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Abstract. This paper proposes an offline method to compute LSPs (Label 
Switched Paths) for MPLS-based networks with support to path-protection. 
The objective of the method proposed in this paper is to generate optimal 
working  and  recovery  paths  for multiples  demands  subjected   to capacity, 
delay and path constraints. The path constraints are imposed in order to 
achieve a robust LSPs planning, where the traffic demands could still be 
accommodated in the case of a single link failure in the network. By using a 
modified k-shortest path algorithm, we model the LPSs planning problem as 
search problem, which is solved using a genetic algorithm approach.    

1. Introduction 
 

MPLS [Rosen et al. 2001] provides traffic-engineering capabilities to IP networks 
through the establishment of LSPs (Label Switched Paths) that are similar to the ATM 
virtual circuits. There are a few signaling protocols available to establish LSPs, such as 
RSVP-TE [Awduche et al. 2001] e CR-LDP [Jamoussi et al. 2002]. Presently, the 
RSVP-TE is the most usual signaling protocol. It has been implemented by major router 
vendors and it is being extensively used on production networks. RSVP-TE allows 
signalizing LSPs by using the link-state protocol routing information (e.g., OSPF or IS-
IS) or by imposing explicit routes. 

 When the link-state protocol approach is used, the path taken by a LSP is 
automatically chosen using the distributed routing information. Link-state protocol 
extensions allow selecting distinct routes to the same destination by imposing path 
constraints (e.g., Kats et al 2003). Although link-state routing protocols distribute 
network related information, they do not carry the offered load (traffic demands) 
information. Therefore, achieving global optimization goals is usually impractical by 
using the link-state approach, because the routing decisions for a given flow does not 
take into account the other flows. 

 The explicit route feature is useful to the offline calculation of MPLS paths. 
Offline calculation is usually performed by a centralized system that knows the network 
topology and the entire predicted offered load. The offline approach has the advantage 
of allowing a globally optimal network design. In particular, when path protection is an 
issue, offline calculation allows predicting the load distribution behavior after a failure.  
Alternatively, signaling protocols such as RSVP-TE offer dynamic recovery facilities, 
where LSPs can be automatically re-signalized in case of failure. If necessary, the 
recovery LSP can take resources of lower priority LSPs already established using the 
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preemption mechanism supported by the signaling protocol. In most practical scenarios 
the dynamic recovery using the preemption mechanism is not recommended, as it can 
lead to service disruption on many LSPs.  

   This paper proposes an offline method to compute LSPs for MPLS-based 
networks with support to path-protection. The objective of the method proposed in this 
paper is to generate optimal working and recovery paths for multiples demands 
subjected  to capacity, delay and path constraints. The recovery paths are planned in 
advance, in order to avoid the use of the preemption mechanism. A recovery path does 
not consume any network resource, as it is signalized only in case of failure of the 
corresponding working path.  

 The path constraints are imposed in order to achieve a certain degree of path 
protection. The degree of protection offered to the network can be expressed in terms of 
the number of simultaneous node or link failures supported without leading to link 
congestion. Because the multiple failure problem can be solved only to very redundant 
networks, in this paper, we limit the degree of protection to a single link failure, i.e., the 
traffic demands are required to be accommodated in the case of failure of “any” single-
link in the network. Even in the case of a single link failure, multiple working paths 
may have to be switched to their corresponding recovery paths. Therefore, selecting 
recovery paths in order to minimize service disruption and links congestion during 
failures is a complex problem that can’t be manually solved for complex network 
topologies. By using a modified k-shortest path algorithm, we model the LPSs with path 
protection planning problem as search problem with a multi-objective cost function, 
which is solved using a genetic algorithm approach. Multiple simultaneous link or node 
failures will be addressed as future works.  

 The remainder of this paper is structured as follows. Section 2 presents the 
related work concerning the IP/MPLS traffic engineering and the offline LSP 
calculation. Section 3 discusses the path protection concept and illustrates the necessity 
of including the path protection constraints into the LSP calculation problem. Section 4 
models the LSP calculation as an optimization search problem and presents the 
proposed solution. Section 5 evaluates the proposed approach from logic and 
performance viewpoints using sample topologies. Finally, section 6 concludes this 
paper and presents future works. 

