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Abstract. In all-optical networks, signals are transmitted through physical
layer with no regeneration. Therefore, noise accumulation along lightpath can
severely impair optical signal-to-noise ratio. For this reason, many efforts have
been made to develop impairment aware routing and wavelength assignment
algorithms (IRWA) in order to mitigate the impairments effects, improving the
network performance. In this paper we propose a systematic form to build an
adaptive impairment aware cost function based on arbitrary set of chosen input
network parameters. The cost function is based on power series expansion. Our
routing algorithm is called Power Series Routing (PSR). An computational intel-
ligence technique, Particle Swarm Optimization, is used to find the coefficients
of the expansion.

1. Introduction
All-optical networks have been considered as the most reliable and economic solution to
achieve high transmission capacities with proper quality of service (QoS). There are two
main challenges to manage these networks providing QoS: define an appropriate rout-
ing and wavelength assignment algorithm (RWA) and obtain acceptable optical signal-to-
noise ratio (OSNR) for every channel.

The RWA problem is a classic problem in transparent optical networks. It can
be divided in two minor problems: the routing process and the wavelength assign-
ment process. A classical approach to solve routing problem is to represent the net-
work topology by a graph, then use some metrics to evaluate the cost of each branch
of the graph, and finally, use an algorithm that finds the minimum cost path between
two given nodes [Mukherjee 2000], [Zang et al. 2000]. The wavelength assignment
algorithm has to decide which available channel should be used to establish the call
[Mukherjee 2000], [Zhou and Yuan 2002]. Some routing algorithms use heuristics based
on a pre-defined metrics. Some examples are: the shortest path (SP), minor delay, load
balance [Tanenbaum 2003], lower noise figure in lightpath [Martins-Filho et al. 2003b].

Some RWA algorithms just consider the wavelength availability. However, this
is a reasonable assumption only for opaque networks, in which the optical signals are
regenerated at each node. In this scenario, many different link cost functions to guide
the RWA process have been reported: Hops Based (HW), Distance Based (SP, shortest
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path), Available Wavelength (AW), Hop Count and Available Wavelengths (HAW), To-
tal Wavelengths and Available Wavelengths (TAW), Hop Count and Total Wavelengths
and Available Wavelengths (HTAW) [Bhide et al. 2001] and Least Resistance Weight
(LRW) [Wen et al. 2005]. The main aim of these approaches is to achieve an improved
load distribution or to minimize the use of the physical layer resources.

On the other hand, in transparent all-optical networks there is no signal regen-
eration at intermediate nodes along the lightpaths. Therefore, the signals accumulate
noise due to transmission impairments. For this reason, the routing algorithm must be
aware of these physical penalties to fetch routes that minimize OSNR degradation due
to optical noise. Recently, many efforts have been made to develop RWA algorithms
that consider physical impairments [Martins-Filho et al. 2003b], [Cardillo et al. 2005],
[Chaves et al. 2007], [Tomkos et al. 2007]. The main goal of this approach is to minimize
the blocking probability by finding routes considering physical layer status. Although
routing schemes based on optical impairments outperform the most common approaches,
the use of these algorithms implies in higher computational complexity.

In optical networks constricted by impairments, most reported studies concerning
the solution of the RWA problem can be classified into three major categories. In the
first category the RWA algorithm is treated in two steps: first a lightpath computation
in a network layer module is provided, followed by a lightpath verification performed
by the physical layer module. Different routing schemes have been proposed using this
approach. In [Ramamurthy et al. 1999] the authors modeled their impairment-aware
RWA algorithm taking into account the amplified spontaneous emission noise (ASE)
generated in Erbium doped fiber amplifier (EDFA) and crosstalk added by the optical
switch and compared the estimated bit error rate (BER) against a determined threshold.
In [Huang et al. 2005] the authors modeled their impairment-aware RWA algorithm tak-
ing into account the polarization mode dispersion (PMD) and OSNR performance param-
eters separately and compared them against two threshold levels at the end of the route.

