
Dependable Web Service Compositions using a Semantic
Replication Scheme

Daniela Barreiro Claro1, Raimundo Jośe de Araújo Macêdo1

1Laborat́orio de Sistemas Distribuı́dos - LaSiD
Departamento de Ciência da Computação

Universidade Federal da Bahia
Av. Adhemar de Barros, s/n - Campus de Ondina

Salvador, BA – Brazil CEP. 40170-110

{dclaro,macedo}@ufba.br

Abstract. The broad acceptance of a Web service standard has led enterprises
worldwide to publish their services and make businesses via the Web on the
Internet. Consequently, dependable Web service executions are a new chal-
lenge. Although existing work proposes to extend the Web service structure with
fault tolerant features that support such applications, most of them meet only
the reliability and availability requirements of single Web service executions,
not properly addressing the problem of dependable Web service compositions.
This paper overviews existing work on available Web service compositions and
proposes a new approach to create highly available compositions based on a
semantic replication scheme. A prototype of the proposed approach was evalu-
ated in a series of experiments where Web service failures are considered and
the related performance data are presented.

1. Introduction

Web services are autonomous applications that can be published, located, and invoked
over the World Wide Web. Because their potential for heterogeneous service integration,
today there is an increasing amount of companies and organizations that implement their
core business and outsource other application services over the Internet. In such a sce-
nario, it is frequent that no single Web service can suit the functionality required by the
user, leading to the need to combine existing services together in order to fulfill the user
request. Such a combination of Web services is called a Web service composition (WSC).

Whereas Web service specifications cover a number of issues ranging from
security to transaction support, by now no specification hasaddressed the prob-
lem of dynamic Web service compositions. This has motivateda considerable
number of research efforts on the composition of Web services both in acad-
emia and in industry [Hull and Su 2004, Hakimpour et al. 2005,Aggarwal et al. 2004,
Rajasekaran et al. 2004, Andrews et al. 2003, Martin et al. 2004]. In particular, a good
deal of this effort is devoted to the research of automatic compositions, for instance, by
exploiting AI planning techniques [Martinez and Lesperance 2004, Ugur et al. 2004].

On the other hand, building applications from the automaticassembling of exist-
ing Web services raises another important concern: the failure of a single Web service
can lead to the failure of the whole composition. Therefore,availability or continuity
of service requirements must be taken into account if one would like to apply WSC

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 441



in critical applications such as health systems and stock markets [Birman et al. 2004].
Hence, the construction of dependable Web services compositions (WSC) has also de-
served some attention from the research community in the last years [Majithia et al. 2004,
Mikalsen et al. 2002, Bhiri et al. 2005, Pires et al. 2002, Gorbenko et al. 2007]. How-
ever, as we will show in this paper, most previous related work has not properly addressed
the continuity of service problem of WSC, focusing only on dataintegrity guarantees pro-
vided by transactional approaches. Re-executing an abortedtransaction can be, however,
unacceptable for some critical applications.

A commonly used technique for improving availability is to replicate services.
Unfortunately, one cannot always assume or apply conventional replication techniques
[Schneider 1993] for Web services published on the Internetdue their degree of auton-
omy and heterogeneity. Consequently, we argue that such dependability mechanisms
should be implemented in an upper layer into the Web compositions themselves. This
paper tackles this problem by first discussing dependability requirements of WSC and
by introducing a new approach that meets these requirements. The basic idea of our ap-
proach is to use ontologies to form a set of semantically alike replicas. More precisely, we
propose a replication scheme where the failure of a primary service can be masked by the
execution of another service semantically compatible. This replication scheme has been
incorporated and implemented into the SAREK1, a dependable web service composition
framework, which is also introduced in this paper.

SAREK is made up of two main modules: the planner and the executor. The
planner proposes a set of semantically similar compositions, where each proposed com-
position satisfies the user request (user goal). The executor is then in charge of executing
a composition related to a user goal in the following way. It first randomly chooses a com-
position. If some Web service in this composition is unavailable, another composition can
be chosen and executed. Once every Web service in the composition executes without fail-
ures, the composition reaches the given goal. To make SAREK even more dependable we
propose to replicate (with a conventional primary-backup replication[Jalote 1994]) both
the planner and the executor modules.

