26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 441

Dependable Web Service Compositions using a Semantic
Replication Scheme

Daniela Barreiro Claro!, Raimundo Jos de Araljo Macédo'

ILaborabrio de Sistemas Distrilddos - LaSiD
Departamento de €ncia da Comput@p
Universidade Federal da Bahia
Av. Adhemar de Barros, s/n - Campus de Ondina
Salvador, BA — Brazil CEP. 40170-110

{dcl ar o, macedo}@if ba. br

Abstract. The broad acceptance of a WWeb service standard has led enterprises
worldwide to publish their services and make businesses via the Web on the
Internet. Consequently, dependable Web service executions are a new chal-
lenge. Although existing work proposes to extend the WWeb service structure with
fault tolerant features that support such applications, most of them meet only
the reliability and availability requirements of single Web service executions,
not properly addressing the problem of dependable Web service compositions.
This paper overviews existing work on available WWeb service compositions and
proposes a new approach to create highly available compositions based on a
semantic replication scheme. A prototype of the proposed approach was evalu-
ated in a series of experiments where Web service failures are considered and
the related performance data are presented.

1. Introduction

Web services are autonomous applications that can be pablidocated, and invoked
over the World Wide Web. Because their potential for hetemeges service integration,
today there is an increasing amount of companies and owrg#ms that implement their
core business and outsource other application servicestlozdnternet. In such a sce-
nario, it is frequent that no single Web service can suit theefionality required by the
user, leading to the need to combine existing serviceshegat order to fulfill the user
request. Such a combination of Web services is called a Welteeomposition (WSC).

Whereas Web service specifications cover a number of issumgngafrom
security to transaction support, by now no specification bddressed the prob-
lem of dynamic Web service compositions. This has motivaéeadonsiderable
number of research efforts on the composition of Web sesvibeth in acad-
emia and in industry [Hull and Su 2004, Hakimpour et al. 208§garwal et al. 2004,
Rajasekaran et al. 2004, Andrews et al. 2003, Martin et al4RO particular, a good
deal of this effort is devoted to the research of automatromasitions, for instance, by
exploiting Al planning techniques [Martinez and LespemB604, Ugur et al. 2004].

On the other hand, building applications from the automaggembling of exist-
ing Web services raises another important concern: theréadf a single Web service
can lead to the failure of the whole composition. Therefengilability or continuity
of service requirements must be taken into account if oneldvike to apply WSC

442 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

in critical applications such as health systems and stodlkets [Birman et al. 2004].
Hence, the construction of dependable Web services cotigps(WSC) has also de-
served some attention from the research community in thgdass [Majithia et al. 2004,
Mikalsen et al. 2002, Bhiri et al. 2005, Pires et al. 2002, @oHw et al. 2007]. How-
ever, as we will show in this paper, most previous relateckvass not properly addressed
the continuity of service problem of WSC, focusing only on dategrity guarantees pro-
vided by transactional approaches. Re-executing an abivaieshction can be, however,
unacceptable for some critical applications.

A commonly used technique for improving availability is tepticate services.
Unfortunately, one cannot always assume or apply convestticeplication techniques
[Schneider 1993] for Web services published on the Intednettheir degree of auton-
omy and heterogeneity. Consequently, we argue that suchmdabpiity mechanisms
should be implemented in an upper layer into the Web compasithemselves. This
paper tackles this problem by first discussing dependabgitjuirements of WSC and
by introducing a new approach that meets these requiremeéhésbasic idea of our ap-
proach is to use ontologies to form a set of semanticallyatplicas. More precisely, we
propose a replication scheme where the failure of a primemyice can be masked by the
execution of another service semantically compatible s Téplication scheme has been
incorporated and implemented into the SAREK dependable web service composition
framework, which is also introduced in this paper.

SAREK is made up of two main modules: the planner and the esectthe
planner proposes a set of semantically similar compostiaere each proposed com-
position satisfies the user request (user goal). The exeisutten in charge of executing
a composition related to a user goal in the following way.réttfiandomly chooses a com-
position. If some Web service in this composition is unalai, another composition can
be chosen and executed. Once every Web service in the cdiop@siecutes without fail-
ures, the composition reaches the given goal. To make SAREKmore dependable we
propose to replicate (with a conventional primary-backeication[Jalote 1994]) both
the planner and the executor modules.

In order to validate the SAREK prototype, we have evaluatedetficiency of
our replication scheme in a simulated public competitiacpss to repair old buildings.
The main motivation to apply SAREK on public competitions wlas possibility to work
with service compositions that would have a potential togg#iad in real scenarios, since
today procedures for such compositions are usually mamaiadequire a long time period
for choosing companies that fit the public work needed.