In the second category, the RWA algorithm is treated in three steps: first a light-
path computation in a network layer module is provided resulting in one (or none) feasible
lightpath for each wavelength in network. Then, for each feasible lightpath found, a ver-
ification is performed by the physical layer module. Among the lightpaths that passed
in physical layer module verification the best one is chosen, considering some metric.
Pointurier et al. [Pointurier and Brandt-Pearce 2005] used this approach and developed
a routing scheme based on Q-factor, which incorporates the effects of the compounded
crosstalk in both physical layer module verification and choosing lightpath to set up the
call. In [Anagnostopoulos et al. 2007] the authors developed a similar approach, never-
theless, considering the four wave mixing (FWM), cross phase modulation (XPM) and
EDFA ASE noise effects.

In the third category, RWA algorithm itself is aware of physical impairments
and uses the impairments information for routing procedure. Martins-Filho et al. pro-
posed in [Martins-Filho et al. 2003a] a dynamic routing algorithm which selects the route
based on lowest physical impairments, including ASE accumulation, amplifier gain sat-
uration and wavelength dependent gain along the path and then calculate BER to check
for the required signal quality. In [Cardillo et al. 2005] the authors proposed to use the
OSNR model considered in [Huang et al. 2005] with some enhancements to consider
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non-linear penalties as well as the linear effects that occur along lightpath transmission.
In [Kulkarni et al. 2005] the authors utilized the Q-factor as a performance parameter, and
integrates the effects of the linear impairments (chromatic dispersion, PMD, ASE noise,
cross-talk and filter concatenation).

In this paper we propose a systematic form to build the link cost function based on
a set of relevant network parameters. It is a important tool for routing algorithm design,
since the determination of the important parameters for link cost evaluation is a relatively
easy task for a network specialist. However, to find the best cost function that combines
these parameters is a much more complex task. We apply the proposed scheme to build
an adaptive cost function for impairment aware routing, which we call PSR (Power Series
Routing). We use PSR to provide the link cost for a lowest cost routing algorithm (e.g.
Dijkstra’s algorithm). The PSR is based on the expansion of the cost function in a power
series. Simple network parameters such as link availability and link length were used as
input variables for the cost function. The power series coefficients are found by the Par-
ticle Swarm Optimization (PSO) technique, and they take into account several physical
impairments. The proposed PSR combines simplicity and fastness of the schemes com-
monly used in opaque networks with the high performance (i.e. low blocking probability)
obtained from the impairment aware schemes. For this reason, PSR has similar math-
ematical formulation to the weight functions reported in [Bhide et al. 2001]. However,
differently from those ones, PSR is trained based on physical impairments.

This paper is organized as follows: In section 2 we present our novel routing
algorithm. In section 3 we describe the PSO technique used in this paper. In section 4
we present the optical physical layer models used to evaluate the performance of the
routing algorithms. In section 5 we show the parameters and network topology used in
our simulations. In section 6 we present the results. In section 7 we give our conclusions.

2. Power Series and Algorithm Description

In this section we present a new approach to build a link cost function for network routing.
The proposed approach consists of 3 steps, basically: First, a number of input variables
for the cost function is chosen by a network specialist. Then, the cost function is written
in terms of a series of functions. And finally, an optimization algorithm is used to find the
series coefficients that minimizes the network blocking probability.