In order to validate the SAREK prototype, we have evaluated the efficiency of
our replication scheme in a simulated public competition process to repair old buildings.
The main motivation to apply SAREK on public competitions wasthe possibility to work
with service compositions that would have a potential to be applied in real scenarios, since
today procedures for such compositions are usually manual and require a long time period
for choosing companies that fit the public work needed.

The remaining of this paper is organized as follows. Section2 discusses and
proposes a set of dependability requirements for WSC. Section3 presents the design of
SAREK and some implementation details. Section 4 shows some prototype experiments
and related performance figures. Section 5 compares SAREK with related work in the
light of the requirements discussed in section 2. Finally, section 6 concludes the paper
and gives future directions.

1In the fictional Star Trek universe, Sarek is a Vulcan ambassador, and father of Spock.

442 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



2. Required Properties for Web Service Compositions
In the literature, a composition of Web services is usually divided into two main aspects:
the choreography and the orchestration [Hakimpour et al. 2005, Hull and Su 2004]. The
choreography deals with how Web services interact. As Web services are autonomous and
each provider can develop and publish its own Web service, communication problems,
such as languages and number of parameters can make difficultthe process of composing
Web services. Thus, choreography deals with matching problems and interface communi-
cations in compositions [Bhiri et al. 2005, Pires et al. 2002]. Orchestration deals with the
whole composition, a kind of goal-oriented approach for fulfilling a user request. The or-
chestration can be manual or automatic. A manual orchestration means that clients should
search for and compose their own compositions, taking care about the order of web ser-
vices and the parameters that should be passed. In the automatic process, the client gives
a goal (the user request) and the system should automatically search for and compose
the Web services to reach this goal. This paper treats only orchestration for automatic
compositions.

Dependability requirements in orchestration entail the continuity of the compo-
sition execution even if a Web service fails [Birman et al. 2004]. For example, even
if the company A Web service is unavailable, the whole composition tries to fulfill the
user request by using another composition. Another kind of problem concerns delayed
responses, i.e. a partially operational web service. In this case, the service should be
replaced ensuring the continuity of the composition. Another failure can be Internet dis-
connections: by the moment of confirming the web service execution, an outage can
disrupt Internet connections. All these kinds of faults should be treated by a fault tolerant
mechanism in order to reach the goal of the composition.

Many mechanisms have been introduced by the Web service community to
treat failures such as FT-SOAP [Fang et al. 2007], WS-Reliability [Evans et al. 2003],
WS-ReliableMessaging [Bilorusets et al. 2005] and WS-Replication [Salas et al. 2006].
Whereas these mechanisms address several reliability requirements of Web services,
they cannot ensure highly available nor dependable compositions (continuity of service).
Building reliable Web service compositions is much more difficulty due to the degree of
autonomy and heterogeneity of Web services [Pires et al. 2002].

Taking into account the problems cited above that can happenin a composi-
tion process, we argue that a composition of Web services should respect data con-
sistency and computational availability in the presence ofWeb service failures. Fur-
thermore, such properties should be provided without compromising the scalability of
compositions and transparency, two commonly required features of distributed systems
[Coulouris and Dollimore 1988].

Below we further comment on the properties we believe should be respected by
automatic Web service compositions.

Data Consistency.A composition of Web services should guarantee the integrity of data
in its execution process. If a service fails, a data recoverymechanism takes place
guaranteeing the data consistence of the whole composition.

Computation Availability. Some Web services are published by third-part enterprises.
Thus, it is not possible, from a service client perspective,to assume that all ser-
vices in a composition are reliable. In this case, a composition should guarantee

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 443



availability without knowing the reliability level of single Web services of a com-
posite.

Scalability. As a composition is a combination of Web services, this property guarantees
the composition ability to handle a growing amount of web services. For example,
a composition should ensure that it works well either with three services or with a
hundred Web services.

Transparency. The composition should guarantees that a Web service is included and
removed from a composition in a transparent way, making no difference in order
to achieve the composition goal. For example, if a service fails or has a degraded
time execution, the composition should replace this service to reach the given
composition goal in a transparent way.

In the following section we describe our approach for generating automatic Web
service compositions, which respect the above properties.