2. Related Works 
This paper proposes an offline method for traffic engineering on MPLS-based networks 
with support to path protection. In the literature, we find several works addressing the 
traffic engineering issue, and less frequently, the path protection issue. Because the 
number of works published in this domain is large, we have selected only the works that 
are closely related to our proposal.  

 Fortz and Thorup (2000) propose a method to control the routes selected by the 
OSPF protocol by optimizing the metrics assigned to network links. The method 
proposed by the authors is purely IGP (Interior Gateway Protocol), i.e., it does not 
employ MPLS. The authors take into account the projected demand (a traffic array) in 
order to achieve a better distribution of the traffic and avoid link congestion. The 
general routing problems is model as an optimization problem, where the cost function 
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penalizes unbalanced solutions, i.e., solutions that leads to high occupation rates of the 
network links. The cost function was defined in terms of a piece-wise linear increasing 
and convex function. The higher the occupation rate of link, the higher the cost assigned 
to the solution. Occupation rates above 100% are strongly penalized. In our work, we 
have employed a similar cost function to represent the traffic engineering component of 
our multi-operational objective function.  

 Mulyana and Killat (2004) propose an offline traffic engineering method to 
hybrid IGP/MPLS schemes. The authors address MPLS-shortcut [Shen and Smit 2004] 
scenarios, where LSPs are not required to be signalized from the ingress to the egress 
routers, but only to partial paths. LSPs shortcuts are seen as virtual links by the IGP. 
This approach offers a certain degree of traffic engineering to the network, while 
reducing the total number of LSPs used. Given traffic array with the projected demand 
and a maximum number of LSPs, the authors defines a search problem which consists 
in defining a set of LSPs shortcuts that minimizes the maximum link occupation rate. 
Similar to our work, the authors employ a genetic algorithm to solve the optimization 
problem. However, they do not address the path protection issue. Skivée et al. (2006) 
also addresses the IGP/MPLS scenario. Instead of a genetic algorithm, the authors 
employ a simulated annealing meta-heuristic to compute a nearly optimal set of LSPs 
that minimizes the congestion of the maximum occupied link and provides load balance. 
The method selects the LSPs from a predefined list that contains all allowed LSP 
candidates. 

  Several works in the literature propose offline traffic engineering methods for 
pure MPLS scenarios. Whilst most works defines the offline calculation of LSPs as an 
optimization problem, the techniques employed to determine the optimal LSPs are quite 
diverse. Lahoud et al. (2005) defines a linear programming framework to solve the 
multi-objective optimizing problem that minimizes congestion on links and resource 
consumption (by promoting shorter LSP paths), using a minimum number of LSPs. 
Erbas and Mathar (2003) formulates the problem of selecting optimal LSPs as a mixed 
integer problem solved using CPLEX 6.6. Similar to our work, the candidate LSPs are 
determined using a k-shortest path algorithm. The authors evaluate the effect of 
different objective function components: minimizing the route cost, increasing load 
balancing and reducing the total number of LSPs. This formulation is limited to simple 
topologies. The authors pointed out as future work developing a heuristic method for 
solving the problem on large network scenarios. 

