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Abstract. We propose an approach which formulates the traffic matrix estima-
tion problem as a non-negativity constrained optimizationproblem, and then a
projection method is used to solve it. We conduct experiments both on synthetic
and real measurement data obtained from the Abilene network. The results indi-
cate that the estimated traffic matrices are more accuratelyestimated when our
approach is used than when the tomogravity method is employed. We also de-
velop a novel approach for estimating traffic matrices when optimal multi-path
routing is employed. We formally formulate the problem as a bilevel program-
ming problem. Then a genetic algorithm is used to solve it.

1. Introduction
A traffic matrix (TM) reflects the volume of traffic that flows between any source-
destination pair of nodes in a communication network. The nodes could be links, routers,
Points-of-Presence (PoPs) in the Internet. The choice of node type affects the granularity
and type of the traffic matrix. For example, in a router-router traffic matrix, the traffic
that flows in and out of a given router includes all of the clients and peers attached to that
router. Obtaining traffic matrices is a very important problem to the network operators
because many traffic engineering and network management tasks need the information
provided by traffic matrices, in order to improve the performance and efficiency of the
network. These tasks include logical topology design, capacity planning, routing proto-
col configuration, load balancing and network reliability analysis.

The problem of traffic matrix estimation depends on the routing mechanism in the
network. The most commonly used intra-domain Internet routing protocols today are the
shortest path first (SPF) protocols such as Open Shortest Path First (OSPF) and Interme-
diate System-Intermediate System (IS-IS). In these protocols, each link is associated with
a weight and the length of a path is defined as the sum of the weights of all the links
on that path. The shortest path is that with minimum length. Traffic is routed along the
shortest path to the destination. However, these traditional routing protocols that rely on
a single path between a source-destination pair, may not efficiently utilize the network re-
sources. To make optimal use of network resources and minimize delays, traffic between
source-destination pairs may often have to be split and routed along multiple paths each
carrying a fraction of the total flow. This routing mechanismis commonly called, optimal
multi-path routing [Bertsekas and Gallager 1992].

In this work we tackle two traffic matrix estimation problems. The first (Problem
A) proposes a solution for the case in which the network employs shortest path routing;
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In the second (Problem B), a new technique is presented when theoptimal multi-path
routingmechanism is assumed.

All of the previous works that attempt to solve problem A can be roughly classified
into two categories: direct and indirect methods. The direct methods, as the name indi-
cates, directly measure traffic volumes between source and destination nodes. However,
those approaches have not been fully explored in large IP networks because they still
face challenging engineering obstacles such as the lack of proper measurement infras-
tructure, high communication and computational costs of transferring large amounts of
information. Indeed, most of the previous approaches attempt to estimate traffic matrices
from other available data, typically link load measurements and routing configurations.
Roughly, the estimation problem is based on solving a systemof linear equationsAx = y,
wherex is the traffic matrix vectorized as a column vector,y is a vector of link counts,
andA is a matrix reflecting the routing, where elementAij is equal to 1 if the OD pairj
traverses linki, or zero otherwise. Moreover, the elementsAij may be positive numbers
between0 and1 if traffic splitting is supported. The link countsy can be readily obtained
through standard Simple Network Management Protocol (SNMP) measurements. The
routing matrixA can be obtained by gathering IGP link weights and networks topology
information and then computing the shortest paths between all OD pairs, in case shortest
path routing is used. The problem at hand is to compute the traffic matrix x given the link
countsy and the routing matrixA. However, this is not a straightforward task because
the linear system is highly under-determined or ill-posed since the number of OD pairs is
much larger than the number of links in almost all networks. This means that there is and
infinite number of feasible solutions forx.

In order to deal with the ill-posed problem, some previous works [Vardi 1996,
Cao et al. 2000] are able to estimate the TM after assuming that the traffic flows follow
a Poisson or Gaussian distribution. Typically, after assuming Poisson or Gaussian mod-
els for OD traffic pairs, additional constraints are introduced to obtain a solution. TM
estimation is performed with both constraints on the first and second order moments.
Vardi [Vardi 1996] proposes a Poisson distribution model for traffic demands and use
the maximum likelihood estimation technique to estimate the traffic demands. Cao et al
[Cao et al. 2000] followed Vardi’s approach, but use a Gaussian model with the assump-
tion of a power-law relationship between the mean and variance of the traffic demands.
A comparative study of these methods in [Medina et al. 2003] shows that they are highly
dependent on an initial starting point, calledprior.