The remaining of this paper is organized as follows. Sec#aiscusses and
proposes a set of dependability requirements for WSC. Se8tfmesents the design of
SAREK and some implementation details. Section 4 shows soatetppe experiments
and related performance figures. Section 5 compares SARBKrelated work in the
light of the requirements discussed in section 2. Finaldgtien 6 concludes the paper
and gives future directions.

LIn the fictional Star Trek universe, Sarek is a Vulcan amtmmsand father of Spock.

26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 443

2. Required Properties for Web Service Compositions

In the literature, a composition of Web services is usuallyded into two main aspects:

the choreography and the orchestration [Hakimpour et &52Blull and Su 2004]. The

choreography deals with how Web services interact. As Wahcss are autonomous and
each provider can develop and publish its own Web servicenoanication problems,

such as languages and number of parameters can make difiepitocess of composing
Web services. Thus, choreography deals with matching enadbnd interface communi-
cations in compositions [Bhiri et al. 2005, Pires et al. 20@chestration deals with the
whole composition, a kind of goal-oriented approach fofilfilg a user request. The or-
chestration can be manual or automatic. A manual orch&stnateans that clients should
search for and compose their own compositions, taking dawatahe order of web ser-
vices and the parameters that should be passed. In the dig@muess, the client gives
a goal (the user request) and the system should automgtgssdich for and compose
the Web services to reach this goal. This paper treats omlyestration for automatic

compositions.

Dependability requirements in orchestration entail thetionity of the compo-
sition execution even if a Web service fails [Birman et al. £00For example, even
if the company A Web service is unavailable, the whole contjoostries to fulfill the
user request by using another composition. Another kindrolblem concerns delayed
responses, i.e. a partially operational web service. Is ¢thse, the service should be
replaced ensuring the continuity of the composition. Aeoffailure can be Internet dis-
connections: by the moment of confirming the web service @i@t, an outage can
disrupt Internet connections. All these kinds of faultsidtde treated by a fault tolerant
mechanism in order to reach the goal of the composition.

Many mechanisms have been introduced by the Web service oaitymnto
treat failures such as FT-SOAP [Fang et al. 2007], WS-ReiigliEvans et al. 2003],
WS-ReliableMessaging [Bilorusets et al. 2005] and WS-Reptioatbalas et al. 2006].
Whereas these mechanisms address several reliabilityreegemts of Web services,
they cannot ensure highly available nor dependable cortiqasi(continuity of service).
Building reliable Web service compositions is much more clifty due to the degree of
autonomy and heterogeneity of Web services [Pires et ak]200

Taking into account the problems cited above that can happencomposi-
tion process, we argue that a composition of Web servicealdhespect data con-
sistency and computational availability in the presencéVeb service failures. Fur-
thermore, such properties should be provided without comming the scalability of
compositions and transparency, two commonly requiredifeatof distributed systems
[Coulouris and Dollimore 1988].

Below we further comment on the properties we believe shoaldespected by
automatic Web service compositions.

Data Consistency.A composition of Web services should guarantee the integfitata
in its execution process. If a service fails, a data recowaeghanism takes place
guaranteeing the data consistence of the whole compasition

Computation Availability. Some Web services are published by third-part enterprises.
Thus, it is not possible, from a service client perspectivegssume that all ser-
vices in a composition are reliable. In this case, a composghould guarantee

444 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

availability without knowing the reliability level of silg Web services of a com-
posite.

Scalability. As a composition is a combination of Web services, this priypgiarantees
the composition ability to handle a growing amount of welvieess. For example,
a composition should ensure that it works well either witteéhservices or with a
hundred Web services.

Transparency. The composition should guarantees that a Web service isdadl and
removed from a composition in a transparent way, making fierdnce in order
to achieve the composition goal. For example, if a servide ¢& has a degraded
time execution, the composition should replace this serticreach the given
composition goal in a transparent way.

In the following section we describe our approach for getirageautomatic Web
service compositions, which respect the above properties.

3. The SAREK approach

System Model and Assumptions. A composition problem involves a set of activities
a; € A;j € [1..m], m is the number of activities, and a set of serviees S,i € [1..n],

n is the number of Web services. These services can be orgeexczerding to activities
as communities. Thus, each commurfityis a subset of candidate services for a specific
activity a;, S;- C S;. A compositionC' is a sequence of activities;, < ay, as, ...a,, >
performed by a sequence of selected Web serviges sy, ss, ...s, >.

Web Services are implemented by processes. Thus, we asstistalauted sys-
tem made of distributed processes that communicate by egolg messages through
communication channels. Channels are assumed to be retiaéyedo not lose, alter, nor
duplicate messages. Such channel functionality can bewahiwith mechanisms such
as WS-Reliability[Evans et al. 2003] or WS-ReliableMessagdiigfusets et al. 2005].
Processes are assumed to fail only by crashing (prematuadiyng their execution).