 The protection of MPLS networks can be addressed from two viewpoints: path 
protection and local repair [Huang et al. 2002]. Path protection are end-to-end 
protection mechanisms where disjoint working and recovery paths are planned for each 
LSP demand, from the ingress to the egress router. The recovery path is always 
signalized by the ingress router. This method is considered slow due to the time taken 
for the ingress router to perceive the failure and to signalize a whole new path. 
Alternatively, in the local protection approach, a recovery segment can be signalized by 
an intermediate node, immediately upstream of the fault, reducing both, the failure 
perceiving time and the recovering time. The local approach, however, has the 
drawback of leading to a sub-optimal resource allocation after a failure. Mélon et al. 
(2003) proposed a real-time and decentralized method for LSP calculation that follows 
the local repair approach. The method reduces the resource allocation required to obtain 
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the protection by assuming that, at any given time, at most a single failure will occur in 
the network, and the recovering LSPs can share bandwidth. Giansante et al. (2004) 
proposes an offline centralized method that follows the path protection approach. The 
heuristic method presented by the authors is a three phase offline path protection 
algorithm, where recovery paths are calculated aiming to protect against link failures. 
The first phase defined the working paths using the best routes available, the second 
phase calculates recovery paths (using resources left from phase one). Because phases I 
and II employs only the best routes, the obtained solution can be non-optimal  in terms 
of the number of traffic demands served. Therefore, the authors propose a third phase 
where a greedy algorithm is used to degrade primary and recovery paths in order to 
accommodate more traffic demands. 

 The offline method described in this paper employs several ideas already 
explored in other works such as the k-shortest path algorithms, a non-linear cost 
function to obtain load balance and a genetic algorithm to solve the LSP calculation as a 
search problem. However, it differs from the previous works as it supports the 
calculation of optimal LSPs from both viewpoints: path protection and traffic 
engineering. To the extent of our knowledge, there are fewer works following this 
approach. The work presented by Giansante et. all (2004) is a close match, but follows a 
totally distinct approach, because the resources are reserved to the recovery paths. Our 
method follows the Mélon et al. (2003) approach, where the single link failure 
assumption permits to achieve path protection without unnecessarily wasting network 
resources. 

  

3. Path Protection Discussion 
This paper proposes an offline method to compute LSPs paths for MPLS-based 
networks with support to path-protection. For each traffic demand (i.e., a certain amount 
of bandwidth to be reserved between two end points), our method is required to find 
two disjoint paths: a working path and a recovery path. Both paths can be configured in 
the MPLS ingress router by using the explicit route RSVP-TE feature. Most commercial 
routers are capable to automatically switch from the working to the recovery path in 
case of failure of, at least, one of the links of the working path. 

 Initially, no bandwidth is reserved for the recovery paths. However, in the case 
of a link failure, several LSPs may possibly switch to their respective recovery path. 
Our method needs to assure that, even in this case, no network link will exceed its 
bandwidth capacity. Therefore, in order to achieve a robust LSP planning, the definition 
of the working paths needs to leave network resources for the recovery paths.  

 The competition for resources between working and recovery paths is illustrated 
in Figure 1. Consider a sample scenario where there are five flow demands of 600Mbps 
(LSP2 to 6) and one flow demand of 400Mbps (LSP1) to be carried from router 1 to 
router 5. Figure 1 shows the optimal path planning considering only a load-balance 
objective among the network links. This path planning considers only working paths, 
and does not support path protection for all LSP demands. For example, if a link of the 
1-3-5 path fails, one LSP demand can be switched to the 1-4-5 path. The available 
resources after the link failure and the path switching are illustrated in Figure 2. In spite 
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of existing 700Mbps of bandwidth available between routers 1 and 5, it is not possible 
to find an alternative path for the second LSP affected by the failure. 

 

 

Figure 1. Optimal load-balance allocation considering only working paths 

 

 
Figure 2. Scenario Topology simulating link 3-4 failure. 

 
Figure 3. Scenario Topology with path protection. 

 The amount of free resources after the failure indicates that it is possible to find 
a solution offering path protection to all LSP demands. A possible solution is illustrated 
in figure 3. The 400Mbps demand is assigned to the 1-2-5 working path. Two 600Mbps 
demands are assigned to the 1-3-5 working path and three 600Mbps demands are 
assigned to the 1-4-5 paths. The corresponding recovery paths are shown in the same 
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figure. After a single link failure, the proposed solution can always accommodate the 
affected demands by switching to the recovery paths without exceeding the links 
capacity.  

 For simple scenarios, the problem of defining working and recovery paths can 
be manually solved.  For complex network topologies and great number of LSP 
demands, it is necessary to employ computational techniques in order to solve this 
problem.  