Unfortunately the statistical methods cannot guarantee that all of the estimated
TM elementsAij will have positive values. To cope with the problem, an iterative pro-
portional fitting algorithm (IPF) is applied to perform finaladjustments on the estimated
traffic matrix. The IPF algorithm has been used extensively in the context of contingency
tables [Deming and Stephan 1940]. The idea is to express the linear constraints given by
EquationAx = y, using a contingency table composed of the estimated trafficmatrix and
an extra value for each row and each column, corresponding tothe row and column sums,
respectively. The IPF algorithm proceeds to adjust the values of the estimated traffic ma-
trix such that the row and column sum errors are minimized. The convergence of the IPF
algorithm is proven [Deming and Stephan 1940].

These statistical inference methods do not work well in estimating the TM be-
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cause they are very sensitive to the assumptions (Poisson, Gaussian distributions), which
do not hold in real network traffic data [Medina et al. 2003]. This limitation has led to
other models that employ extra information and different assumptions. The most promi-
nent approach is the tomogravity model [Zhang et al. 2003]. The key idea behind the
tomogravity method is to find the best among all of feasible traffic matrix solutions based
on some criterion. The criterion can be described by an objective function, and the linear
equationsAx = y are the constraints in an optimization problem. A gravity model is
used to obtain the prior traffic matrix, then the least-square solution which minimize the
Euclidean distance to the prior traffic matrix is obtained.

The least-square solutions may result in negative values which, of course, have no
physical meaning. In order to achieve a fast and effective solution, the Iterative Propor-
tional Fitting is also used to ensure non-negativity instead of formulating the problem as a
constrained optimization problem. As described in [Zhang et al. 2003], the initial starting
point is not as complex as that in [Cao et al. 2000]. They just use the least square solution
for the traffic matrix, with zero replacing the negative elements of the matrix. It is also
reported in [Zhang et al. 2003] that it only takes a few iterations to reduce errors in the
constraint equations to the point at which they are negligible in practice.

Since both the least square optimization and IPF techniquesare based on the sys-
temAx = y and the measured link traffic always contains errors, the following question
may be asked:

Instead of using the tomogravity method (least square + IPF), can we for-
mulate the estimation problem as a non-negative constrained optimization
problem? How?

Contributions for Problem A

We propose an approach which formulates the traffic matrix estimation problem as a non-
negative constrained optimization problem and a projection method is then used to solve
it. We conduct experiments both on synthetic and real measurement data obtained from
the Abilene network. We show that our approach is capable of estimating traffic matrices
more accurately than the tomogravity method.

Contributions for Problem B

Existing traffic matrix estimation techniques are not applicable to the optimal multi-path
routing networks. This is true since the relationship between the original traffic matrix
x and the link datay changes from linear to nonlinear. This means that routing isno
longer static, but dynamic and depends on the original traffic demands. In other words,
the routing matrixA and the link datay are nonlinear functions of the original traffic
matrix x.

To the best of our knowledge, this paper is the first work also concerned with the
traffic matrix estimation problem in optimal multi-path routing networks. We formally
formulate the traffic matrix estimation problem in an optimal multi-path routing network
as a bilevel programming problem. In the bilevel programming problem, the upper level
problem is responsible for the traffic matrix estimation andthe the lower level problem
represents the optimal routing problem. A genetic algorithm is used to solve the bilevel
programming problem.
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The remaining of this paper is organized as follows. In Section 2, we present
the background material. Section 3 presents our methods fordealing with problems A
and B. The non-negativity constrained traffic estimation problem is proposed (problem
A) and a projection method used to obtain the final solution. For problem B, a bilevel
programming model is proposed and a genetic algorithm used to solve it. In Section 4,
we validate the results for problem A, based both on synthetic and real network traffic
matrices. For Problem B, we show numerical results based on synthetic network traffic.
Our conclusions are presented in Section 5.