SAREK is a modified and enhanced version of SPOC [Claro et alf]20here
its internal architecture has been re-designed and falg@iteint mechanisms introduced
in order to attain highly available compositions. The aetture of SAREK is divided
into two major modules: the Planner and the Executor. Thersdule, the Planner,
aims to automatically determine the activities for a givemposition. The Executor
module executes the composition defined by the Planneéiatyalternative execution
paths when necessary (due to failure of composite serviBesh modules are replicated
using a passive replication technique. If the primary medails, a backup is voted and
takes over the execution. The modules are interrelatedeyccbmmunicate themselves.
The output parameters of the Planner module are the inpaters for the Executor
module. Figure 1 depicts SAREK with both modules and theernefations.

The Planner execution is divided into two main phases: Rtgnand Optimiza-
tion. At the end, the Planner module finds semantically simebmpositions based on
multiobjective optimizations. One of these compositiansdlected by the Executor mod-
ule. If, for some reasons, a compositiohcannot be executed, another compositién
Is selected and the Executor module tries one more time.€ffsgres that even if a Web
service that belongs to the composition fails, SAREK doe$éist to execute another
composition to reach the given request. The replacementailieal Web services is done

26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 445

SAREC Framework

User

Planner Module *‘ Executor Module
Goal-drives e, C, - ACEFGT
Iﬂ'::> C, - BGFHTD :>
n

Figure 1. A general View of SAREK with the Planner and the Executor Module

transparently regarding the user request. So, such aitéiabhechanism of SAREK
respects the requirddansparency property.

SAREK also guaranteedata consistency because it applies transactional ap-
proaches in each composition. Thus, if a composition is notessfully executed, the
first measure is to retry the composition handling trandeauts. If the problem continues
and no other semantically similar composition is found tt®le composition is aborted
ensuring the integrity of the data.

As pointed out previously, the Planner itself should beat#é enough to ensure
reliable Web service compositions. There are > 2 instances of the planner module,
where aP;,i € [l..n] is voted the primary Planner module and the others will act as
backups. The backup planner module (or the set of backum@tanodules) starts at the
same time as the primary one.

The actual execution of all backup Planners monitBfs execution. IfP;, for
any reason, fails a new; is chosen and then it takes over the execution (a voting al-
gorithm could be used in this process [Lynch 1996]). Thiscpes ensures that even if
the Planner module crashes, SAREK is still able to fulfill tlenrequest, respecting the
computational availability property. It is important to observe that if the Planner duogs
accomplish its goal, the Executor module cannot even start.

The planning phase (see section 3.1) determines autohatita services that
participate in a composition in runtime. The fact that oumpasition is only defined
at runtime makes easier the addition of new Web services ¢timtrasts with some pre-
vious work that define the compositions in compiling timehisTcharacteristic favors
scalability.

The optimization phase ensures that a set of trade-off ceitipas are found
using a multiobjective optimization algorithm (see setti®.1). The evaluation of
the genetic algorithm used in the optimization process leelpresented elsewhere
[Claro et al. 2006]. Oncé’; has executed and a set of Pareto optimal compostti@es
mantically similar) has been proposed, the Executor mocaestart its execution. The
Executor module also uses the primary-backup replicatihierse just described to the

2Pareto optimal solutions or non-dominated solutions aeg afssolutions where a given solution does
not dominate another one and vice-versa. They are used tobjakttive optimizations where the notion
of optimal solutions is based on Pareto’s relation of doméea

446 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

Planner module.

3.1. Planner Module

As previously state, the Planner module is made up of two mhases: the Planning
phase and the Optimization phase. The Planning phasedtdesth OPS (Ontology
to Publish Services), an ontology repository to discoveb\&ervices. OPS is an OWL
ontology which describes each Web service in an OWL-S forifta¢.matching algorithm
used between the planning algorithm and the concepts in GRBSwimple hierarchical
method. This ontology has the domain description that SARE&swith (i.e., public
competition process). The planning phase can interact rtiam@s with this ontology
so as to find new Web services for the composition. This phass @ determine the
activities that will be composed to fulfill the user requéstch activity corresponds to an
action in the planning algorithm. A classical planner basegreconditions and effects
was used. If a service has not ever been included in a plan, AgRiBuld find this
service in the OPS and add it to the plan and continue planmitibthe goal matches the
action effects. Thus, this phase determines the set ofitaesivl that can reach the given
request.