It is well known that functions can be expressed in terms of series. Many of these
representations use a complete set of orthogonal functions. For example, one can expand
a single variable function f(x) in a set of ortogonal functions as:

f(x) =
∞∑

n=0

anϕn(x), (1)

where ϕn(x) n = 0, 1, 2... is a given set of ortogonal base functions. According to the
different ϕn(x) used, the series has different names e.g., Taylor’s series for ϕn(x) =
1, x, x1, x2, ..., Legendre’s series for ϕn(x) = Ln(x) (Legendre’s polynomials), Fourier’s
series for ϕn(x) as harmonic sine and cosine functions. The two former schemes make
use of a set of orthogonal polynomials and the latter uses a set of orthogonal trigonometric
functions.
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In this paper, we focus our analysis in the series that make use of a set of orthog-
onal polynomials. By setting ϕn(x) = 1, x, x1, x2, ..., one can obtain from Eq. (1):

f(x) =
∞∑

n=0

anx
n. (2)

Assuming the continuity of the function and its derivatives, the expansion in Eq. (2) can
also be done for a multivariable functions:

f(x0, x1, ..., xk) =
∞∑

n0=0

∞∑
n1=0

...

∞∑
nk=0

bn0,n1,...,nk

k∏
j=0

x
nj

j . (3)

It is well known that one can find bn0,n1,...,nk
by means of derivatives (multi-

variable Taylor’s series) [Lang 1970]. However, this approach works only for a function
with derivatives. Despite the fact that there is no simple closed analytical form to find
bn0,n1,...,nk

coefficients for piecewise continue functions, Eq. (3) can also represent these
functions by using special polynomials such as Legendre’s polynomials and Hermite’s
polynomials [Arfken and Weber 2005]. Nevertheless, the lack of an analytical form to
find bn0,n1,...,nk

is not an obstacle if one is able to find these coefficients by a non analyti-
cal procedure.

Therefore, We use the proposed approach to build an adaptive cost function for
impairment aware routing, which we call power series routing (PSR). The first step is
to choose the input variables for the cost function. In optical networks the information
about link length, link availability and number of hops have high correlation with noise
accumulated along the lightpath. As the link length increases, higher gains must be pro-
vided by the optical amplifiers to compensate the losses. Therefore, more the ASE noise
is added by optical amplifier in the lightpath. Link usage has impact in amplifier satura-
tion and ASE noise generation, since the amplifier gain and noise figure depends on the
total input signal power [Ramaswami and Sivarajan 2002], [Pereira et al. 2007a]. Fur-
thermore, as the number of hops increases, more crosstalk noise is added in intermediate
nodes. Therefore, these elementary network parameters could be used to build a sim-
ple routing scheme, instead of using the noise information, yet obtaining similar network
performance results to schemes that use optical noise information to compose the cost
function [Chaves et al. 2007]. For reasons above, we choose as input variables for the
cost function two simple network parameters: normalized link availability and normal-
ized route length.

The second step is to write the cost function in terms of a series as in Eq. (3),
according to the number of network parameters chosen. Therefore, the link cost between
nodes i and j can be expressed in a two variables form of Eq. (3) by:

f(xi,j, yi,j) =
∞∑

n0=0

∞∑
n1=0

bn0,n1x
n0
i,jy

n1
i,j , (4)

where xi,j , and yi,j are, respectively, the link availability and normalized link length be-
tween the nodes i and j. xi,j is defined as:

xi,j =
λa

i,j

λT
i,j

, (5)
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where λa
i,j and λT

i,j are, respectively, the number of unused and total number of wave-
lengths in the link between nodes i and j. The normalized link length yi,j is defined
as:

yi,j =
di,j

dmax

, (6)

where di,j is link length between nodes i and j and dmax is the maximum link length in
the network. Since it is not possible to have an infinite number of terms in Eq (4), one
shall truncate the series in order to obtain an approximation with N terms:

f(xi,j, yi,j) =
N∑

n0=0

N∑
n1=0

bn0,n1x
n0
i,jy

n1
i,j . (7)

One can note from Eq. (7) that this function has a constant term. This term includes a hop
count computation.

The third step consists of using PSO to find the series coefficients that optimizes a
network performance parameter. We used PSO because it achieves a better performance
in high dimensionality problems than other optimization techniques (e.g. Genetic Al-
gorithms) [Engelbrecht 2005]. For example, it can maximize the network throughput or
minimize network blocking probability. In this paper we find the bn0,n1,...,nk

coefficients
that minimize blocking probability as will be described in the next section.