2. Background

2.1. Tomogravity Method

In [Zhang et al. 2003], the authors developed a method for estimating traffic matrices that
starts by building a prior TM using a gravity model. The key assumption underlying the
gravity model is that the traffic entering the network at any given node exits the network
at a particular egress node proportionally to the total traffic exiting at that egress. Let
x(i, ∗) denote the total traffic entering an ingress node i. Letx(∗, j) denote the total
traffic departing the network from node j. The gravity model postulates that,

x(i, j) = x(i, ∗)
x(∗.k)

∑

k x(∗, k)
(1)

This implies that the total amount of data node i sends to nodej is proportional
to the amount of traffic departing the network at j relative tothe total amount of traffic
departing the entire network. The authors call this assumption thesimple gravity model.

This simple gravity model essentially assumes complete independence between
sources and destinations. However, as pointed out in [Zhanget al. 2003], traffic transit
between peering networks behaves very differently. This has led to the generalized gravity
model, where traffic between peers is forced to zero.

The gravity model is used inside a least square optimizationproblem. They for-
mulate the optimization problem as

min
x

(x − xg)
T (x − xg) (2)

subject to: (Ax − y)T (Ax − y) is minimized

The idea is that among all the traffic matrices that satisfy the link constraints, the
method chooses one closest to the gravity modelxg. The overall method works as a two
step process within each time interval t: first an initial estimatexg is calculated using (1)
and then, the optimization problem in (2) is solved.

2.2. The Formulation of Optimal Routing Problem

The objective of optimal multi-path routing is to distribute traffic demand on its all pos-
sible paths such that the total network “cost” is minimized.The cost may be average
network delay, etc. The network is modeled by a graphG = (L,M) whichL is the set of
L nodes andM is the set ofM directed links. Each linka ∈ M has a known capacityCa

192 26° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



and is assigned a cost functionla based on its capacity and the amount of traffic passing
through it. The most popular link cost function is the link delay function which is derived
from the M/M/1 queueing model [Kleinrock 1964].

la(Ca, ya) =
ya

Ca − ya

(3)

whereya is the traffic at linka.

The formulation of the optimal multi-path routing problem is

min
y,xij

∑

a∈M
ya

Ca−ya
(4)

subject to
∑

j xij = xi, i ∈ N
∑

ij xijδ
ij
a = ya

xij ≥ 0

0 ≤ ya < Ca

wherexi is the traffic of OD pairi (recall that we reduce the TM to a vector) and
xij is the traffic of thej path of OD pairi. The indicatorδij

a is 1 if thej path of OD pairi
pass through linka, and zero otherwise.

3. Solutions

3.1. Solutions for Problem A: Non-negativity Constrained Traffic Matrix
Estimation Problem

3.1.1. Uncertainty in Gravity Model and SNMP Data

Since the initial estimate in gravity model,xg, is calculated from (1), it is very unlikely that
the initial estimate satisfies the equationAx = y. As pointed out in [Roughan et al. 2003],
SNMP link datay has many limitations. Missing data (SNMP uses unreliable UDP trans-
port), incorrect data (through poor router vendor implementations), and a coarse sampling
interval (five minutes is typical) are examples of these limitation. Therefore, the SNMP
link data collected is not error free, and its reliability may vary.

In the gravity model presented in the last section, errors inSNMP data are not
considered. The maximum belief is placed on it. But one possible consequence of errors
in SNMP data is that the equationAx = y becomes inconsistent. Even if those errors are
small, it could bring large errors to the estimated traffic matrix.

One way to handle this inconsistency is formulate the following weighted least
square problem

min f(x) = (x − xg)
T (x − xg) + (Ax − ŷ)T W−1(Ax − ŷ) (5)

where ŷ is measured SNMP link data,W−1 is a weight matrix that is positive semi-
definite. In this present paper, we considerW−1 as an identity matrix.

Since the objective function (5) is convex, we have that a pointx is a solution if and
only if ∇f(x) = 0 holds. By the Matrix Inversion Lemma [Tylavsky and Sohie 1986],
the solution can be expressed as,

x = xg + AT (AAT + W)−1(ŷ − Axg) (6)
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3.1.2. Handling the non-negativity

The solution of (6) doesn’t ensure the non-negativity of theelements of the traffic ma-
trix. In [Zhang et al. 2003], the Iterative Proportional Fitting (IPF), as suggested in
[Cao et al. 2000], is used to ensure non-negativity. The estimated traffic matrix, solu-
tion of (2), with zero replacing the negative elements of thematrix is used as an initial
starting point of the iterative fitting process. It is reported in [Zhang et al. 2003] that the
IPF proceeds by successively refining the estimate and it only takes a few iterations to re-
duce errors in the constraint equations to the point at whichthey are negligible in practice.
Note that the IPF is also based on the linear systemAx = y. Thus, the errors iny also
have great influence on the accuracy of estimated traffic matrix, when the IPF procedure
is used.

