

Robust Offline LSP Calculation for MPLS Networks

Paulo Roberto C. Estante, Edgard Jamhour

Pontifícia Universidade Católica do Paraná – PUCPR
Rua Imaculada Conceição, 1115 – Prado Velho – Curitiba – PR – CEP: 80215-901

Programa de Pós-Graduação em Informática Aplicada – PPGIA
{estantep,jamhour}@ppgia.pucpr.br

Abstract. This paper proposes an offline method to compute LSPs (Label
Switched Paths) for MPLS-based networks with support to path-protection.
The objective of the method proposed in this paper is to generate optimal
working and recovery paths for multiples demands subjected to capacity,
delay and path constraints. The path constraints are imposed in order to
achieve a robust LSPs planning, where the traffic demands could still be
accommodated in the case of a single link failure in the network. By using a
modified k-shortest path algorithm, we model the LPSs planning problem as
search problem, which is solved using a genetic algorithm approach.

1. Introduction

MPLS [Rosen et al. 2001] provides traffic-engineering capabilities to IP networks
through the establishment of LSPs (Label Switched Paths) that are similar to the ATM
virtual circuits. There are a few signaling protocols available to establish LSPs, such as
RSVP-TE [Awduche et al. 2001] e CR-LDP [Jamoussi et al. 2002]. Presently, the
RSVP-TE is the most usual signaling protocol. It has been implemented by major router
vendors and it is being extensively used on production networks. RSVP-TE allows
signalizing LSPs by using the link-state protocol routing information (e.g., OSPF or IS-
IS) or by imposing explicit routes.

 When the link-state protocol approach is used, the path taken by a LSP is
automatically chosen using the distributed routing information. Link-state protocol
extensions allow selecting distinct routes to the same destination by imposing path
constraints (e.g., Kats et al 2003). Although link-state routing protocols distribute
network related information, they do not carry the offered load (traffic demands)
information. Therefore, achieving global optimization goals is usually impractical by
using the link-state approach, because the routing decisions for a given flow does not
take into account the other flows.

 The explicit route feature is useful to the offline calculation of MPLS paths.
Offline calculation is usually performed by a centralized system that knows the network
topology and the entire predicted offered load. The offline approach has the advantage
of allowing a globally optimal network design. In particular, when path protection is an
issue, offline calculation allows predicting the load distribution behavior after a failure.
Alternatively, signaling protocols such as RSVP-TE offer dynamic recovery facilities,
where LSPs can be automatically re-signalized in case of failure. If necessary, the
recovery LSP can take resources of lower priority LSPs already established using the

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 509

preemption mechanism supported by the signaling protocol. In most practical scenarios
the dynamic recovery using the preemption mechanism is not recommended, as it can
lead to service disruption on many LSPs.

 This paper proposes an offline method to compute LSPs for MPLS-based
networks with support to path-protection. The objective of the method proposed in this
paper is to generate optimal working and recovery paths for multiples demands
subjected to capacity, delay and path constraints. The recovery paths are planned in
advance, in order to avoid the use of the preemption mechanism. A recovery path does
not consume any network resource, as it is signalized only in case of failure of the
corresponding working path.

 The path constraints are imposed in order to achieve a certain degree of path
protection. The degree of protection offered to the network can be expressed in terms of
the number of simultaneous node or link failures supported without leading to link
congestion. Because the multiple failure problem can be solved only to very redundant
networks, in this paper, we limit the degree of protection to a single link failure, i.e., the
traffic demands are required to be accommodated in the case of failure of “any” single-
link in the network. Even in the case of a single link failure, multiple working paths
may have to be switched to their corresponding recovery paths. Therefore, selecting
recovery paths in order to minimize service disruption and links congestion during
failures is a complex problem that can’t be manually solved for complex network
topologies. By using a modified k-shortest path algorithm, we model the LPSs with path
protection planning problem as search problem with a multi-objective cost function,
which is solved using a genetic algorithm approach. Multiple simultaneous link or node
failures will be addressed as future works.

 The remainder of this paper is structured as follows. Section 2 presents the
related work concerning the IP/MPLS traffic engineering and the offline LSP
calculation. Section 3 discusses the path protection concept and illustrates the necessity
of including the path protection constraints into the LSP calculation problem. Section 4
models the LSP calculation as an optimization search problem and presents the
proposed solution. Section 5 evaluates the proposed approach from logic and
performance viewpoints using sample topologies. Finally, section 6 concludes this
paper and presents future works.