The Optimization phase optimizes the combination of Weliises s; and activ-
ities ;. Thus, this phase determines which Web service performshnduitivity. The
values used to optimize the composition are based on thraasti values retrieved from
each candidate Web serviege S’,Va € A. This phase is like a quotation system that
retrieves all estimated values of the candidate Web sendoe optimizes these values
producing a set of trade-off (semantically similar) composs. The set of compositions
is produced because of the presence of more than one objeztyptimize. For example,
consider these two objectives: minimize cost and maximezeice reputation, both are
contradictory.

SAREK uses a genetic algorithm called NSGA-II [Claro et al. ZJG0 solve this
optimization problem. Despite the fact that each solutidfills the user goal, each one
has a different set of estimated values. Among these Pasetations, the Executor
module will randomly choose initially only one of them torstidhe execution.

3.2. Executor Module

The Executor module executes a composition of Web serviassdon prefixes. Each
composition proposed by the Planner is represented in a OWle;%nd, during execu-
tion, the Executor calls each Web service that appears irutireng composition.

In order to provide fault tolerance both a transactional amdplication mecha-
nisms are applied, which are described below.

Transactional level. A transaction technique is used to guarantee data consysten
case of a composition failure. Using a temporal redundaneghanism, SAREK
tries the same composition one more time to recover from ailplestransient
fault. If the problem continues, before rolling back thensaction, SAREK
chooses another composition among those proposed by thieePlanodule.

3We use all over this paper the wordsade-off, Pareto andsemantically similar as synonyms. In fact,
all of them describe the solutions (individuals) retriefen the NSGA-II algorithm.

26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 447

Semantic replication scheme.During execution of a composition, faulty Web services
can be replaced by a semantically similar services ensthetgansparency prop-
erty. We call such a redundancy scheme semantic replicafi@nargue that this
is a kind of spatial redundancy because there is a set of caitigres that achieve
the same goal. This scheme uses a prefix approach so as tasegerformance
when re-executing a partially failed composition. The prafgorithm works as
follows. Assume the running composition is definedkasy, ss, s3, ..., s, > and
that this composition fails because of the failuregfbut services; ands, were
run correctly. In our examples sq, s2, s3, altogether form a composition. In such
a compositions; and sy must be executed successfully before the execution of
s3. Observe that the execution ef depends on the results produced$yand
s9. For example, ifs; is @ company that provides woaogl, has to be a company
specialized in building wooden staircases. In other wordands, are precondi-
tions fors;. Thus, in order to avoid re-executing ands,, the prefix algorithm
searches another composition that starts with such thexprefi,, s, >, saving
recovery time.

If all these fault tolerant mechanisms of SAREK fail in exéiegia composition to
termination, an error is shown to the user informing thatekecution of the Web service
composition was not possible.

3.3. Experimental Tests and Its Performance Evaluation

As a proof of concept, SAREK has been applied to a scenarioentdslic competition
processes are carried out for repairing public buildingsvegal prototype experiments
have been conducted and data performance collected foutaxgcompositions where
single Web Services were forced to fail. Before proceedirghtow the experimental data,
we explain in more details the application scenario.

Case Study - Public Building Competition Process. The competition process for
restoring public buildings starts with a request for restion. Based on this request,
an architect with a state agent will determine the work thautd be done on the build-
ings. This work is grouped into categories based on a@#itirhe competition process
will be then organized by work’s category. An enterpriseloarcharacterized as a general
enterprise, which executes many specialized kinds of wogkspecialist one, which does
only one work at a time. In our first experimentation we willypnonsider enterprises
that do only a specific work. The architect will also define aheo for the activities of a
work. Once the work plan is determined, the enterprises ead &lso via email) their
propositions with the estimated cost.

Once propositions have been received, the state agent teeadalyze them, one
by one, based on their costs, duration of work, enterprisefsover and reputation in or-
der to find a good combination between enterprise and worgh Sunulticriteria analysis
will lead the state agent to decide which enterprise willceite which task and the Com-
petition Process will be terminated. If many enterprisesaandidates to execute some
work, this task can be both time and effort consuming.

Applying SAREK to this case study, activities of a restonatiark can be seen as
activitesa; and enterprises as Web serviegsand the whole execution is divided into two

448 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

main phases: composition planning and execution, whicltaneucted by the Planner
module and Executor module, respectively.

In the Planner module, Web services are discovered, sontesyrgirieved in or-
der to estimate values and, subsequently, an optimizatéqrises to optimize the values.
The Executor module finds and executes a composition amarsg tproposed by the
Planner, and chooses other composition in case of compos#ilures, doing its best to
ensure that the state agent will receive a confirmation tdvdadstoration.