3. The SAREK approach

System Model and Assumptions. A composition problem involves a set of activities
aj ∈ A; j ∈ [1..m], m is the number of activities, and a set of servicessi ∈ S, i ∈ [1..n],
n is the number of Web services. These services can be organized according to activities
as communities. Thus, each communityS ′

j is a subset of candidate services for a specific
activity aj, S ′

j ⊂ Sj. A compositionC is a sequence of activitiesaj, < a1, a2, ...am >

performed by a sequence of selected Web servicessi, < s1, s2, ...sn >.

Web Services are implemented by processes. Thus, we assume adistributed sys-
tem made of distributed processes that communicate by exchanging messages through
communication channels. Channels are assumed to be reliable; they do not lose, alter, nor
duplicate messages. Such channel functionality can be achieved with mechanisms such
as WS-Reliability[Evans et al. 2003] or WS-ReliableMessaging[Bilorusets et al. 2005].
Processes are assumed to fail only by crashing (prematurelyhalting their execution).

SAREK is a modified and enhanced version of SPOC [Claro et al. 2007], where
its internal architecture has been re-designed and fault-tolerant mechanisms introduced
in order to attain highly available compositions. The architecture of SAREK is divided
into two major modules: the Planner and the Executor. The first module, the Planner,
aims to automatically determine the activities for a given composition. The Executor
module executes the composition defined by the Planner activating alternative execution
paths when necessary (due to failure of composite services). Both modules are replicated
using a passive replication technique. If the primary module fails, a backup is voted and
takes over the execution. The modules are interrelated and they communicate themselves.
The output parameters of the Planner module are the input parameters for the Executor
module. Figure 1 depicts SAREK with both modules and their interrelations.

The Planner execution is divided into two main phases: Planning and Optimiza-
tion. At the end, the Planner module finds semantically similar compositions based on
multiobjective optimizations. One of these compositions is selected by the Executor mod-
ule. If, for some reasons, a compositionC cannot be executed, another compositionC ′

is selected and the Executor module tries one more time. Thisensures that even if a Web
service that belongs to the composition fails, SAREK does itsbest to execute another
composition to reach the given request. The replacement of afailed Web services is done

444 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



Figure 1. A general View of SAREK with the Planner and the Executor Module

transparently regarding the user request. So, such a reliability mechanism of SAREK
respects the requiredtransparency property.

SAREK also guaranteesdata consistency because it applies transactional ap-
proaches in each composition. Thus, if a composition is not successfully executed, the
first measure is to retry the composition handling transientfaults. If the problem continues
and no other semantically similar composition is found the whole composition is aborted
ensuring the integrity of the data.

As pointed out previously, the Planner itself should be reliable enough to ensure
reliable Web service compositions. There aren, n ≥ 2 instances of the planner module,
where aPi, i ∈ [1..n] is voted the primary Planner module and the others will act as
backups. The backup planner module (or the set of backup planner modules) starts at the
same time as the primary one.

The actual execution of all backup Planners monitorsPi’s execution. IfPi, for
any reason, fails a newPi is chosen and then it takes over the execution (a voting al-
gorithm could be used in this process [Lynch 1996]). This process ensures that even if
the Planner module crashes, SAREK is still able to fulfill the user request, respecting the
computational availability property. It is important to observe that if the Planner doesnot
accomplish its goal, the Executor module cannot even start.

The planning phase (see section 3.1) determines automatically the services that
participate in a composition in runtime. The fact that our composition is only defined
at runtime makes easier the addition of new Web services (this contrasts with some pre-
vious work that define the compositions in compiling time). This characteristic favors
scalability.

The optimization phase ensures that a set of trade-off compositions are found
using a multiobjective optimization algorithm (see section 3.1). The evaluation of
the genetic algorithm used in the optimization process has been presented elsewhere
[Claro et al. 2006]. OncePi has executed and a set of Pareto optimal compositions2 (se-
mantically similar) has been proposed, the Executor modulecan start its execution. The
Executor module also uses the primary-backup replication scheme just described to the

2Pareto optimal solutions or non-dominated solutions are a set of solutions where a given solution does
not dominate another one and vice-versa. They are used in multiobjective optimizations where the notion
of optimal solutions is based on Pareto’s relation of dominance.

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 445



Planner module.