2. Related Works
This paper proposes an offline method for traffic engineering on MPLS-based networks
with support to path protection. In the literature, we find several works addressing the
traffic engineering issue, and less frequently, the path protection issue. Because the
number of works published in this domain is large, we have selected only the works that
are closely related to our proposal.

 Fortz and Thorup (2000) propose a method to control the routes selected by the
OSPF protocol by optimizing the metrics assigned to network links. The method
proposed by the authors is purely IGP (Interior Gateway Protocol), i.e., it does not
employ MPLS. The authors take into account the projected demand (a traffic array) in
order to achieve a better distribution of the traffic and avoid link congestion. The
general routing problems is model as an optimization problem, where the cost function

510 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

penalizes unbalanced solutions, i.e., solutions that leads to high occupation rates of the
network links. The cost function was defined in terms of a piece-wise linear increasing
and convex function. The higher the occupation rate of link, the higher the cost assigned
to the solution. Occupation rates above 100% are strongly penalized. In our work, we
have employed a similar cost function to represent the traffic engineering component of
our multi-operational objective function.

 Mulyana and Killat (2004) propose an offline traffic engineering method to
hybrid IGP/MPLS schemes. The authors address MPLS-shortcut [Shen and Smit 2004]
scenarios, where LSPs are not required to be signalized from the ingress to the egress
routers, but only to partial paths. LSPs shortcuts are seen as virtual links by the IGP.
This approach offers a certain degree of traffic engineering to the network, while
reducing the total number of LSPs used. Given traffic array with the projected demand
and a maximum number of LSPs, the authors defines a search problem which consists
in defining a set of LSPs shortcuts that minimizes the maximum link occupation rate.
Similar to our work, the authors employ a genetic algorithm to solve the optimization
problem. However, they do not address the path protection issue. Skivée et al. (2006)
also addresses the IGP/MPLS scenario. Instead of a genetic algorithm, the authors
employ a simulated annealing meta-heuristic to compute a nearly optimal set of LSPs
that minimizes the congestion of the maximum occupied link and provides load balance.
The method selects the LSPs from a predefined list that contains all allowed LSP
candidates.

 Several works in the literature propose offline traffic engineering methods for
pure MPLS scenarios. Whilst most works defines the offline calculation of LSPs as an
optimization problem, the techniques employed to determine the optimal LSPs are quite
diverse. Lahoud et al. (2005) defines a linear programming framework to solve the
multi-objective optimizing problem that minimizes congestion on links and resource
consumption (by promoting shorter LSP paths), using a minimum number of LSPs.
Erbas and Mathar (2003) formulates the problem of selecting optimal LSPs as a mixed
integer problem solved using CPLEX 6.6. Similar to our work, the candidate LSPs are
determined using a k-shortest path algorithm. The authors evaluate the effect of
different objective function components: minimizing the route cost, increasing load
balancing and reducing the total number of LSPs. This formulation is limited to simple
topologies. The authors pointed out as future work developing a heuristic method for
solving the problem on large network scenarios.

 The protection of MPLS networks can be addressed from two viewpoints: path
protection and local repair [Huang et al. 2002]. Path protection are end-to-end
protection mechanisms where disjoint working and recovery paths are planned for each
LSP demand, from the ingress to the egress router. The recovery path is always
signalized by the ingress router. This method is considered slow due to the time taken
for the ingress router to perceive the failure and to signalize a whole new path.
Alternatively, in the local protection approach, a recovery segment can be signalized by
an intermediate node, immediately upstream of the fault, reducing both, the failure
perceiving time and the recovering time. The local approach, however, has the
drawback of leading to a sub-optimal resource allocation after a failure. Mélon et al.
(2003) proposed a real-time and decentralized method for LSP calculation that follows
the local repair approach. The method reduces the resource allocation required to obtain

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 511

the protection by assuming that, at any given time, at most a single failure will occur in
the network, and the recovering LSPs can share bandwidth. Giansante et al. (2004)
proposes an offline centralized method that follows the path protection approach. The
heuristic method presented by the authors is a three phase offline path protection
algorithm, where recovery paths are calculated aiming to protect against link failures.
The first phase defined the working paths using the best routes available, the second
phase calculates recovery paths (using resources left from phase one). Because phases I
and II employs only the best routes, the obtained solution can be non-optimal in terms
of the number of traffic demands served. Therefore, the authors propose a third phase
where a greedy algorithm is used to degrade primary and recovery paths in order to
accommodate more traffic demands.