Though SAREK produces two kinds of results (a set of tradeeofinposi-
tions at the end of the Planner module, and the execution ohgosition at the end
of the Executor module), this paper evaluates only the astmf the Executor mod-
ule. An evaluation of the planning algorithm used in the R&nmodule is given
elsewhere[Claro et al. 2006].

Experiments. A prototype implementation of SAREK was developed using Jera
sion 1.5, and other technologies such as MySQL Databasé&gathe Tomcat 5.0, Axis
1.3, Jena API 2.3, OWL-S API 1.1.0.

In order to evaluate SAREK the public competition process flescribed has
been simulated in a series of experiments. The experimesrts garried out in a com-
puter with Intel motherboard Core Duo, processor T2300 1.66 &d 1Gb of RAM. In
the experiments, we do not make network connections becagiseould like to evalu-
ate the semantic replication scheme without the overheadrofections on the Internet.
Thus, all the Web services are located in the same machine si@ulated evaluation
scenario has four activitiesupply wood, supply concrete, supply iron andbuild stair-
case. Each activity can be performed by two candidate compamé&sassumed that the
preconditions to build a staircase werestipply concrete and other material such a®od
oriron. The graph in Figure 2 is an example of a possible activitgragement.

A
Concrete

Ay
Concrete

Figure 2. An example of the building repair scenario

The number of proposed compositions was limited by the atadunt of money
a client wants to spend in the whole composition process. \Wéle service WSDL op-
eration @ring executeWY))) is responsible to execute the Web service. If the execution
runs correctly (without failures), the operation returns@K’ signal. We opted to make
this method as simple as possible in order to measure thetvark overhead. Below are
presented the results produced by two runs of SAREK for thairdpilding scenario;
the first one without failures and the second one with fadure

26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 449

The first two lines of Figure 3 present the output of the Planimelicating that
the companies 4, 2 and 6 were selected (first line) to exebetadtivities in the order
indicated in line 2 QupplyConcrete, supplylron, buildSaircase). As shown in the figure,
the three activities executed without failures.

**********************************IDProcess:200704

CompanyOrderExecution: 4;2;6;

WorkOrderExecution: supplyConcrete;supplyIron;buildStaircase;
WorkExecution*OK*: supplyConcrete;CompanyExecutionOK: 4
WorkExecution*OK*: supplyIron;CompanyExecutionOK: 2
WorkExecution*OK*: buildStaircase;CompanyExecutionOK: 6
khkkhkkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhhkhkkhkkkx*

Figure 3. A composition example without failures

In figure 4 is presented an example with failures, and theutwgpows which
service failed and which new Web services were chosen to éeuged the next time.
The example shows the recovery actions caused by threg &irltices, illustrating the
application of the prefix algorithm of the semantic repiicatscheme.

kkkkkkkkkkkkkkkkkdkkkkkkkkkk,kk*k**x** TDProcess:200704

CompanyOrderExecution: 5;3;1;

WorkOrderExecution: supplyConcrete;supplyIron;buildStaircase;
FAULT WorkExecution: supplyConcrete;*FAULT*CompanyExecution: 5
CompanyOrderExecution: 4;3;6;

WorkOrderExecution: supplyConcrete;supplyIron;buildStaircase;
WorkExecution*OK*: supplyConcrete;CompanyExecutionOK: 4

FAULT WorkExecution: supplylron;*FAULT*CompanyExecution: 3
CompanyOrderExecution: 4;2;6;

WorkOrderExecution: supplyConcrete;supplyIron;buildStaircase;
WorkExecution*OK*: supplyIron;CompanyExecutionOK: 2

FAULT WorkExecution:buildStaircase; *FAULT*CompanyExecution: 6
CompanyOrderExecution: 4;2;1;

WorkOrderExecution: supplyConcrete;supplyIron;buildStaircase;
WorkExecution*OK*: buildStaircase;CompanyExecutionOK: 1

LR R SR EEEE RS SRR EEEEEEEEEEESESEEEEER]

Figure 4. A composition example with 3 faulty Web services

We forced three failures by crash: service 5, service 3 andcge6. The first
composition chosen wds 3; 1;. However, as the service number 5 failed, SAREK tried
to find among the semantically similar compositions anotioenposition that performs
the same task. Thus, the compositiar3; 6; was chosen. The service 4 that performs
supplyConcrete was correctly executed but the next Web service (numberilgjifaAs a
consequence, another composition with the same pteghould be chosen and another
Web service should perform tisapplylron task. Now the compositio#; 2; 6; should be
executed, but service number 6 also fails and another catigrowvith the prefix4; 2;
should be found. Finally, the successfully executed cofmtipasvas4; 2; 1.