Since (5) is a weighted least square optimization problem, the direct way to ensure
non-negativity is to add the non-negativity constraint into the problem. We have,

min f(x) = (x − xg)
T (x − xg) + (Ax − ŷ)T W−1(Ax − ŷ) (7)

subject to: x ≥ 0

Note that the solution of (6) is not the solution of the above problem, since the
non-negativity isn’t ensured in it. Therefore, the gradient projection method is used to
solve this issue.

3.1.3. Gradient Projection Method

Projection onto non-negativity sets

Let C ⊂ Rn be a closed, convex set. Givenx ∈ Rn, the Euclidean projection ofx ontoC
isPC(x) = arg minv∈C ‖x−v‖. In other words,PC(x) is the closest point inC to x related
to the euclidean norm. In our case,C is given by,C = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}
Hence, the i-component ofPC(x) is, PC(x)i = max(xi, 0) i = 1, 2, . . . , n.

Gradient Projection Algorithm

The idea of the method is that, at a current point,x = xk, a steepest descent direction for
the unconstrained problem,p = −∇f(x) is considered. A search along the line through
xk in the direction−p, a new pointx = x + τpp is found. Then this new point is projected
onto the nonnegative sets to ensure its feasibility. The algorithm continues until the a
final point has been found. This can be viewed as a generalization of the steepest descent
method for unconstrained optimization.

In Algorithm 1 below, instead of a one-dimension search thatmany optimization
algorithms use, the stepsizeτk in (9), can be expressed as

τk = −
pT

k (xk − xg) + (Apk)
T W−1(Axk − ŷ)

pT
k pk + (Apk)

T W−1(Apk)
(12)

sincepk is a descent direction andf(xk + τpk) is a strictly convex function.
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Algorithm 1 Gradient Projection Method
Step 1Initialization.k = 0; x0 ≥ 0(nonnegative initial solution);
Step 2Gradient Projection Iterations

pk = −∇f(xk); (8)

τk = arg min
τ>0

f(xk + τpk); (9)

xk+1 = P (xk + τkpk); (10)

k = k + 1; (11)

Step 3If pk = 0 or maxi | xi
k+1−xi

k |≤ ǫ , the algorithm is terminated. Otherwise, return
to step 2.

3.2. Solutions for Problem B

We begin the section by presenting the proposed estimation model which is illustrated
in Figure 1. The model is divided in two levels. In the upper level, we use the least
square method to perform the traffic matrix estimation. In the lower level, we model the
optimal routing by a nonlinear programming. Both problems are unified by formulating
a bilevel programming model. Then, we present a genetic algorithm to solve it. The goal

multipath optimal 
routing

Traffic matrix 
Estimation

bilevel programming

Least square
estimation

Nonlinear 
programming

Figure 1. The proposed traffic matrix estimation model

is to estimate the traffic matrix in the optimal multi-path routing based network given the
measured link traffiĉy.

In our model, we want to find the vectorx satisfying the link traffic by minimizing
the distance between measured link traffic and real link traffic and the distance between
the prior traffic matrix and the real traffic matrix. The objective function of the upper level
is

(x̂ − x)T (x̂ − x) + (ŷ − y)T W−1(ŷ − y) (13)

whereW−1 is a given positive semidefinite matrix.

By combining the upper and the lower level problems, the formulation of problem
B is,
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min
x

(x̂ − x)T (x̂ − x) + (ŷ − y)T W−1(ŷ − y)

subject to x ≥ 0

wherey is the solution of,

min
y,xij

∑

a∈M la(Ca, ya) (14)

subject to
∑

j xij = xi, i ∈ N
∑

ij xijδ
ij
a = ya

xij ≥ 0

0 ≤ ya < Ca

wherela(Ca, ya) = ya

Ca−ya

Genetic algorithm

It is important to observe that the lower problem has only onesolution because the ob-
jective function is strictly convex on the feasible set. So,problem B is well defined. A
bilevel problem is nonconvex since its feasible set, given by the solutions of the lower
problem, is nonconvex. Nonconvexity implies the existenceof local solutions and so it
can be difficult to find the global optimal solution.