It must be highlighted that one can include an arbitrary number of input param-
eters in order to build the cost function, including direct information about the physical
impairments.

3. Particle Swarm Optimization
In order find the bn0,n1 coefficients, as discussed in previous section we used an intelligent
optimization technique called Particle Swarm Optimization (PSO) [Engelbrecht 2005].
PSO was proposed by Kennedy and Eberhart in 1995 and it is inspired in bird flock-
ing [Kennedy and Eberhart 1995]. In PSO, each particle i is a possible solution of the
problem and it has some properties such as its current velocity −→v i, its current position−→x i and its best position in past −→p i. For the Swarm communication topology we used
the local topology in a ring model, also known as Lbest, in which each particle has in-
formation about only two neighborhoods of the swarm [Bratton and Kennedy 2007]. It is
recommend in [Bratton and Kennedy 2007] to use local best model, instead of global best
model used in first PSO definition, since the global best approach has a higher probabil-
ity to be trapped in local minima. Denoting by vi,d the dth component of −→v i vector and
using the same notation for the other vectors we can state the pseudo code algorithm that
we used to implement PSO optimizer as shown in table 1. g() returns the fitness of one
particle and mini(

−→p neighbors) returns the position −→p neighbor of the fitter particle among
the two neighbors of the particle i.

As one can see in the Table 1, particle velocity is updated using the constriction
factor approach [Clerc and Kennedy 2002]. In this approach the particle velocity is up-
dated using the following equation:

vi,d = χ[vi,d + c1ε1(pi,d − xi,d) + c2ε2(pg,d − xi,d)], (8)
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Table 1.
PSO algorithm for minimization
initialize randon population
Do

For i = 1 to Population Size
if g(−→x i) < g(−→p i) then −→p i = −→x i−→p g = mini(

−→p neighbors)
For d = 1 to Dimension

vi,d = χ(vi,d + c1ε1(pi,d − xi,d) + c2ε2(pg,d − xi,d))
xi,d = (vi,d + xi,d)

Next d
Next i

Until termination criterion is met

where the χ is evaluated by:

χ =
2

|2− ϕ−
√

ϕ2 − 4ϕ| , ϕ = c1 + c2. (9)

In [Clerc and Kennedy 2002] the authors found that if ϕ > 4, the algorithm con-
vergence is guaranteed. For this reason we have chosen the same approach for our PSO
implementation.

4. Physical Impairments Modeling
In this section we describe the physical impairments model used in this work to evalu-
ate optical noise. This model was proposed by [Pereira et al. 2007b]. The formulation
quantifies the OSNR degradation along the optical signal propagation in the all-optical
network. The impact of physical layer impairments is taken into account by considering
both the signal power and the noise power at the destination node, both affected by gains
and losses along the lightpath. Moreover, network elements add noise components. The
optical amplifiers add ASE noise power and also suffer from gain saturation and ASE
depletion as the total signal power increases. The optical switches add noise due to non-
ideal isolation between ports. The effect of chromatic dispersion is neglected since we
assume that group velocity dispersion (GVD) is totally compensated in the network links.
We did not consider the PMD and FWM effects in the simulations presented in this paper.
Fig. 1 shows the network devices considered in the model in each link. The links have
the following elements: transmitter, optical switch, multiplexer, booster amplifier, optical
fiber, pre-amplifier, demultiplexer, optical switch and receiver.

The points a until h are measurement points where the signal and noise can be
determined in the optical domain. In point a, we have the input optical signal power (Pin)
and the input optical noise power (Nin). The ratio between Pin and Nin defines the OSNR
of the transmitter (OSNRin). For the lightpath with k links, the elements between b and h
are repeated k times before the signal reaches the receiver in the destination node.