4. Proposal 
 The algorithm proposed to compute the LSP paths takes as input the network 
topology (including link capacity and latency), the projected demand to the network (a 
traffic array) and the maximum delay tolerated by each individual flow. The solution 
returned from the algorithm can be one of the following three cases.  

• Case I: The algorithm was able to find working and recovery paths for all input 
demands without exceeding the link capacities in the case of no-link failures and 
in the case of a single link failure. The algorithm does not guarantee network 
protection to the case of multiple link failures. 

• Case II: The algorithm was able to find working LSP paths, but some link failure 
situations leads to link overload. In this case, the algorithm outputs all the link 
failure situations that generates congestion on the network, e.g. should link aj1 
fail, then link aj2 might have to transmit a certain (more than 100) percentage. 

• Case III: The algorithm was not able to find the working LSP paths for all traffic 
demands, due to network topology or link capacity limitations. In this case, the 
algorithm will remove exceeding demands, one by one, from the lowest to the 
highest priority. After a demand is removed, the algorithm is executed again. 
The process of removing lowest priority demands is repeated until a solution is 
found.  

4.1. Problem Formulation 

In this work, we model the network topology as a graph. The topology graph G is 
defined by its vertex set, V, and its arc set, A. This is expressed as follows: 

 G = (V, A) (1) 

 V = {vi | i = 1,2, ..., N } (2) 

 A = {aj | j = 1,2, ..., M } (3) 

 Where N is the number of nodes and M is the number of links. The aj link 
connecting the adjacent nodes i and k is usually noted by: 

 aj = (vi, vk)  (4) 

 Each aj link, (aj ∈ A), has the following attributes: a capacity cj (expressed in 
Mbps) and a latency lj (expressed in ms). A traffic requirement tk between nodes vi and 
vj is represented by a tuple containing the bandwidth requirement dij (corresponding to 
the demand to be carried from the origin i to the destination j) and the maximum end-to-
end delay (expressed in ms). 
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 tk = (bij, dij)  (5) 

 The traffic array T contains the point-to-point requirements between 
origin/destination (OD) pair of nodes: 

 T = { tk = (bij, dij)|  i, j ∈ [1,N] }={t1 ... tk ... tD} (6) 

 where: D = number of traffic demands 

 The problem consists in determining the optimal LSP paths (working and 
recovery) corresponding to each traffic requirement tk. The LSP paths corresponding to 
a tk = (bij, dij) requirement is noted as follows: 

 lspk = (Wk, Rk) (7) 

 The paths Wk and Rk correspond to a sequence of arcs, and can be represented 
as follows: 

 ( ) [ ]Mwjaaa wJwjwk ,11 ∈= LKW  (8) 

 ( ) [ ]Mrjaaa rJrjrk ,11 ∈= LKR  (9) 

 The sequence Wk and Rk are required to be disjoint, i.e., they have no common 
link, i.e., 

 [ ] [ ]DkMjaaaa kjkjkjkj ,1,1 ∈∀∈∀∉⇒∈∧∉⇒∈ WRRW   (10) 

  

 Let lsp = {lspk | k=1..D} be a candidate solution corresponding to all demands 
the traffic array T, defined in (5). A solution LSP is considered feasible if: 

• The resulting traffic load assigned to any link does not exceed the link 
capacity. 

• The resulting end to end delay corresponding to a LSP path does not 
exceed the delay traffic requirement. 

• In the case of failure of any single link, and the switch of the affected 
LSPs to the recovery paths, the resulting load assigned to any link does 
not exceed the link capacity.  