3.1. Planner Module

As previously state, the Planner module is made up of two mainphases: the Planning
phase and the Optimization phase. The Planning phase interacts with OPS (Ontology
to Publish Services), an ontology repository to discover Web services. OPS is an OWL
ontology which describes each Web service in an OWL-S format.The matching algorithm
used between the planning algorithm and the concepts in OPS was a simple hierarchical
method. This ontology has the domain description that SAREK deals with (i.e., public
competition process). The planning phase can interact manytimes with this ontology
so as to find new Web services for the composition. This phase aims to determine the
activities that will be composed to fulfill the user request.Each activity corresponds to an
action in the planning algorithm. A classical planner basedon preconditions and effects
was used. If a service has not ever been included in a plan, SAREK should find this
service in the OPS and add it to the plan and continue planninguntil the goal matches the
action effects. Thus, this phase determines the set of activitiesA that can reach the given
request.

The Optimization phase optimizes the combination of Web servicessi and activ-
ities aj. Thus, this phase determines which Web service performs which activity. The
values used to optimize the composition are based on the estimated values retrieved from
each candidate Web servicesi ∈ S ′,∀a ∈ A. This phase is like a quotation system that
retrieves all estimated values of the candidate Web services and optimizes these values
producing a set of trade-off (semantically similar) compositions. The set of compositions
is produced because of the presence of more than one objective to optimize. For example,
consider these two objectives: minimize cost and maximize service reputation, both are
contradictory.

SAREK uses a genetic algorithm called NSGA-II [Claro et al. 2007] to solve this
optimization problem. Despite the fact that each solution fulfills the user goal, each one
has a different set of estimated values. Among these Pareto3 solutions, the Executor
module will randomly choose initially only one of them to start the execution.

3.2. Executor Module

The Executor module executes a composition of Web services based on prefixes. Each
composition proposed by the Planner is represented in a OWL-Sfile, and, during execu-
tion, the Executor calls each Web service that appears in therunning composition.

In order to provide fault tolerance both a transactional anda replication mecha-
nisms are applied, which are described below.

Transactional level. A transaction technique is used to guarantee data consistency in
case of a composition failure. Using a temporal redundancy mechanism, SAREK
tries the same composition one more time to recover from a possible transient
fault. If the problem continues, before rolling back the transaction, SAREK
chooses another composition among those proposed by the Planner module.

3We use all over this paper the words:trade-off, Pareto andsemantically similar as synonyms. In fact,
all of them describe the solutions (individuals) retrievedfrom the NSGA-II algorithm.

446 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



Semantic replication scheme.During execution of a composition, faulty Web services
can be replaced by a semantically similar services ensuringthetransparency prop-
erty. We call such a redundancy scheme semantic replication. We argue that this
is a kind of spatial redundancy because there is a set of compositions that achieve
the same goal. This scheme uses a prefix approach so as to increase performance
when re-executing a partially failed composition. The prefix algorithm works as
follows. Assume the running composition is defined as< s1, s2, s3, ..., sn > and
that this composition fails because of the failure ofs3, but servicess1 ands2 were
run correctly. In our example,< s1, s2, s3, altogether form a composition. In such
a composition,s1 ands2 must be executed successfully before the execution of
s3. Observe that the execution ofs3 depends on the results produced bys1 and
s2. For example, ifs2 is a company that provides wood,s3 has to be a company
specialized in building wooden staircases. In other words,s1 ands2 are precondi-
tions fors3. Thus, in order to avoid re-executings1 ands2, the prefix algorithm
searches another composition that starts with such the prefix < s1, s2 >, saving
recovery time.

If all these fault tolerant mechanisms of SAREK fail in executing a composition to
termination, an error is shown to the user informing that theexecution of the Web service
composition was not possible.

3.3. Experimental Tests and Its Performance Evaluation

As a proof of concept, SAREK has been applied to a scenario where public competition
processes are carried out for repairing public buildings. Several prototype experiments
have been conducted and data performance collected for executing compositions where
single Web Services were forced to fail. Before proceeding toshow the experimental data,
we explain in more details the application scenario.

Case Study - Public Building Competition Process. The competition process for
restoring public buildings starts with a request for restoration. Based on this request,
an architect with a state agent will determine the work that should be done on the build-
ings. This work is grouped into categories based on activities. The competition process
will be then organized by work’s category. An enterprise canbe characterized as a general
enterprise, which executes many specialized kinds of work or a specialist one, which does
only one work at a time. In our first experimentation we will only consider enterprises
that do only a specific work. The architect will also define an order for the activities of a
work. Once the work plan is determined, the enterprises can send (also via email) their
propositions with the estimated cost.