At points b and h, the model considers the noise induced by homodyne crosstalk
in the optical switch. This occurs basically because the energy of one optical sig-
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Figure 1. The link configuration with optical devices considered in our model.

nal can leak to other co-propagating signals due to non-ideal optical switches. The
optical noise power generated by each optical switch in every wavelength is given
by [Ramaswami and Sivarajan 2002]:

NSwitch = ε

n∑
j=1

PSwj
(λ), (10)

where PSwj
(λ) is the received optical power from the jth optical fiber in the same wave-

length of the propagating optical signal, ε is the switch isolation factor and n is the number
of signals in the same wavelength received from others links. At points c and g, it is just
considered the multiplexer and demultiplexer losses.

At points d and f the noise induced by the optical amplifiers, as well as the gain
saturation effect are taken into account. Considering the signal-spontaneous beating as
the main noise source, this noise can be quantified by [Baney et al. 2000]:

Namp =
hν (λ) BoGampFamp

2
, (11)

where h is the Planck constant, ν (λ) is the optical signal frequency, Bo is the optical filter
bandwidth, Gamp is the dynamic amplifier gain and Famp is the amplifier noise factor.

The gain saturation effect is taking into account by using the following expres-
sion [Martins-Filho et al. 2003a, Martins-Filho et al. 2003b]:

Gamp =
G0

1 +
Pout

Psat

, (12)

where G0 is the maximum non-saturated amplifier gain, Pout is the optical power at the
amplifier output and Psat is the amplifier output saturation power.

Since Famp depends on the input optical power, the following expression is used
to model this effect [Pereira et al. 2007a], [Pereira et al. 2007b]:

Famp = F0


1 + A1 − A1

1 +
Pin

A2


 , (13)

where F0 is the amplifier noise factor for low input optical powers, A1 and A2 are func-
tion parameters. These parameters were obtained by fitting experimental results from an
Erbium doped fiber amplifier.
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Finally, at the point h, one can evaluate the output optical signal power (Pout) and
the output optical noise power (Nout). Pout is evaluated according to the gains and losses
along the signal propagation and it is given by:

Pout =
Gamp1e

−αdGamp2

L2
SwitchLMuxLDemux

Pin, (14)

where Gamp1 and Gamp2 are the dynamic linear gains of the booster and pre-amplifier, α
is the fiber loss coefficient, d is the fiber length, LSwitch, LMux and LDemux are the optical
switch, multiplexer and demultiplexer losses.

Nout is evaluated from the source node to the destination node, including the ad-
ditive noise component in the respective points along the lightpath and is given by:

Nout =
Gamp1e

−αdGamp2

LMuxLDemuxL2
Switch

Nin +
Gamp1e

−αdGamp2

LMuxLDemuxLSwitch

ε

n∑
j=1

PSw1,j
(λ)+

+
Gamp1e

−αdGamp2

LDemuxLSwitch

hν (λ) Bo

2

(
Famp1 +

Famp2

e−αdGamp1

)
+ ε

s∑
j=1

PSw2,j
(λ),

(15)

where Nin is the noise power at the transmitter output.

Dividing Pout by Nout, one can obtain the OSNR at destination node (OSNRout).
The OSNRout is related directly to the BER [Thyagarajan and Ghatak 1998]. Therefore,
one can establish a threshold OSNR that guarantees the QoS (OSNRQoS) for call requests
on the network.

Considering a route with a number of i links:

Pouti =

(
Gampi,1

e−αdiGampi,2

LMuxLDemuxLSwitch

)
Pouti−1

, (16)

for the optical signal power and:

Nouti =
Gamp1,i

e−αdiGamp2,i

LMuxLDemuxLSwitch

Nouti−1
+ ε

s∑
j=1

PSwi+1,j
(λ)+

+
Gamp1,i

e−αdiGamp2,i

LDemuxLSwitch

hν (λ) Bo

2

(
Famp1,i

+
Famp2,i

e−αdiGamp1,i

)
,

(17)

for optical noise, where Nout0 =
Nin

LSwitch

+ ε

n∑
j=1

PSw1,j
(λ) and Pout0 =

Pin

LSwitch

.