Evaluating the Performance of the Semantic Replication. Two kinds of experiments
were carried out to evaluate the performance of the semeeqilications scheme. Each
experiment was run 400 times for calculating the average imd related standard de-
viation (SD). In the first kind, a composition is fixed and seeeuted 400 times. In the
second kind, a new randomly chosen composition is execoteeaich of the 400 itera-
tions. In both kinds of experiments, the compositions warewith and without failures.
In table 1 the collected figures are summarized, and expmlamthe following.

450 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

400 runs Without Faults | SD | With Faults | SD
Fixed composition 118 48 185 59
Random composition 117 49 155 73

Table 1. Performance Evaluation of Executor Module (in miliseconds)

In the first experiment, for fixed composition without fa#sr we obtained an
average ofi 18 milliseconds to execute the composition. In the next expent, we ran
the same fixed composition but we forced a Web service to yasrash. Thus, the prefix
algorithm in this case should find another composition whth same prefix to execute.
The average time in order to recover from this failure ancteteethe whole composition
was185 milliseconds.

A second set of experiments was done using random choices afaimposition.
Without failures, there is almost no overhead on randombosing a composition (117
milliseconds). However, considering that a faulty serviee forced inside a composition,
the composition randomly chosen undertakes abéatmilliseconds. In this case, in
some times, the random choice does not lead to a faulty catiggo&ince the failed Web
service was not present in such a composition), thus theitgedime of the composition
decreases, so increasing the performance.

Figure 5 depicts the overhead caused by faults for an incigasimber of forced
Web service failures. As expected, time increases as thé@euof faulty services in-
creases because other compositions should be found in wramnrrectly terminate a
composition

Performance evaluation of faulty services

w
o
o

N
o
o

266
230

195 —e— Execution time
152 ---m--- Standard deviation

N
o
o

150
100

time (in miliseconds)
()]
o
L]
[}

o

without with one with two with three
Faults faulty WS faulty WS faulty WS

Number of faulty services

Figure 5. The Evaluation of Executor Module in Face of Multiple Web Service
Failures

The Planner module in SAREK has some interactions with the Gsene dialog
boxes are shown to the user to type input values (e.g., stagrgions and maximum cost
for a composition). Likewise, in the Optimization phasetput values are written into
files. Due to such I/O interactions, in our experiments, thel framework takes about
26 seconds to execute. However, the time shown in tabledtecketo the execution of the
Executor Module, is not affected by the above mentioned it@ractions.

The following section discusses the existing fault tolénaechanisms dealing
with Web services and their limitations, regarding the i@ properties.

26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 451

4. Comparison with Related Work

Several researchers have proposed extensions to Webesearichitecture in order to
enhance dependable aspects in Web service compositioase Tésearches are discussed
below in the light of required properties presented in e&c. As far as we know, none
of the published papers has put together these 4 propent&s evaluation framework.
However, a careful reading of the literature reveals thahez the properties appears
isolated or combined with one or two other properties. Socoutribution in this matter

is much on compiling the set we believe is the most signifitadependable Web service
compositions.

The authors in [Pires et al. 2002] propose a multilayeretitacture called Web-
Transact. The WebTransact treats each service that beloragsomposition as a trans-
actional unit. The authors propose a WSTL (Web Service Taimsalanguage) located
upon WSDL to model compositions as composite tasks (a&s)iti The WebTransact
lower level provides mediator services that integrate sgimaimilar remote services
(Web services). Concerning the set of properties proposet,Tvdnsact deals witttata
consistency. It does not address high availabilitgofnputational availability) since no
redundancy mechanism is proposed. Finally, it does notlbamensparency property
because each Web service included into the compositiorichave the WSTL features
described in the WSDL file. Since the number of mediators carease, thacalability
property can be guaranteed.

The authors in [Mikalsen et al. 2002] propose a solution fdriducing transac-
tional reliability into Web services. As Web services areobanmous, incompatible trans-
action models may be involved in the same composition. Tthey, propose transactional
attitudes to providers so as to explicitly describe the@csfic transactional semantics and
to clients for describing their expectations. A middlewacés as an intermediary between
the client and the provider. However, this framework doesemsure certain properties
such astransparency because transactional attitudes are included into bottligna and
the provider;computational availability because no replication mechanism is supported;
and noscalability because the middleware (a web service) receives all inagpneigquest
and should complete the transaction in case of failure. Hewas all the previous trans-
actional approaches, this work handtiega consistency.

In [Gorbenko et al. 2007] a mechanism for forwarding erraokery by using
exception handling in a composition is proposed. They pefotransactional solution in
the composition level in order to handle undependable Wahcss ¢ransparency). The
data consistency property is ensured because if a single service inside thgasition
fails and cannot be recovered, the whole composition alisresxecution. Scalability
property is achieved because each composite Web serviggisgated into dedicated
servers, thus WS compositions (WS components in their tetoggpare distributed over
a network. This approach is similar to the transactionatllef SAREK as explained in
section 3.2. However, differently from SAREK, momputation availability mechanism
is proposed.