 The offline method described in this paper employs several ideas already
explored in other works such as the k-shortest path algorithms, a non-linear cost
function to obtain load balance and a genetic algorithm to solve the LSP calculation as a
search problem. However, it differs from the previous works as it supports the
calculation of optimal LSPs from both viewpoints: path protection and traffic
engineering. To the extent of our knowledge, there are fewer works following this
approach. The work presented by Giansante et. all (2004) is a close match, but follows a
totally distinct approach, because the resources are reserved to the recovery paths. Our
method follows the Mélon et al. (2003) approach, where the single link failure
assumption permits to achieve path protection without unnecessarily wasting network
resources.

3. Path Protection Discussion
This paper proposes an offline method to compute LSPs paths for MPLS-based
networks with support to path-protection. For each traffic demand (i.e., a certain amount
of bandwidth to be reserved between two end points), our method is required to find
two disjoint paths: a working path and a recovery path. Both paths can be configured in
the MPLS ingress router by using the explicit route RSVP-TE feature. Most commercial
routers are capable to automatically switch from the working to the recovery path in
case of failure of, at least, one of the links of the working path.

 Initially, no bandwidth is reserved for the recovery paths. However, in the case
of a link failure, several LSPs may possibly switch to their respective recovery path.
Our method needs to assure that, even in this case, no network link will exceed its
bandwidth capacity. Therefore, in order to achieve a robust LSP planning, the definition
of the working paths needs to leave network resources for the recovery paths.

 The competition for resources between working and recovery paths is illustrated
in Figure 1. Consider a sample scenario where there are five flow demands of 600Mbps
(LSP2 to 6) and one flow demand of 400Mbps (LSP1) to be carried from router 1 to
router 5. Figure 1 shows the optimal path planning considering only a load-balance
objective among the network links. This path planning considers only working paths,
and does not support path protection for all LSP demands. For example, if a link of the
1-3-5 path fails, one LSP demand can be switched to the 1-4-5 path. The available
resources after the link failure and the path switching are illustrated in Figure 2. In spite

512 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

of existing 700Mbps of bandwidth available between routers 1 and 5, it is not possible
to find an alternative path for the second LSP affected by the failure.

Figure 1. Optimal load-balance allocation considering only working paths

Figure 2. Scenario Topology simulating link 3-4 failure.

Figure 3. Scenario Topology with path protection.

 The amount of free resources after the failure indicates that it is possible to find
a solution offering path protection to all LSP demands. A possible solution is illustrated
in figure 3. The 400Mbps demand is assigned to the 1-2-5 working path. Two 600Mbps
demands are assigned to the 1-3-5 working path and three 600Mbps demands are
assigned to the 1-4-5 paths. The corresponding recovery paths are shown in the same

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 513

figure. After a single link failure, the proposed solution can always accommodate the
affected demands by switching to the recovery paths without exceeding the links
capacity.

 For simple scenarios, the problem of defining working and recovery paths can
be manually solved. For complex network topologies and great number of LSP
demands, it is necessary to employ computational techniques in order to solve this
problem.

4. Proposal
 The algorithm proposed to compute the LSP paths takes as input the network
topology (including link capacity and latency), the projected demand to the network (a
traffic array) and the maximum delay tolerated by each individual flow. The solution
returned from the algorithm can be one of the following three cases.

• Case I: The algorithm was able to find working and recovery paths for all input
demands without exceeding the link capacities in the case of no-link failures and
in the case of a single link failure. The algorithm does not guarantee network
protection to the case of multiple link failures.

• Case II: The algorithm was able to find working LSP paths, but some link failure
situations leads to link overload. In this case, the algorithm outputs all the link
failure situations that generates congestion on the network, e.g. should link aj1
fail, then link aj2 might have to transmit a certain (more than 100) percentage.

• Case III: The algorithm was not able to find the working LSP paths for all traffic
demands, due to network topology or link capacity limitations. In this case, the
algorithm will remove exceeding demands, one by one, from the lowest to the
highest priority. After a demand is removed, the algorithm is executed again.
The process of removing lowest priority demands is repeated until a solution is
found.