5. Simulations Setup
Our simulation software follows the flow chart shown in Fig 2(a). Upon a call request
it selects an available wavelength from a list, using first fit algorithm. The route is de-
fined by a routing algorithm that uses one of the following weight functions: Shortest
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Path algorithm (SP), with physical length as the cost function, Least Resistance Weight
(LRW) described in [Wen et al. 2005], an algorithm that uses the total noise figure of
the lightpath as the cost function (OSNR-R) proposed in [Martins-Filho et al. 2003b],
and our proposed PSR. Then the OSNR of lightpath is evaluated. If it is above the pre-
determined level OSNRQoS the call is established. Our algorithm blocks a call if there
is no wavelength available or if the OSNRout for the respective wavelength is below the
OSNRQoS . The blocked calls are lost. The blocking probability is obtained from the
ratio of the number of blocked calls and the number of call requests. For each network
simulation a set of 107 calls are generated by choosing randomly (uniform distribution)
the source-destination pair. The call request is characterized as a Poisson process. We as-
sume circuit switched bidirectional connections in two different fibers and no wavelength
conversion capabilities. The default optical parameters used in our simulations are listed
in Table 2. Amplifier gains are set to compensate link losses. We used network topology
shown in figure 2(b). We used the PSO parameters shown in table 3.
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Figure 2. (a) Flow chart of the routing and wavelength assignment algorithm
employed in our simulations (b) Network topology used in our simulations.

6. Results
The first step before the assignment of the Eq. (7) as a cost function for routing is to find
the optimum values for the bn0,n1 parameters. We have performed a search in bn0,n1 space
using PSO as described in section 3. The search was done using network load of 100
Erlangs. We propose to optimize for higher network loads since it is the worst case. The
goal of this search is to minimize the network blocking probability (BP ). In order to
evaluate the fitness for a given particle each network was simulated for a set of 105 calls.
The returned blocking probability BP is assigned as the fitness value for this particle. We
call these network simulations as offline training process since it should be done prior to
network operation.

Fig 3(a) shows the convergence of PSO algorithm. The lowest blocking prob-
ability found in each PSO iteration is shown. We performed the optimization for four
different cases: N = 3, 4, 5 and 7. Since one can obtain a lower blocking probability by
using N = 5 we chose this value as a default parameter to run PSO algorithm. Increasing
N also increases the computational time for PSO convergence. N = 7 increases the di-
mensionality of the problem and it requires more than 5000 PSO interactions in order to
achieve lower blocking probability than N = 5.
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Table 2. Default optical parameters used in simulation .

Parameter Value Definition
PSat 16dBm Amplifier output saturation

power
Pin 0dBm Transmitter output power

OSNRin 30dB Input optical signal-to-noise
ratio

OSNRQoS 23dB Optical signal-to-noise ratio
for QoS criterion

B 40Gbps Transmission bit rate
Bo 100GHz Optical filter bandwidth
W 36 Number of wavelengths in an

optical link
∆f 100GHz Channel spacing
λi 1550.12nm The lower wavelength of the

grid
λ0 1510nm Zero dispersion wavelength
α 0.2dB/km Fiber loss coefficient

LMux 3dB Multiplexer loss
LDemux 3dB Demultiplexer loss
LSwitch 3dB Switch loss

F0 3.162 Amplifier noise factor that
corresponds to NF = 5dB

A1 100 Noise factor model parameter
A2 4W Noise factor model parameter
ε −40dB Switch isolation factor

Table 3. PSO Simulation parameters.