 An optimization problem can be defined in terms of a cost function fc(lsp). For a 
candidate solution lsp, fc(lsp) represents the “level of rejection” of the corresponding 
solution. In order to be valid a solution lsp must be feasible, i.e., it must satisfy a set of 
constraints related to the nature of the problem being solved. Let LSP be the space of 
feasible solutions that satisfy the all the problem constraints. Then, the optimization 
problem consists in finding the element lsp=lsp*∈ LSP that minimizes the fc(lsp) 
function. Mathematically, it can be expressed as follows: 

 
 )(inf)(and ** lsplspLSPlsp

LSPlsp cc ff
∈

=∈           (11) 

 In this work, we considered a multi-objective cost function that addresses the 
following issues: 
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a) We penalize candidate solutions that lead to overload links, considering 
the situation where the network has no link failure (only working paths 
are used). This is useful for accommodating new traffic demands without 
modifying the already assigned ones. When the load assigned to a link 
exceeds its capacity, the corresponding solution is severely penalized. As 
noted by Fortz and Thorup (2000), the load balance can be achieved by 
adopting a convex increasing non-linear cost function. We note this 
component of the fc function as fca , and it is defined as follows: 

 )()(f
1

ca ∑
=

=
M

j
jργlsp        (12) 

 where: 
⎪⎩

⎪
⎨
⎧

<⋅
≤≤

=
jj

jj
j ρρ

ρρ
ργ

1for 100
10for 

)( 3

3
 

 and: ρj = occupation rate of the aj link 

b) We strongly penalize candidate solutions when, after a link failure, the 
resulting load exceeds the capacity of at least one link. The traffic load is 
evaluated considering that all LSPs affected by the link failure have 
switched to their respective recovery paths. We note this component of 
the fc function as fcb.  

 ),(1)(f
1

cb ∑
=

=
M

k
cfailure kf

M
lsplsp  (13) 

 )(),(f
,1

cfailure ∑
≠=

=
M

kjj
jk ργlsp  (14) 

 where: fcfailure is the cost function when the k-th link fails   

c) Just avoiding network congestion by better load distribution leads to 
paths being longer, which results in extra bandwidth consumption 
[Lahoud et al. 2005]. We penalize candidate solutions when the working 
LSP path does not correspond to the optimum path (i.e., the path 
determined using the dijkstra algorithm in the case of no link failure). 
We note this component of the fc function as fcc. 

 )(f1)(f
1

raref_dijkstcc ∑
=

=
D

k
klsp

D
lsp  (15) 

 
)delay(

)delay()(f
,

raref_dijkst
dijkstrak

k
k lsp

lsplsp =  (16) 

 where:  delay(lspk) is the delay of the candidate lsp for the demand tk 

  delay(lspk,dijkstra) is the delay considering the optimum path  

 

 The cost function assigned to a solution lsp is the defined as follows: 

 )(f)(f)(f)(f cccca lsplsplsplsp ⋅+⋅+= βα bc            (17) 
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  The parameters α and β are weigh factors, and can be used to determine the 
relative importance of the components of the cost function.  

4.2. Candidate LSPs Computation 

Our proposal solves the optimization problem defined in (17) using a search algorithm. 
A common approach to adapt the path definition to a search algorithm consists in 
defining a set of candidate solutions for each LSP demand using a k-shortest path 
algorithm (see Mulyana and Killat (2004) and Skivée et al. (2006), for example).  That 
means that for each LSP demand, besides the shortest path defined by the dijkstra 
algorithm, alternative (longer) paths will also be considered. The search method is 
responsible for choosing a path for each LSP demand among these candidates. 

 In our approach, the k-shortest path algorithm is used to define a set of working 
paths and recovering paths. The multiple working paths are obtained by removing links 
from best path found (dijkstra), one by one. In some situations, removing only a link at 
time from the best path is not enough to provide several distinct paths. This happens if 
the alternative solution is disjoint with respect to the best path. In order to overcome 
this limitation, after all links from the best path were removed, our algorithm initiates a 
second round where a link from the best path and a link from the second best path are 
simultaneously removed. This assures that, if the topology allows, at least three 
candidate working paths are found for each LSP demand. 

 The recovery paths are computed in a similar fashion to the working path 
computation. For determining a recovery path, the k-shortest path algorithm is 
computed after removing all links of the respective working path. Figure 4 shows all 
possible candidates for our example topology (Figure 3). Each flow demand tk has a list 
of candidate LSPs. Each candidate LSP is composed by a working and a recovery path. 
Note that we may have different candidates for the same demand with equal working or 
recovery paths, but at least one the paths must be distinct.  