4.1. Problem Formulation

In this work, we model the network topology as a graph. The topology graph G is
defined by its vertex set, V, and its arc set, A. This is expressed as follows:

 G = (V, A) (1)

 V = {vi | i = 1,2, ..., N } (2)

 A = {aj | j = 1,2, ..., M } (3)

 Where N is the number of nodes and M is the number of links. The aj link
connecting the adjacent nodes i and k is usually noted by:

 aj = (vi, vk) (4)

 Each aj link, (aj ∈ A), has the following attributes: a capacity cj (expressed in
Mbps) and a latency lj (expressed in ms). A traffic requirement tk between nodes vi and
vj is represented by a tuple containing the bandwidth requirement dij (corresponding to
the demand to be carried from the origin i to the destination j) and the maximum end-to-
end delay (expressed in ms).

514 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

 tk = (bij, dij) (5)

 The traffic array T contains the point-to-point requirements between
origin/destination (OD) pair of nodes:

 T = { tk = (bij, dij)| i, j ∈ [1,N] }={t1 ... tk ... tD} (6)

 where: D = number of traffic demands

 The problem consists in determining the optimal LSP paths (working and
recovery) corresponding to each traffic requirement tk. The LSP paths corresponding to
a tk = (bij, dij) requirement is noted as follows:

 lspk = (Wk, Rk) (7)

 The paths Wk and Rk correspond to a sequence of arcs, and can be represented
as follows:

 () []Mwjaaa wJwjwk ,11 ∈= LKW (8)

 () []Mrjaaa rJrjrk ,11 ∈= LKR (9)

 The sequence Wk and Rk are required to be disjoint, i.e., they have no common
link, i.e.,

 [] []DkMjaaaa kjkjkjkj ,1,1 ∈∀∈∀∉⇒∈∧∉⇒∈ WRRW (10)

 Let lsp = {lspk | k=1..D} be a candidate solution corresponding to all demands
the traffic array T, defined in (5). A solution LSP is considered feasible if:

• The resulting traffic load assigned to any link does not exceed the link
capacity.

• The resulting end to end delay corresponding to a LSP path does not
exceed the delay traffic requirement.

• In the case of failure of any single link, and the switch of the affected
LSPs to the recovery paths, the resulting load assigned to any link does
not exceed the link capacity.

 An optimization problem can be defined in terms of a cost function fc(lsp). For a
candidate solution lsp, fc(lsp) represents the “level of rejection” of the corresponding
solution. In order to be valid a solution lsp must be feasible, i.e., it must satisfy a set of
constraints related to the nature of the problem being solved. Let LSP be the space of
feasible solutions that satisfy the all the problem constraints. Then, the optimization
problem consists in finding the element lsp=lsp*∈ LSP that minimizes the fc(lsp)
function. Mathematically, it can be expressed as follows:

)(inf)(and ** lsplspLSPlsp

LSPlsp cc ff
∈

=∈ (11)

 In this work, we considered a multi-objective cost function that addresses the
following issues:

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 515

a) We penalize candidate solutions that lead to overload links, considering
the situation where the network has no link failure (only working paths
are used). This is useful for accommodating new traffic demands without
modifying the already assigned ones. When the load assigned to a link
exceeds its capacity, the corresponding solution is severely penalized. As
noted by Fortz and Thorup (2000), the load balance can be achieved by
adopting a convex increasing non-linear cost function. We note this
component of the fc function as fca , and it is defined as follows:

)()(f
1

ca ∑
=

=
M

j
jργlsp (12)

 where:
⎪⎩

⎪
⎨
⎧

<⋅
≤≤

=
jj

jj
j ρρ

ρρ
ργ

1for 100
10for

)(3

3

 and: ρj = occupation rate of the aj link

b) We strongly penalize candidate solutions when, after a link failure, the
resulting load exceeds the capacity of at least one link. The traffic load is
evaluated considering that all LSPs affected by the link failure have
switched to their respective recovery paths. We note this component of
the fc function as fcb.