Parameter Value Definition
P 50 Number of particles
G 5000 Number of interactions

c1, c2 2.05 Velocity update parameters
ε1, ε2 U[0,1] Random numbers with uniform

distribution
χ 0.72984 Constriction factor
S [-1,+1] PSO search space

Vmax +1 Maximum velocity
Vmin -1 Minumum velocity

As it was discussed in section 2 we chose two variables as a input parameters for
PSR cost function: link availability xi,j and normalized link length yi,j . Using the best
parameters bn0,n1 found by PSO, we plot the link cost as a function of xi,j and yi,j in terms
of level curves, as shown in Fig. 3(b). One can note that, as expected, the cost is high for
long distances and low link availabilities (white regions in graph) and the cost is low for
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Figure 3. (a) PSO convergence (b) Cost function f(xi,j , yi,j) of (Eq. 7) found by
PSO as a function of normalized link length and link availability.

short distances and high link availabilities (black regions in graph). Moreover, Fig. 3(b)
shows that the cost function has a complex dependence with its variables. It demonstrates
the need of using a systematic form to build the cost function from its input variables.

Since we have found a link cost function (fig. 3(b)) we can assign it as the network
link cost and evaluate de network performance of the proposed scheme. For comparison
purposes, we analyzed the PSR against three other cost function reported in literature: SP,
LRW, OSNR-R. These algorithm were chosen for comparison due to following reasons:
SP is simple and most largely used cost function for routing comparison purpose; LRW
is an algorithm capable of finding less congested routes and, for this reason, leads to
an improved network load distribution; and OSNR-R is a routing scheme that uses the
physical impairments information during the routing procedure. Fig 4 shows the blocking
probability as a function of total network load for these four different algorithms. One can
note that our proposed PSR far outperforms the results obtained using either SP or LRW
algorithms. Furthermore, when compared with the IRWA approach (OSNR-R), PSR has
a very similar network performance in terms of blocking probability. It means that PSR
is capable of reaching the high performance of the IRWA approach using no impairment
information as input. The impairment information was considered in the offline (training)
stage only.

PSR and OSNR-R routing algorithms have quite similar performance in terms of
blocking probability. However, we must also compare the time spent by these approaches
to solve the RWA problem for each call. We used an Intel® Core™2 @2.13 GHz with
3 GB of RAM to perform this comparison. The results for the average time spent to solve
the RWA per call, performing 50000 calls, are shown in table 4. The PSR algorithm
solves the RWA problem 8 times faster than OSNR-R. This is because in PSR the time
consuming calculations to evaluate the physical impairments are performed offline, during
the optimization of the bn0,n1 parameters. In the OSNR-R algorithm, as well as in other
physical impairment based algorithm, these calculations occur during the online solution
of the RWA problem. Table 4 also shows that PSR is up to 1.33 times slower than LRW.
This small difference should be due to the simple mathematical formula of the LRW
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Figure 4. Network blocking probability as a function of network load for the LRW,
SP, OSNR-R and PSR algorithms.

function, which involves just a single division operation. We did not consider the SP
algorithm for computation time analysis since it is not an adaptive routing algorithm.

Table 4. Average Time Spent to Solve RWA per Call.

Algorithm Time
LRW 0.12ms
PSR 0.16ms

OSNR-R 1.28ms

7. Conclusions
In this paper we propose a systematic form to build the link cost function based on a
set of relevant network parameters. We apply the proposed scheme to build an adaptive
cost function (PSR) for impairment aware routing in all-optical networks. The proposed
PSR is based on simple network parameters such as link availability, link length and hop
count. Since PSR indirectly takes into account the network physical impairments we
demonstrated that it outperforms or, in worst case, provides similar performance to other
algorithm that use OSNR degradation as a weight function. However, the computation
time for our weight function was 8 times faster than for the OSNR based one, for the
network simulation conditions used.

It must be highlighted that the proposed weight function does not rely on online
physical impairments evaluation to infer about signal noise in the network. Therefore, it
is not mandatory to perform complex evaluations (as shown in section 4) to obtain values
for optical noise based weight functions. However, PSR requires an offline simulation to
store the awareness of physical impairments in the series parameters. This characteristic
of a priori knowledge brings to our weight function a drastic reduction in the computation
time for real time routing decision as compared to noise based approaches.
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