 

 
Figure 4. Possible candidates for each demand tk 
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 The metric used for the Dijkstra algorithm is the link’s propagation (and internal 
routing/switching) delay. Links that cannot transport a determined demand are excluded 
from the graph. Also, a candidate LSP is only considered for calculations if both 
working and recovery paths honors the maximum delay defined for the flow demand. 
This is useful when for calculating LSPs for delay sensitive demands (e.g., satellite 
links may be avoided for voice or multimedia traffic). If delay is not an issue on a given 
network, this metric can be replaced by a simple hop count. 

4.3. Genetic Encoding and Evolution Cycle 

A genetic algorithm (GA) is a search method based on natural evolution, where a 
population of candidate solutions goes through an evolution cycle till a convergence 
criterion is reached. The method creates a population of individuals (solutions), ranking 
them according to their fitness (objective function). Next, one performs the crossover 
operation among the best ranked individuals, where new individuals are formed by 
combining genes (characteristics) from their parents. The new individuals are used to 
replace the individuals with worse fitness, creating a new generation of individuals. 
This completes an iteration of the algorithm. This iteration process is repeated for a 
certain number of generations. The idea is that best ranked individuals will provide the 
better characteristics to the future generations, improving the solution to the 
optimization problem. 

 Besides the crossover function, GAs can also perform mutation on the 
individuals. This operation randomly changes genes on the individuals (possibly 
introducing new characteristics). The mutation operation helps the algorithm to explore 
new areas in the solution space, as well as distracting the algorithm from converging 
[Haupt and Haupt 1998], avoiding the solution from being trapped in a local minima. 

 For the population encoding, we have used a similar model than Mulyana and 
Killat (2004), where each individual represents a candidate solution (i.e., an lsp set in 
equation 11) for the entire traffic array. Each gene of the individual indicates a 
candidate solution, lspk, for a specific tk demand. Figure 5 illustrates the encoding of an 
individual considering a traffic array with six demands. In this example, there are six 
candidates for each demand computed using the k-shortest path algorithm. Each gene of 
an individual corresponds to an index that point to a specific solution among these 
candidates. 

 

   
Figure 5. An example individual (chromosome) encoding 
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 First, the algorithm randomly generates an initial population. Then, at each 
iteration, all individuals are ranked according to their cost function. A percentage of the 
best ranked individuals are used as the parents for the crossover operation. This 
percentage is noted as “parent rate” and it is a tuning parameter for the algorithm. Every 
crossover operation generates two offspring, being the second one the complement from 
the first one (i.e., if offspring #1 inherits the first gene from parent #2, then offspring #2 
will inherit the first gene from parent #1, and so on). The crossover mechanism used 
was the uniform-crossover, where each offspring has equal probability of inheriting 
each gene from one of the two parents.   After the crossover, a mutation operation is 
randomly applied to a percentage of the genes of the population, excluding the 
individuals that were used as parents for new offspring. This percentage is noted as 
“mutation rate”. 

 The convergence criteria were defined in terms of the maximum number of 
generations or a specific number of generations reached without any improvement. In 
this work we have adopted the convergence criteria of 50 consecutive generations 
without improvement or 500 generations. 

5. Evaluation  
We evaluate our method from two distinct viewpoints: logic and performance. From the 
logic viewpoint we are interested in determining if the algorithm could output a solution 
that respects the constraints and the objective function. From the performance viewpoint 
we are interested in evaluate if the algorithm was able to output a solution for a large 
topology and traffic demand in a reasonable computation time. 

 To validate the algorithm from the logic view point we used the simple scenario 
presented in section 3 (Scenario I). To validate the algorithm from the performance 
viewpoint we create a fictitious scenario based on the international research network 
GÉANT, assuming a full mesh demand among all network routers (Scenario II).  