),(1)(f
1

cb ∑
=

=
M

k
cfailure kf

M
lsplsp (13)

)(),(f
,1

cfailure ∑
≠=

=
M

kjj
jk ργlsp (14)

 where: fcfailure is the cost function when the k-th link fails

c) Just avoiding network congestion by better load distribution leads to
paths being longer, which results in extra bandwidth consumption
[Lahoud et al. 2005]. We penalize candidate solutions when the working
LSP path does not correspond to the optimum path (i.e., the path
determined using the dijkstra algorithm in the case of no link failure).
We note this component of the fc function as fcc.

)(f1)(f
1

raref_dijkstcc ∑
=

=
D

k
klsp

D
lsp (15)

)delay(

)delay()(f
,

raref_dijkst
dijkstrak

k
k lsp

lsplsp = (16)

 where: delay(lspk) is the delay of the candidate lsp for the demand tk

 delay(lspk,dijkstra) is the delay considering the optimum path

 The cost function assigned to a solution lsp is the defined as follows:

)(f)(f)(f)(f cccca lsplsplsplsp ⋅+⋅+= βα bc (17)

516 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

 The parameters α and β are weigh factors, and can be used to determine the
relative importance of the components of the cost function.

4.2. Candidate LSPs Computation

Our proposal solves the optimization problem defined in (17) using a search algorithm.
A common approach to adapt the path definition to a search algorithm consists in
defining a set of candidate solutions for each LSP demand using a k-shortest path
algorithm (see Mulyana and Killat (2004) and Skivée et al. (2006), for example). That
means that for each LSP demand, besides the shortest path defined by the dijkstra
algorithm, alternative (longer) paths will also be considered. The search method is
responsible for choosing a path for each LSP demand among these candidates.

 In our approach, the k-shortest path algorithm is used to define a set of working
paths and recovering paths. The multiple working paths are obtained by removing links
from best path found (dijkstra), one by one. In some situations, removing only a link at
time from the best path is not enough to provide several distinct paths. This happens if
the alternative solution is disjoint with respect to the best path. In order to overcome
this limitation, after all links from the best path were removed, our algorithm initiates a
second round where a link from the best path and a link from the second best path are
simultaneously removed. This assures that, if the topology allows, at least three
candidate working paths are found for each LSP demand.

 The recovery paths are computed in a similar fashion to the working path
computation. For determining a recovery path, the k-shortest path algorithm is
computed after removing all links of the respective working path. Figure 4 shows all
possible candidates for our example topology (Figure 3). Each flow demand tk has a list
of candidate LSPs. Each candidate LSP is composed by a working and a recovery path.
Note that we may have different candidates for the same demand with equal working or
recovery paths, but at least one the paths must be distinct.

Figure 4. Possible candidates for each demand tk

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 517

 The metric used for the Dijkstra algorithm is the link’s propagation (and internal
routing/switching) delay. Links that cannot transport a determined demand are excluded
from the graph. Also, a candidate LSP is only considered for calculations if both
working and recovery paths honors the maximum delay defined for the flow demand.
This is useful when for calculating LSPs for delay sensitive demands (e.g., satellite
links may be avoided for voice or multimedia traffic). If delay is not an issue on a given
network, this metric can be replaced by a simple hop count.

4.3. Genetic Encoding and Evolution Cycle

A genetic algorithm (GA) is a search method based on natural evolution, where a
population of candidate solutions goes through an evolution cycle till a convergence
criterion is reached. The method creates a population of individuals (solutions), ranking
them according to their fitness (objective function). Next, one performs the crossover
operation among the best ranked individuals, where new individuals are formed by
combining genes (characteristics) from their parents. The new individuals are used to
replace the individuals with worse fitness, creating a new generation of individuals.
This completes an iteration of the algorithm. This iteration process is repeated for a
certain number of generations. The idea is that best ranked individuals will provide the
better characteristics to the future generations, improving the solution to the
optimization problem.

 Besides the crossover function, GAs can also perform mutation on the
individuals. This operation randomly changes genes on the individuals (possibly
introducing new characteristics). The mutation operation helps the algorithm to explore
new areas in the solution space, as well as distracting the algorithm from converging
[Haupt and Haupt 1998], avoiding the solution from being trapped in a local minima.

 For the population encoding, we have used a similar model than Mulyana and
Killat (2004), where each individual represents a candidate solution (i.e., an lsp set in
equation 11) for the entire traffic array. Each gene of the individual indicates a
candidate solution, lspk, for a specific tk demand. Figure 5 illustrates the encoding of an
individual considering a traffic array with six demands. In this example, there are six
candidates for each demand computed using the k-shortest path algorithm. Each gene of
an individual corresponds to an index that point to a specific solution among these
candidates.