Once propositions have been received, the state agent needsto analyze them, one
by one, based on their costs, duration of work, enterprise’sturnover and reputation in or-
der to find a good combination between enterprise and work. Such a multicriteria analysis
will lead the state agent to decide which enterprise will execute which task and the Com-
petition Process will be terminated. If many enterprises are candidates to execute some
work, this task can be both time and effort consuming.

Applying SAREK to this case study, activities of a restoration work can be seen as
activitesaj and enterprises as Web servicessi, and the whole execution is divided into two

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 447



main phases: composition planning and execution, which areconducted by the Planner
module and Executor module, respectively.

In the Planner module, Web services are discovered, some quotes retrieved in or-
der to estimate values and, subsequently, an optimization step tries to optimize the values.
The Executor module finds and executes a composition among those proposed by the
Planner, and chooses other composition in case of composition failures, doing its best to
ensure that the state agent will receive a confirmation to do the restoration.

Though SAREK produces two kinds of results (a set of trade-offcomposi-
tions at the end of the Planner module, and the execution of a composition at the end
of the Executor module), this paper evaluates only the actions of the Executor mod-
ule. An evaluation of the planning algorithm used in the Planner module is given
elsewhere[Claro et al. 2006].

Experiments. A prototype implementation of SAREK was developed using Javaver-
sion 1.5, and other technologies such as MySQL Database 4.1,Apache Tomcat 5.0, Axis
1.3, Jena API 2.3, OWL-S API 1.1.0.

In order to evaluate SAREK the public competition process just described has
been simulated in a series of experiments. The experiments were carried out in a com-
puter with Intel motherboard Core Duo, processor T2300 1.66 Ghz and 1Gb of RAM. In
the experiments, we do not make network connections becausewe would like to evalu-
ate the semantic replication scheme without the overhead ofconnections on the Internet.
Thus, all the Web services are located in the same machine. Our simulated evaluation
scenario has four activities:supply wood, supply concrete, supply iron andbuild stair-
case. Each activity can be performed by two candidate companies.We assumed that the
preconditions to build a staircase were tosupply concrete and other material such aswood
or iron. The graph in Figure 2 is an example of a possible activity arrangement.

Figure 2. An example of the building repair scenario

The number of proposed compositions was limited by the totalamount of money
a client wants to spend in the whole composition process. TheWeb service WSDL op-
eration (String executeWS()) is responsible to execute the Web service. If the execution
runs correctly (without failures), the operation returns an ’OK’ signal. We opted to make
this method as simple as possible in order to measure the framework overhead. Below are
presented the results produced by two runs of SAREK for the repair building scenario;
the first one without failures and the second one with failures.

448 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



The first two lines of Figure 3 present the output of the Planner, indicating that
the companies 4, 2 and 6 were selected (first line) to execute the activities in the order
indicated in line 2 (SupplyConcrete, supplyIron, buildStaircase). As shown in the figure,
the three activities executed without failures.

Figure 3. A composition example without failures

In figure 4 is presented an example with failures, and the output shows which
service failed and which new Web services were chosen to be executed the next time.
The example shows the recovery actions caused by three faulty services, illustrating the
application of the prefix algorithm of the semantic replication scheme.

Figure 4. A composition example with 3 faulty Web services

We forced three failures by crash: service 5, service 3 and service 6. The first
composition chosen was5; 3; 1;. However, as the service number 5 failed, SAREK tried
to find among the semantically similar compositions anothercomposition that performs
the same task. Thus, the composition4; 3; 6; was chosen. The service 4 that performs
supplyConcrete was correctly executed but the next Web service (number 3) failed. As a
consequence, another composition with the same prefix4 should be chosen and another
Web service should perform thesupplyIron task. Now the composition4; 2; 6; should be
executed, but service number 6 also fails and another composition with the prefix4; 2;
should be found. Finally, the successfully executed composition was4; 2; 1.

Evaluating the Performance of the Semantic Replication. Two kinds of experiments
were carried out to evaluate the performance of the semanticreplications scheme. Each
experiment was run 400 times for calculating the average time and related standard de-
viation (SD). In the first kind, a composition is fixed and re-executed 400 times. In the
second kind, a new randomly chosen composition is executed for each of the 400 itera-
tions. In both kinds of experiments, the compositions were run with and without failures.
In table 1 the collected figures are summarized, and explained in the following.