Some algorithms have been developed based on classical optimization ap-
proaches such as the branch-and-bound technique, the variable elimination method
based on Kuhn Tucker approach and algorithms based on the penalty function approach
[Vicente and Calamai 1994]. It is reported in [R. Mathieu andAnandalingam 1994] that
most of the traditional approaches are problem-dependent relying on knowledge of the
search space and are not sufficiently robust. Hall et al. [Hall et al. 1980] propose a heuris-
tic iterative algorithm to find a solution of the bilevel problem applied in the evolution of
traffic management schemes. However, the iterative algorithm may not converge if the
upper-level and lower-level problems are decoupled.

In this paper, a genetic algorithm is proposed to solve the bilevel programming
problem. Genetic algorithms (GAs) are inspired by the theory of evolution. Initially, a
population of chromosomes, each of which are potential solutions, are generated. These
chromosomes are altered or modified using the genetic operators (crossover and mutation)
in order to create a new generation. This evolutionary process is repeated a predetermined
number of times or until the solution is satisfied.

The motivation of using genetic algorithms (GAs) is due to its simplicity, less
problem restrictions, globality and implicit parallelism. In addition, it is quite robust
in dealing with non-convex as well as nondifferential problems. So, it can handle the
problem of nonconvexity resulting from the bilevel programming problem.

The algorithm starts with a population{x(0)
1 , . . . , x

(0)
N }. In the iterative procedure,

givenx
(k)
i (k = 0, 1, . . .), y

(k)
i is calculated by solving the lower optimal routing problem.
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The upper objective function is evaluated at each pair(x
(k)
i , y

(k)
i ) obtaining a selection of

the population which is used to generate a new populationx
(k+1)
i . The proposed genetic

algorithm is given as follows,

Algorithm 2 The Genetic Algorithm

Step 1. Randomly generate an initial N population ofx(k)
i . i ∈ N . Set k = 1.

Step 2. Solve the lower-level optimal multi-path routing optimization problem problem
with each fixedx(k)

i and find its corresponding lower-level variabley(k)
i .

Step 3. Return to upper-level problem and calculate the fitness function for each individ-
ualx(k)

i with y(k)
i .

Step 4. Tournament selection is used to select fit individualsx(k)
i . Perform the crossover

operation with probabilityPc. Perform the mutation operation with probabilityPm. Use
elitism strategy: the best solution is copied to the population in the next generation. This
is done to prevent losing the best solution found so far. Thena new populationx(k+1) is
generated.
Step 5. If k = maximum number of generations, the algorithm terminates. Else, set
k = k + 1 and return to Step 2.

4. Evaluation Methodology

In what follows we evaluate our traffic matrix estimation methods described in the previ-
ous section.

4.1. Evaluation Methodology for Problem A

4.1.1. Synthetic Data Experiments

We consider a small 4 node topology, shown in Figure 2. This topology is also used in
[Medina et al. 2003]. All node pairs and their traffic can be enumerated, which is useful
for illustrating how the methods behaves.

A

B C D

Figure 2. Topology of a four-node network

Synthetic data is very useful in order to evaluate the performance of traffic matrix
estimation techniques. This is true since we can study the behavior of the technique
under evaluation with respect to complete traffic matrices rather than only partial matrices
obtained from measured traffic. By performing synthetic-data experiments we can better
assess the errors yielded by the evaluated techniques. In general, studies and comparative
evaluations in the literature rely on synthetically generated traffic matrices based on strong
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assumptions regarding the underlying distributions of thetraffic demands between origin-
destination (OD) pair [Medina et al. 2003, Vardi 1996, Cao etal. 2000]. For example, a
common approach assumes that OD demands are distributed according to Gaussian or
Poisson distributions. In our synthetic-data experiment,we consider the synthetically
generated Poisson TMs which is used in [Medina et al. 2003].