If only transactional approaches are used, even with a cosgiée technique that
reduces recovery time, they might spend more time than tbepasable to fulfill the user
goal. Few researchers propose replication mechanismeefatirtg dependable Web ser-
vice composition requirements. A replication mechanism sfzorten the recovery time

452 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

and can increase the system availabiltgr{putation availability)[Chan et al. 2006].

The work in [Majithia et al. 2004] is similar to our propositi in the sense that
they also use a goal-oriented framework, using composiiaphs, where in case of ser-
vice unavailability, other composition graphs are builta&e over the execution. This
framework deals with almost all proposed properties exdapa consistency because it
does not have any transactional mechanism. Thus, if sontis faccur in theabstract
module or in theconcrete module, no recovery mechanism is used. In contrast, our ap-
proach has a redundancy mechanism in both modules: thed?land the Execution.
Moreover, SAREK can be more efficient in terms of response tioeeto its prefix mech-
anism in case of failures, whereas this framework builds cemposition graphs in case
of service failures, not reusing the services that wereutreccorrectly.

We argue that in order to have a highly available compositioe four properties
previously enumerated should be respected, and our agproeets such requirements
by combining a transactional mechanism with a semanticaan scheme. A further
advantage of our approach is due to the fact that by applygmpkoriented replication,
we are able to tolerate faults not only originated from cotimguenvironment (such as
energy outage), but also faults originated by design[8dlé©4]. The table 2 summarizes
these approaches based on the minimal set of propertie®psgvexplained.

Related Work DCICA| S | T
WebTransact[Pires et al. 2002] Yes| No | Yes| No
WSTx Framework[Mikalsen et al. 2002] Yes| No | No | No
DeWs [Gorbenko et al. 2007] Yes| No | Yes| Yes
Semantic Grid Framework[Majithia et al. 2004[No | Yes | Yes | Yes
SAREK Framework Yes| Yes| Yes| Yes
Table 2. Comparison of WSC approaches. DC=Data Consistency;

CA=Computation Availability; S=Scalability; T=Transparency;NA=Not Applied

5. Conclusion

This paper discussed the challenges for achieving Depénihdb service compositions,
suggesting a set of required dependability properties (@asistency, computation avail-
ability, scalability and transparency) to be fulfilled byngpositions. In the light of such
properties, existing work is discussed and it is conclutied most of the proposals lack
the adequate support for availability. Moreover, in thipgrawe propose a new frame-
work called SAREK that satisfies the pointed properties bylmomg together a trans-
actional and a semantic replication scheme. SAREK is dividamltwo modules: the
Planner and the Executor. In the Executor module, SAREK ugeshmique based on
prefix to shorten recovery time, and both modules are replicaith a primary-backup
scheme. To the best of our knowledge, SAREK is the first framleWt provides such
fault-tolerant guarantees in service compositions. laritwork we will evaluate the
fault-tolerant mechanisms presented by measurementsasatyreal scenarios.

6. Acknowledgments

Dr. Daniela Barreiro Claro is supported by FAPESB(BOL2071/2086d Prof.
Raimundo Jas de Araujo Macgdo is supported by FAPESB and CNPQ (Edital Univer-

26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos 453

sal).

References

Aggarwal, R., Verma, K., Miller, J., and Milnor, W. (2004). Gdraint driven web service
composition in meteor-s. IEEEE SCC 2004, pages 23—-30.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, Oeymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, |., and Waesarana, S. (2003).
Business process execution language for web services metsio http://www-
128.ibm.com/developerworks/library/specificationfoygel/.

Bhiri, S., Godart, C., and Perrin, O. (2005). Reliable web sesvicomposition using
a transactional approach. Rroceedings of the IEEE International Conference on
e-Technology, e-Commerce and e-Service, Hong Kong.

Bilorusets, R., Box, D., Cabrera, L. F., Davis, D., Ferguson,Reryis, C., Freund, T.,
Hondo, M., Ibbotson, J., Jin, L., Kaler, C., Langworthy, Dewis, A., Limprecht, R.,
Lucco, S., Mullen, D., Nadalin, A., Nottingham, M., Orchaidl, Roots, J., Samdarshi,
S., Shewchuk, J., and Storey, T. (200%)eb Services Reliable Messaging Protocol
(WS-ReliableMessaging).

Birman, K., van Renesse, R., and Vogels, W. (2004). Adding higiiability and auto-
matic behavior to web services. Rroceedings of the 26th International Conference
on Software Engineering (ICSE’04), pages 17-26.