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 449



400 runs Without Faults SD With Faults SD
Fixed composition 118 48 185 59

Random composition 117 49 155 73

Table 1. Performance Evaluation of Executor Module (in miliseconds)

In the first experiment, for fixed composition without failures, we obtained an
average of118 milliseconds to execute the composition. In the next experiment, we ran
the same fixed composition but we forced a Web service to fail by crash. Thus, the prefix
algorithm in this case should find another composition with the same prefix to execute.
The average time in order to recover from this failure and execute the whole composition
was185 milliseconds.

A second set of experiments was done using random choice of the composition.
Without failures, there is almost no overhead on randomly choosing a composition (117
milliseconds). However, considering that a faulty servicewas forced inside a composition,
the composition randomly chosen undertakes about155 milliseconds. In this case, in
some times, the random choice does not lead to a faulty composition (since the failed Web
service was not present in such a composition), thus the execution time of the composition
decreases, so increasing the performance.

Figure 5 depicts the overhead caused by faults for an increasing number of forced
Web service failures. As expected, time increases as the number of faulty services in-
creases because other compositions should be found in orderto correctly terminate a
composition

Figure 5. The Evaluation of Executor Module in Face of Multiple Web Service
Failures

The Planner module in SAREK has some interactions with the user. Some dialog
boxes are shown to the user to type input values (e.g., stair dimensions and maximum cost
for a composition). Likewise, in the Optimization phase, output values are written into
files. Due to such I/O interactions, in our experiments, the whole framework takes about
26 seconds to execute. However, the time shown in table 1, related to the execution of the
Executor Module, is not affected by the above mentioned I/O interactions.

The following section discusses the existing fault tolerant mechanisms dealing
with Web services and their limitations, regarding the proposed properties.

450 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



4. Comparison with Related Work

Several researchers have proposed extensions to Web services architecture in order to
enhance dependable aspects in Web service compositions. These researches are discussed
below in the light of required properties presented in section 2. As far as we know, none
of the published papers has put together these 4 properties in an evaluation framework.
However, a careful reading of the literature reveals that each of the properties appears
isolated or combined with one or two other properties. So, our contribution in this matter
is much on compiling the set we believe is the most significantto dependable Web service
compositions.

The authors in [Pires et al. 2002] propose a multilayered architecture called Web-
Transact. The WebTransact treats each service that belongsto a composition as a trans-
actional unit. The authors propose a WSTL (Web Service Transaction Language) located
upon WSDL to model compositions as composite tasks (activities). The WebTransact
lower level provides mediator services that integrate semantic similar remote services
(Web services). Concerning the set of properties proposed, WebTransact deals withdata
consistency. It does not address high availability (computational availability) since no
redundancy mechanism is proposed. Finally, it does not handle Transparency property
because each Web service included into the composition should have the WSTL features
described in the WSDL file. Since the number of mediators can increase, thescalability
property can be guaranteed.

The authors in [Mikalsen et al. 2002] propose a solution for introducing transac-
tional reliability into Web services. As Web services are autonomous, incompatible trans-
action models may be involved in the same composition. Thus,they propose transactional
attitudes to providers so as to explicitly describe their specific transactional semantics and
to clients for describing their expectations. A middlewareacts as an intermediary between
the client and the provider. However, this framework does not ensure certain properties
such as:transparency because transactional attitudes are included into both theclient and
the provider;computational availability because no replication mechanism is supported;
and noscalability because the middleware (a web service) receives all incoming request
and should complete the transaction in case of failure. However, as all the previous trans-
actional approaches, this work handlesdata consistency.

In [Gorbenko et al. 2007] a mechanism for forwarding error recovery by using
exception handling in a composition is proposed. They propose a transactional solution in
the composition level in order to handle undependable Web services (transparency). The
data consistency property is ensured because if a single service inside the composition
fails and cannot be recovered, the whole composition abortsits execution. Scalability
property is achieved because each composite Web service is aggregated into dedicated
servers, thus WS compositions (WS components in their terminology) are distributed over
a network. This approach is similar to the transactional level of SAREK as explained in
section 3.2. However, differently from SAREK, nocomputation availability mechanism
is proposed.