Figure 5. An example individual (chromosome) encoding

518 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

 First, the algorithm randomly generates an initial population. Then, at each
iteration, all individuals are ranked according to their cost function. A percentage of the
best ranked individuals are used as the parents for the crossover operation. This
percentage is noted as “parent rate” and it is a tuning parameter for the algorithm. Every
crossover operation generates two offspring, being the second one the complement from
the first one (i.e., if offspring #1 inherits the first gene from parent #2, then offspring #2
will inherit the first gene from parent #1, and so on). The crossover mechanism used
was the uniform-crossover, where each offspring has equal probability of inheriting
each gene from one of the two parents. After the crossover, a mutation operation is
randomly applied to a percentage of the genes of the population, excluding the
individuals that were used as parents for new offspring. This percentage is noted as
“mutation rate”.

 The convergence criteria were defined in terms of the maximum number of
generations or a specific number of generations reached without any improvement. In
this work we have adopted the convergence criteria of 50 consecutive generations
without improvement or 500 generations.

5. Evaluation
We evaluate our method from two distinct viewpoints: logic and performance. From the
logic viewpoint we are interested in determining if the algorithm could output a solution
that respects the constraints and the objective function. From the performance viewpoint
we are interested in evaluate if the algorithm was able to output a solution for a large
topology and traffic demand in a reasonable computation time.

 To validate the algorithm from the logic view point we used the simple scenario
presented in section 3 (Scenario I). To validate the algorithm from the performance
viewpoint we create a fictitious scenario based on the international research network
GÉANT, assuming a full mesh demand among all network routers (Scenario II).

5.1. Scenario I

The topology and the demands used on this test were exactly as presented on Section 3
(Figure 1 to 3). Running a C program with the algorithm on a Linux-based system
(AMD Opteron 2.2GHz), with parameters: α=1 and β = 0.1, the algorithm found the
best solution in the fourth generation, and converged after 54 generations. The solution
returned was the same as presented on Figure 3. Population size used was 50
individuals, parent rate being 20% and 2% mutation rate. The total running time
(including candidates LSP computation and optimization until convergence) was 0.045
second.

5.2. Scenario II

The GÉANT network topology (Figure 6) had to be slightly modified in order to
provide a more significant scenario for testing the algorithm performance. In order to
increase the number of possibilities for creating recovery paths we have inserted six
bidirectional links on the original network topology, as denoted on Table 1. Also, all
links inputted were at least 155Mbps. We have used unitary hop count as the delay
metric.

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 519

 We have assumed a full mesh scenario, where a bidirectional demand was
assigned to every pair of nodes in the topology. Independent LSP paths are computed
for each direction of the traffic demand. The amount of bandwidth assigned to each
demand was defined according to the equation 18. This equation normalizes the
bandwidth requirements for each LSP according to the smallest capacity of each node in
the pair. The node capacity corresponds to the summation of its all link capacities. This
approach allows routers with low capacity links to handle full-mesh LSPs with every
other router on the topology. The constant 1/4 was used in order to leave some free
throughput on the routers so they could serve as transit for other LSPs.

countnode
throughputthroughptMin

t ji
ij _*4

),(
= (18)

Figure 6. The GÉANT topology

520 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

Table 1. Links added to the GÉANT network topology for the test

 IS-RU NO-FI EE-LV LV-LT RO-TR CY-MT

Speed 155Mbps 10Gbps 622Mbps 622Mbps 155Mbps 155Mbps

As the number of nodes is N=33, the traffic demand for this scenario consists of
D=1056 LSPs demands. The number of links (arcs) is M=53. Running the program on
the same machine as the one from the example 5.1, the program took 0.9 second to
compute 6124 LSP candidates (average of 5.8 LSP candidates per demand). The
population size used was 50 individuals, parent rate being 20% and 2% mutation rate
(identical to the scenario 1). Using α = 1 and β = 0.1, the algorithm was found a feasible
solution (for working paths) on the 28th generation (taking about 30 seconds of
program running time). After that, solutions have been continuously improved until the
stop criterion was achieved after the 500 generations. The total running time for this
scenario was 8m56s.