The synthetic TM is obtained by generating the Poisson parametersλi for each OD
pair i uniformly from an interval[100, 500]. Then, Poisson traffic demands are generated
according toxi ∼ Poisson(λi). We route this TM onto the 4-node topology to obtain
synthetic link traffic. In order to evaluate the impact of SNMP measurement errors, we
introduce an error vectorǫ. The error vector is formed by multiplyingy with a noise
vector,ε = y ∗ N(0, φ), where∗ denotes the element by element vector multiplication,
N(0, φ) is a vector with random entries drawn form a normal distribution with mean 0
and standard deviationφ. In summary, the synthetic measured link traffic are generated
by adding white noise toy, that isŷ = y + ε. Finally the prior traffic matrix is generated
from the simple gravity model (1). Its mean relative error (MRE) is about 33%, and so it
is not a good prior. Note that if the prior is good (close to the final solution) the evaluation
process would not be appropriate.

In order to evaluate our methods, we need to know the accuracyof the estimated
traffic matrices. First we consider the MRE metric, which is defined as,

MRE =
1

NT

∑

i:xi>T

∣

∣

∣

∣

x̂i − xi

xi

∣

∣

∣

∣

. (15)

Here,xi is the true traffic matrix element and̂xi is the corresponding estimate.NT is the
number of matrix elements that are greater than a threshold valueT . In this experiment,
since the TM is generated with Poisson distribution and the difference between its largest
and smallest value is not big, we consider all traffic matrix elements in MRE evaluation.

Table 1 compares the estimated TM obtained by the tomogravity method with our
approach. We observer that the tomogravity method estimatefor the traffic between OD
pair CB is a negative value. After IPF, this value is adjustedto approximately zero. Note
that this leads to a very large error. With our approach, the estimate value is 53.51 which
is considerably better than the tomogravity estimate. It can also be observed that, when
the tomogravity method is used, the Mean Relative Error slightly decreases after IPF. In
this example, our method just needs a single step, and does not need to engage an iterative
process. Its MRE is smaller than that obtained by the tomogravity method.

4.1.2. Real-data Experiments

We use the 6 months of Abilene traffic matrices collected by Zhang [Zhang ]. The routing
matrix and the gravity model solution is also provided to theresearch community. We
perform two experiments on five hundred 5-minutes traffic matrices time series. The
beginning time of the first time series is March 1, 2004 and thesecond is July 31, 2004.
The corresponding link traffic can be derived by calculatingthe product of the traffic
matrix and the provided routing matrixA. In order to validate our approach, we simulate
the measurement noise described in Section 5.1.
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TM Tomogravity Our Method
OD Original prior TM TM TM TM
Pair TM (gravity) before IPF after IPF

AB 318 241.26 260.28 248.77 165.81
AC 289 344.40 221.17 228.91 192.42
AD 312 142.48 111.44 383.52 312.57
BA 294 256.79 538.94 292.91 223.33
BC 292 574.77 378. 258.95 238.51
BD 267 237.79 376.12 376.12 322.22
CA 305 350.82 165.18 147.95 224.70
CB 289 550.09 -48.50 0.81 53.51
CD 324 324.86 322.17 322.17 288.71
DA 283 157.52 308.52 298.68 246.45
DB 277 247.01 183.04 160.81 163.47
DC 291 352.60 396.69 428.76 275.10

MRE 33.33% 29.84% 29.42% 26.88%

Table 1. Comparison with the tomogravity model

The most important traffic to be estimated is the largest OD pair traffic since its
accuracy has great impact on traffic engineering tasks such as load balancing or failure
analysis. In this experiment, we choose the value ofT (defined in (15)) as 5.000.000 so
that the considered OD flows comprise approximately 85% of total traffic.

Figures 3(a) and 3(b) show the empirical cumulative distribution function of the
estimated traffic matrix for the two methods we compare. For instance, from Figure 3(a),
we can see that only approximately 10% of the traffic matrix estimated by the Tomograv-
ity approach has errors which are smaller that 30%, while 30%of the TM estimated by
our approach has errors smaller than 30%. Figure 3(b) shows similar behavior. If we are
concerned with errors smaller than 35%, only 30% of the estimated TM by the Tomograv-
ity technique are under this threshold in comparison with 60% of the TM estimated by our
method. From the figures we can conclude that our method has animproved performance
in comparison with the tomogravity method. This shows the advantages of incorporating
Ax − ŷ in the objective function.
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Figure 3. The empirical cumulative distribution function o f estimate TM

In what follows we evaluate the impact of different levels ofnoise in SNMP mea-
surement on the traffic matrix estimation. In particular, the noise levelφ is that used in
ε = y ∗ N(0, φ). Figure 4 shows the comparison of the Mean Relative Error (MRE) with
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the tomogravity method under different noise levels for onespecific traffic matrix. Since
the SNMP measurement error is synthetically generated by random normal distribution
with mean 0 and varianceφ, it is reasonable that the MRE increases with increasingφ, as
shown in the figure.
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Figure 4. Comparison with tomogravity method with differen t noise levels