If only transactional approaches are used, even with a compensable technique that
reduces recovery time, they might spend more time than the acceptable to fulfill the user
goal. Few researchers propose replication mechanisms for treating dependable Web ser-
vice composition requirements. A replication mechanism can shorten the recovery time

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 451



and can increase the system availability (computation availability)[Chan et al. 2006].

The work in [Majithia et al. 2004] is similar to our proposition in the sense that
they also use a goal-oriented framework, using compositiongraphs, where in case of ser-
vice unavailability, other composition graphs are built totake over the execution. This
framework deals with almost all proposed properties exceptdata consistency because it
does not have any transactional mechanism. Thus, if some faults occur in theabstract
module or in theconcrete module, no recovery mechanism is used. In contrast, our ap-
proach has a redundancy mechanism in both modules: the Planner and the Execution.
Moreover, SAREK can be more efficient in terms of response timedue to its prefix mech-
anism in case of failures, whereas this framework builds newcomposition graphs in case
of service failures, not reusing the services that were executed correctly.

We argue that in order to have a highly available composition, the four properties
previously enumerated should be respected, and our approach meets such requirements
by combining a transactional mechanism with a semantic replication scheme. A further
advantage of our approach is due to the fact that by applying agoal-oriented replication,
we are able to tolerate faults not only originated from computing environment (such as
energy outage), but also faults originated by design[Jalote 1994]. The table 2 summarizes
these approaches based on the minimal set of properties previously explained.

Related Work DC CA S T
WebTransact[Pires et al. 2002] Yes No Yes No
WSTx Framework[Mikalsen et al. 2002] Yes No No No
DeWs [Gorbenko et al. 2007] Yes No Yes Yes
Semantic Grid Framework[Majithia et al. 2004]No Yes Yes Yes
SAREK Framework Yes Yes Yes Yes

Table 2. Comparison of WSC approaches. DC=Data Consistency;
CA=Computation Availability; S=Scalability; T=Transparency;NA=Not Applied

5. Conclusion

This paper discussed the challenges for achieving Dependable Web service compositions,
suggesting a set of required dependability properties (data consistency, computation avail-
ability, scalability and transparency) to be fulfilled by compositions. In the light of such
properties, existing work is discussed and it is concluded that most of the proposals lack
the adequate support for availability. Moreover, in this paper, we propose a new frame-
work called SAREK that satisfies the pointed properties by combining together a trans-
actional and a semantic replication scheme. SAREK is dividedinto two modules: the
Planner and the Executor. In the Executor module, SAREK uses atechnique based on
prefix to shorten recovery time, and both modules are replicated with a primary-backup
scheme. To the best of our knowledge, SAREK is the first framework that provides such
fault-tolerant guarantees in service compositions. In future work we will evaluate the
fault-tolerant mechanisms presented by measurement analysis in real scenarios.

6. Acknowledgments

Dr. Daniela Barreiro Claro is supported by FAPESB(BOL2071/2006) and Prof.
Raimundo Jośe de Aráujo Maĉedo is supported by FAPESB and CNPQ (Edital Univer-

452 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



sal).

References

Aggarwal, R., Verma, K., Miller, J., and Milnor, W. (2004). Constraint driven web service
composition in meteor-s. InIEEE SCC 2004, pages 23–30.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S. (2003).
Business process execution language for web services version 1.1. http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

Bhiri, S., Godart, C., and Perrin, O. (2005). Reliable web services composition using
a transactional approach. InProceedings of the IEEE International Conference on
e-Technology, e-Commerce and e-Service, Hong Kong.

Bilorusets, R., Box, D., Cabrera, L. F., Davis, D., Ferguson, D.,Ferris, C., Freund, T.,
Hondo, M., Ibbotson, J., Jin, L., Kaler, C., Langworthy, D., Lewis, A., Limprecht, R.,
Lucco, S., Mullen, D., Nadalin, A., Nottingham, M., Orchard, D., Roots, J., Samdarshi,
S., Shewchuk, J., and Storey, T. (2005).Web Services Reliable Messaging Protocol
(WS-ReliableMessaging).

Birman, K., van Renesse, R., and Vogels, W. (2004). Adding high availability and auto-
matic behavior to web services. InProceedings of the 26th International Conference
on Software Engineering (ICSE’04), pages 17–26.

Chan, P. P. W., Lyu, M. R., and Malek, M. (2006). Making servicesfault tolerant. Inthe
Third International Service Availability Symposium (ISAS 2006), volume 4328, pages
43–61, Berlin, Germany. Springer-Verlag(LNCS).