 The solution found for this scenario corresponds to a Case II, i.e., feasible
working paths were found for all demands, but not all links could be protected. That
indicates that in order to protect all links, the number of LSPs should be reduced. For
the working paths, the algorithm was able to distribute traffic with an average of 29.1%
of occupation rate for the links. This result is illustrated in Figure 6, where the
occupation rate at each direction of the bidirectional links is indicated. The solution
computed did not tolerate the failure of 13 among the 53 links in the network topology.
These links are indicated with gray demands in the figure. In average, during a failure,
1.31 links have their capacity exceeded due the switching to the recovering paths. The
occupation rate for these links was about 136%, in average.

6. Conclusion
 This paper presented a method for computing optimal LSPs for MPLS-based
networks. The optimization approach uses a multi-objective cost function that permits
the traffic engineer to balance the importance between the quality of the working paths
and path protection when performing the LSP calculation. The evaluation scenarios
indicated that the proposed method is scalable with respect to the network topology and
the size of the traffic array, as it was capable of computing a fictional scenario with
more than 1 thousand LSPs in less than 10 minutes. That indicates that this method can
be expanded for computing solutions with a small number of simultaneous link and
node failures. However, as the computation of the fcb component of the cost function
(see equation 13) is expected to increase exponentially with the number of simultaneous
failures, other approaches should be researched in order to treat scenarios with several
simultaneous failures.

References
Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V. and Swallow G. (2001)

“RSVP-TE: Extensions to RSVP for LSP Tunnels”, IETF RFC 3209.

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 521

Awduche, D., Chiu, A., Elwalid, A., Widjaja, I. and Xiao, X. (2002) “Overview and
Principles of Internet Traffic Engineering”, IETF RFC 3272.

Erbas, S. and Mathar, R. (2003) “A Multiobjective Offline Routing Model for MPLS
Networks”, Proc. of the 18th International Teletraffic Congress.

Fortz, B. and Thorup, M. (2000) “Internet Traffic Engineering by Optimizing OSPF
Weights”, IEEE INFOCOM.

Giansante, E., Iovanna, P., Oriolo, G., Pascali, F.,.Romagnoli, A. and Sabella, R. (2004)
“Offline Protection Algorithm in a MPLS-based scenario”, Workshop on Traffic
Engineering, Protection and Restoration for NGI.

Haupt, R. and Haupt S. (1998) “Practical Genetic Algorithms”, John Wiley & Sons, p.
41-42.

Huang, C., Sharma, V., Owens, K., Makan, S., “Building reliable MPLS networks using
a path protection mechanism”, IEEE Communication Magazine, pp. 156-162, March
2002.

Jamoussi, B., Ed., Andersson, R., Callon, R., Dantu, R., Wu, L., Doolan, P., Worster,
T., Feldman, N., Fredette, A., Girish, M., Gray, E., Heinanen, J., Kitly, T. and A.
Malis, (2002), "Constraint-Based LSP Setup using LDP", IETF RFC 3212.

Katz, D., Kompella, K., Yeung, D. (2003), "Traffic Engineering (TE) Extensions to
OSPF Version 2", IETF RFC 3630.

Lahoud, S., Texier, G. and Toutain, L. (2005) “Offline Flow Allocation for Traffic
Engineering in MPLS Networks”, LANMAN Greece.

Mélon, L., Blanchy, F. and Leduc, G. (2003) “Decentralized Local Backup LSP
Calculation with Efficient Bandwidth Sharing”, IEEE ICT.

Mulyana, E. and Killat, U. (2004) “Optimization of IP Networks in Various Hybrid
IGP/MPLS Routing Schemes”, 3rd Polish-German Teletraffic Symposium.

Rosen, E., Visnathan, A. and Callon, R. (2001) “Multiprotocol Label Switching
Architecture”. RFC 3031, IETF.

Shen, N. and Smit, H. (2004) “Calculating Interior Gateway Protocol (IGP) Routes
Over Traffic Engineering Tunnels”, IETF RFC 3906.

Skivée, F., Balon, S. and Leduc, G. (2006) “A scalable heuristic for hybrid IGP/MPLS
traffic engineering – Case study on an operational network”. ICON '06. 14th IEEE
International Conference on Networks, 2006.

522 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

	Menu Principal
	Sumário

	Anterior
	Próximo