Chan, P. P. W, Lyu, M. R., and Malek, M. (2006). Making servifzast tolerant. Inthe
Third International Service Availability Symposium (1SAS 2006), volume 4328, pages
43-61, Berlin, Germany. Springer-Verlag(LNCS).

Claro, D. B., Albers, P., and Hao, J. (2006%emantic Web Services, Processes and
Applications, chapter 8, pages 205-234. Springer Publisher.

Claro, D. B., Albers, P., and Hao, J. (2007). A framework fooaudtic composition of rfq
web services. IhEEE Proceedings of the First Workshop on Web Service Composition
and Adaptation (WSCA) held in conjunction with International Conference of Web
Services (ICWS 07), pages 221-228, Salt Lake City, USA. IEEE SCW 2007.

Coulouris, G. F. and Dollimore, J. (1988Distributed systems: concepts and design.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

Evans, C., Chappell, D., Bunting, D., Tharakan, G., ShimantHudurant, J., Mischkin-
sky, J., Nihei, K., lwasa, K., Chapman, M., Shimamura, M., $&as, N., Yamamoto,
N., Kunisetty, S., Hashimoto, T., Rutt, T., and Nomura, Y.q2D Web Services Reli-
abiliy (WS Reliability).

Fang, C.-L., Liang, D., Lin, F., and Lin, C.-C. (2007). Faulei@nt web serviceg. Syst.
Archit., 53(1):21-38.

Gorbenko, A., Kharchenko, V., and Romanovsky, A. (2007). @mgosing dependable
web services using undependable web componelrts.J. Smulation and Process
Modelling, 3(1/2):45-54.

Hakimpour, F., Sell, D., Cabral, L., Domingue, J., and Moa(2005). Semantic web
service composition in irs-iii: The structured approachm CEC '05: Proceedings

454 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

of the Seventh |EEE International Conference on E-Commerce Technology (CEC’ 05),
pages 484-487, Washington, DC, USA. IEEE Computer Society.

Hull, R. and Su, J. (2004). Tools for design of composite webises. INnS GMOD 04:
Proceedings of the 2004 ACM SSGMOD international conference on Management of
data, pages 958-961, New York, NY, USA. ACM Press.

Jalote, P. (1994).Fault Tolerance in Distributed Systems. Prentice Hall PTR; US Ed
edition, USA.

Lynch, N. A. (1996).Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo,
CA.

Majithia, S., Walker, D. W., and Gray, W. A. (2004). Automamomposition of semantic
grid services. IPAHM - e-Science All Hands Meeting.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDerm®tt, Mcllraith, S., Narayanan,
S., Parsia, M. P. B., Payne, T., Sirin, E., Srinivasan, N., &ychra, K. (2004). Owl-
s: Semantic markup for web services. http://www.damlseg/ices/owl-s/1.0/owl-
s.html.

Martinez, E. and Lesperance, Y. (2004). Web service cortiposas a planning task:
Experiments using knowledge-based planningMinkshop on Planning and Schedul-
ing for Web and Grid Services held in Conjuction with the 14th ICAPS British
Columbia,Canada.

Mikalsen, T., Tai, S., and Rouvellou, I. (2002). Transadiattitudes: Reliable compo-
sition of autonomous web services. Pnoceedings of the Workshop on Dependable
Middleware-Based Systemsin conjunction with |EEE Inter national Conference on De-
pendable Systems and Networks (DSN’ 02).

Pires, P., Benevides, M., and Mattoso, M. (2002). Buildingal#é web service compo-
sition. In NODE’ 2002 Web and Database - related Workshops on Web, Web-Services
and Databases Systems, volume 2593, pages 59-72, London,UK. LNCS.

Rajasekaran, P., Miller, J., Verma, K., and Sheth, A. (20(hhancing web services
description and discovery to facilitate compositionFlrst International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC) held in conjunction
with ICWS 2004, pages 55—68.

Salas, J., €rez-Sorrosal, F., Patino-Martinez, M., and JimenezsP&i (2006). Ws-
replication: A framework for highly available web servicés WMV 2006 - Interna-
tional World Wide Web Conference, pages 357—-366, Edinburgh, Scotland. ACM.

Schneider, F. B. (1993).Replication management using the state-machine approach,
chapter 7, pages 169-197. ACM Press/Addison-Wesley Puigisbo., New York,
NY, USA.

Ugur, K., Sirin, E., Nau, D., Parsia, B., and Hendler, J. (900thformation gather-
ing during planning for web service composition. Wbrkshop on Planning and
Scheduling for Web and Grid Services held in Conjuction with the 14th ICAPS, British
Columbia,Canada.

	Menu Principal
	Sumário

	Anterior
	Próximo