5.1. Scenario I 

The topology and the demands used on this test were exactly as presented on Section 3 
(Figure 1 to 3). Running a C program with the algorithm on a Linux-based system 
(AMD Opteron 2.2GHz), with parameters: α=1 and β = 0.1, the algorithm found the 
best solution in the fourth generation, and converged after 54 generations. The solution 
returned was the same as presented on Figure 3. Population size used was 50 
individuals, parent rate being 20% and 2% mutation rate. The total running time 
(including candidates LSP computation and optimization until convergence) was 0.045 
second. 

5.2. Scenario II 

The GÉANT network topology (Figure 6) had to be slightly modified in order to 
provide a more significant scenario for testing the algorithm performance. In order to 
increase the number of possibilities for creating recovery paths we have inserted six 
bidirectional links on the original network topology, as denoted on Table 1. Also, all 
links inputted were at least 155Mbps. We have used unitary hop count as the delay 
metric. 
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 We have assumed a full mesh scenario, where a bidirectional demand was 
assigned to every pair of nodes in the topology. Independent LSP paths are computed 
for each direction of the traffic demand. The amount of bandwidth assigned to each 
demand was defined according to the equation 18. This equation normalizes the 
bandwidth requirements for each LSP according to the smallest capacity of each node in 
the pair. The node capacity corresponds to the summation of its all link capacities. This 
approach allows routers with low capacity links to handle full-mesh LSPs with every 
other router on the topology. The constant 1/4 was used in order to leave some free 
throughput on the routers so they could serve as transit for other LSPs. 

 
countnode
throughputthroughptMin

t ji
ij _*4

),(
=  (18) 

 
Figure 6. The GÉANT topology 

520 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



  

Table 1. Links added to the GÉANT network topology for the test 

 IS-RU  NO-FI EE-LV LV-LT RO-TR CY-MT 

Speed 155Mbps 10Gbps 622Mbps 622Mbps 155Mbps 155Mbps 

  

As the number of nodes is N=33, the traffic demand for this scenario consists of 
D=1056 LSPs demands. The number of links (arcs) is M=53. Running the program on 
the same machine as the one from the example 5.1, the program took 0.9 second to 
compute 6124 LSP candidates (average of 5.8 LSP candidates per demand). The 
population size used was 50 individuals, parent rate being 20% and 2% mutation rate 
(identical to the scenario 1). Using α = 1 and β = 0.1, the algorithm was found a feasible 
solution (for working paths) on the 28th generation (taking about 30 seconds of 
program running time). After that, solutions have been continuously improved until the 
stop criterion was achieved after the 500 generations. The total running time for this 
scenario was 8m56s. 

 The solution found for this scenario corresponds to a Case II, i.e., feasible 
working paths were found for all demands, but not all links could be protected. That 
indicates that in order to protect all links, the number of LSPs should be reduced. For 
the working paths, the algorithm was able to distribute traffic with an average of 29.1% 
of occupation rate for the links. This result is illustrated in Figure 6, where the 
occupation rate at each direction of the bidirectional links is indicated. The solution 
computed did not tolerate the failure of 13 among the 53 links in the network topology. 
These links are indicated with gray demands in the figure. In average, during a failure, 
1.31 links have their capacity exceeded due the switching to the recovering paths. The 
occupation rate for these links was about 136%, in average.  

6. Conclusion 
 This paper presented a method for computing optimal LSPs for MPLS-based 
networks. The optimization approach uses a multi-objective cost function that permits 
the traffic engineer to balance the importance between the quality of the working paths 
and path protection when performing the LSP calculation. The evaluation scenarios 
indicated that the proposed method is scalable with respect to the network topology and 
the size of the traffic array, as it was capable of computing a fictional scenario with 
more than 1 thousand LSPs in less than 10 minutes. That indicates that this method can 
be expanded for computing solutions with a small number of simultaneous link and 
node failures. However, as the computation of the fcb component of the cost function 
(see equation 13) is expected to increase exponentially with the number of simultaneous 
failures, other approaches should be researched in order to treat scenarios with several 
simultaneous failures. 
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