Claro, D. B., Albers, P., and Hao, J. (2006).Semantic Web Services, Processes and
Applications, chapter 8, pages 205–234. Springer Publisher.

Claro, D. B., Albers, P., and Hao, J. (2007). A framework for automatic composition of rfq
web services. InIEEE Proceedings of the First Workshop on Web Service Composition
and Adaptation (WSCA) held in conjunction with International Conference of Web
Services (ICWS’07), pages 221–228, Salt Lake City, USA. IEEE SCW 2007.

Coulouris, G. F. and Dollimore, J. (1988).Distributed systems: concepts and design.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Evans, C., Chappell, D., Bunting, D., Tharakan, G., Shimamura,H., Durant, J., Mischkin-
sky, J., Nihei, K., Iwasa, K., Chapman, M., Shimamura, M., Kassem, N., Yamamoto,
N., Kunisetty, S., Hashimoto, T., Rutt, T., and Nomura, Y. (2003). Web Services Reli-
abiliy (WS-Reliability).

Fang, C.-L., Liang, D., Lin, F., and Lin, C.-C. (2007). Fault tolerant web services.J. Syst.
Archit., 53(1):21–38.

Gorbenko, A., Kharchenko, V., and Romanovsky, A. (2007). On composing dependable
web services using undependable web components.Int. J. Simulation and Process
Modelling, 3(1/2):45–54.

Hakimpour, F., Sell, D., Cabral, L., Domingue, J., and Motta,E. (2005). Semantic web
service composition in irs-iii: The structured approach. In CEC ’05: Proceedings

26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 453



of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05),
pages 484–487, Washington, DC, USA. IEEE Computer Society.

Hull, R. and Su, J. (2004). Tools for design of composite web services. InSIGMOD 04:
Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, pages 958–961, New York, NY, USA. ACM Press.

Jalote, P. (1994).Fault Tolerance in Distributed Systems. Prentice Hall PTR; US Ed
edition, USA.

Lynch, N. A. (1996).Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo,
CA.

Majithia, S., Walker, D. W., and Gray, W. A. (2004). Automated composition of semantic
grid services. InAHM - e-Science All Hands Meeting.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott,D., McIlraith, S., Narayanan,
S., Parsia, M. P. B., Payne, T., Sirin, E., Srinivasan, N., andSycara, K. (2004). Owl-
s: Semantic markup for web services. http://www.daml.org/services/owl-s/1.0/owl-
s.html.

Martinez, E. and Lesperance, Y. (2004). Web service composition as a planning task:
Experiments using knowledge-based planning. InWorkshop on Planning and Schedul-
ing for Web and Grid Services held in Conjuction with the 14th ICAPS, British
Columbia,Canada.

Mikalsen, T., Tai, S., and Rouvellou, I. (2002). Transactional attitudes: Reliable compo-
sition of autonomous web services. InProceedings of the Workshop on Dependable
Middleware-Based Systems in conjunction with IEEE International Conference on De-
pendable Systems and Networks (DSN’02).

Pires, P., Benevides, M., and Mattoso, M. (2002). Building reliable web service compo-
sition. In NODE’2002 Web and Database - related Workshops on Web, Web-Services
and Databases Systems, volume 2593, pages 59–72, London,UK. LNCS.

Rajasekaran, P., Miller, J., Verma, K., and Sheth, A. (2004).Enhancing web services
description and discovery to facilitate composition. InFirst International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC) held in conjunction
with ICWS’2004, pages 55–68.

Salas, J., Ṕerez-Sorrosal, F., Patino-Martinez, M., and Jimenez-Peris, R. (2006). Ws-
replication: A framework for highly available web services. In WWW’2006 - Interna-
tional World Wide Web Conference, pages 357–366, Edinburgh, Scotland. ACM.

Schneider, F. B. (1993).Replication management using the state-machine approach,
chapter 7, pages 169–197. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA.

Ugur, K., Sirin, E., Nau, D., Parsia, B., and Hendler, J. (2004). Information gather-
ing during planning for web service composition. InWorkshop on Planning and
Scheduling for Web and Grid Services held in Conjuction with the 14th ICAPS, British
Columbia,Canada.

454 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos


	Menu Principal
	Sumário
	-------------------------------
	Anterior
	Próximo

