal 2008]), under a wider variety of cluster scenarios. The idea is to investigate
whether the results described in this paper can be generalized to those other systems and
scenarios. The second research line aims at conducting similar experiments, but within
the context of the clustered architecture of an existing JEE applications server, such as
JBoss [JBoss 2008] or JOnAS [JOnAS 2008]. The idea, in this case, is to evaluate
whether the same performance differences observed in our current test environment will
also occur in this new context, where the size of the messages exchanged between group
members will vary according to the size of the session states maintained by each
replicated JEE server.

8. References

Abdellatif, T., Cecchet, E. and Lachaize, R. (2004), “Evaluation of a Group
Communication Middleware for Clustered J2EE Application Servers”, In Proc. of
the 6th International Symposium on Distributed Objects and Applications (DOA’04),
Lecture Notes in Computer Science Vol. 3291, Springer.

Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J. and Stanton, J. (2004), “The Spread
Toolkit: Architecture and Performance”, Tech. Rep. CNDS-2004-1, Johns Hopkins
University.

Amir, Y., Danilov, C. and Stanton, J. (2000), “A Low Latency, Loss Tolerant
Architecture and Protocol for Wide Area Group Communication”, In Proc. of the
IEEE International Conference on Dependable Systems and Networks (ICDSN’00),
IEEE CS Press.

Baldoni, R., Cimmino, S., Marchetti, C. and Termini, A. (2002), “Performance Analysis
of Java Group Toolkits: a Case Study”, In Proc. of the International Workshop on
Scientific Engineering for Distributed Java Applications (FIDJI’02), Lecture Notes
in Computer Science Vol. 2604, Springer, pp. 81-90.

Ban, B. (1998), “Design and Implementation of a Reliable Ggroup Communication
Toolkit for Java”, Cornell University. Available at
http://www.jgroups.org/javagroupsnew/docs/ papers/Coots.ps.gz.

Carvalho, N., Pereira, J. and Rodrigues, L. (2006), “Towards a Generic Group
Communication Service”, In Proc. of the 8th International Symposium on Distributed
Objects and Applications (DOA’06), Lecture Notes in Computer Science Vol. 4276,
Springer.

Chockler, G. V., Keidar, I. and Vitenberg, R. (2001), “Group Communication
Specifications: a Comprehensive Study”, ACM Computing Surveys, 33(4):427–469.

27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 811

C-JDBC (2008), “C-JDBC: Clustered JDBC”. Available at http://c-jdbc.objectweb.org.

Coulouris, G., Dollimore, J. and Kindberg, T. (2005), Distributed Systems: Concepts
and Design, Addison Wesley, Fourth Edition.

Fowler, M. (2005), “Inversion of Control”. Available at http://martinfowler.com/
bliki/InversionOfControl.html.

GORDA (2008), “GORDA – Open Replication of Databases”. Available at
http://gorda.di.uminho.pt/.

Hedera (2008), “Hedera Project”. Available at http://hedera.continuent.org.

Jain, R. K. (1991), The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling, Wiley.

JBoss (2008), “JBoss Application Server”. Available at http://labs.jboss.com/jbossas/.

JGroups (2007), “JGroups Performance”. Available at http://www.jgroups.org/
javagroupsnew/perfnew/Report.html.

JGroups (2008), “JGroups – A Toolkit for Reliable Multicast Communication”.
Available at http://www.jgroups.org.

JOnAS (2008), “Java Open Application Server”. Available at
http://jonas.objectweb.org.

Lodi, G., Panzieri, F., Rossi, D. and Turrini, E. (2007), “SLA-Driven Clustering of
QoS-Aware Application Servers”. IEEE Transactions on Software Engineering,
33(3):186-197.

Miranda, H., Pinto, A. and Rodrigues, L. (2001), “Appia: a Flexible Protocol Kernel
Supporting Multiple Coordinated Channels”, In Proc. of the 21st International
Conference on Distributed Computing Systems (ICDCS’01), IEEE CS Press, pp.
707-710.

Pereira, J., Rodrigues, L., Monteiro, M. J., Oliveira, R. and Kermarrec, A.-M. (2003),
“NeEM: Network-friendly Epidemic Multicast”, In Proc. of the 22nd IEEE
Symposium on Reliable Distributed Systems (SRDS’03), IEEE CS Press, pp. 15-24.

Sales, L., Mendonça, N. C., Barbosa, R., D’Orleans, J., Trinta, F. and Teófilo, H.
(2008), “Um Estudo do Impacto de Desempenho de Dois Sistemas Genéricos de
Comunicação em Grupo sobre o JGroups”, In Anais do IX Workshop de Sistemas
Computacionais de Alto Desempenho (WSCAD-SSC 2008), Campo Grande – MS,
Brasil.

Sequoia (2008), “Sequoia Project”. Available at http://sequoia.continuent.org.

Shoal (2008), “Shoal – A Dynamic Java Clustering Framework”. Available at
https://shoal.dev.java.net/.

Spread (2008), “The Spread Toolkit”. Available at http://www.spread.org.

Triola, M. F. (1997), Elementary Statistics, Addison Wesley, Seventh Edition.

812 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