Figure 5(a) shows the difference between the MRE of the tomogravity method and
our technique for five hundred traffic matrices, when the noise level is 0.05. We see that
411 (82.2%) values are positive. This means that, in most cases, our method has a smaller
MRE. The mean value of this difference is 0.93. Therefore, when the noise level is 0.05,
our method has a MRE which is about 0.93% smaller than that of the tomogravity method.
Figure 5(b) shows the results when the noise level is 0.1. In this case 453 (90.6%) values
are positive, and consequently, our method has a smaller MRE. The the mean value of this
difference is 2.69. This means that, when the noise level is 0.1, our method has a MRE
which is about 2.69% smaller than that of the tomogravity technique.
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Figure 5. Comparison with the tomogravity method with diffe rent noise levels

Table 2 shows the mean value of MRE differences with different noise levels for
five hundred traffic matrices. The table shows that the accuracy of our method increases
with the level of noise, as expected.

4.2. Evaluation Methodology for Problem B

The topology we consider is the 4-node topology for Problem A, and is depicted in Figure
2. The routing mechanism is assumed to be the optimal multi-path routing in this case.
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noise level 0.01 0.03 0.05 0.09 0.11 0.13 0.15
MRE difference 0.0592 0.3431 0.8665 1.5372 2,2174 2.9455 3.7584

Table 2. MRE difference with different noise levels

We generate synthetic traffic matrices from Poisson distribution and it is assumed that the
capacity of each link is2, 500 units. As described before, the prior TM is also generated
using the gravity model. The link traffic is obtained by solving the optimal multi-path
routing problem. We also simulate the noise in the link traffic, to obtain the finalobserved
link traffic.

For this problem, the relationship of the objective function and the fitness function
is defined as follows:f(x) = Cmax − O(x), wheref(x) is the fitness function, andO(x)
is the objective value of the upper-level problem.Cmax is taken as10, 000 in this paper.
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Figure 6. Genetic Algorithm for Traffic Matrix Estimation

The convergence of the algorithm is shown in Figure 6(a). It can be seen that
the algorithm converges quickly in the first 200 generations. Then it begins to converges
slowly. After 1,000 generations, the fitness of the current optimal solution is94, 83 which
is approximate the fitness of the ideal optimal solution which is 10, 000. Therefore, we
can take this near optimal solution as the final solution of the traffic matrix estimation
problem.

Figure 6(b) shows the mean error of the solution in each generation. We can
observe that the smaller upper-level objective function value achieved by the genetic al-
gorithm does not necessarily imply a better estimate of the traffic matrix. This can be
explained by the accuracy of the estimated TM that depends not only on the genetic al-
gorithm itself but also on the upper-level objective function and the prior traffic matrix.
Most importantly, the upper-level objective function (13), which minimizes the distance
between the estimated TM and the prior TM, is an approximation to reach the real TM.
Obviously, a smaller value of objective function (13) meansthat the estimated TM is
closer to the prior TM, but may not be closer to the real TM.

The comparison of the “real” traffic matrix elements to the estimated traffic matrix
elements is shown in Figure 6(c). The solid diagonal line shows equality, while the dashed
lines show±20% errors. We can see that, among 12 elements, the errors of 7 elements
are smaller than 20%. The errors of the other 3 elements are close to 20%. We conclude
then that the algorithm works well for TM Estimation.
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5. Conclusions

In this paper we propose a new traffic matrix estimation method which formulates the
traffic matrix estimation as a non-negativity constrained optimization problem. We con-
ducted extensive experiments both on synthetic traffic dataand real traffic data obtained
from the Abilene network. We found that the traffic matrix is more accurately estimated
with our method in comparison with the tomogravity method. Moreover, the relative
accuracy increases with increasing noise levels.

We also develop a novel approach to estimate traffic matriceswhen the optimal
multi-path routing mechanism is used. We formulate this problem as a bilevel program-
ming problem. The upper level model represents the traffic matrix estimation problem
and the lower level model represents the optimal multi-pathrouting problem. A genetic
algorithm is used for the solution.
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