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Abstract. We propose an approach which formulates the traffic matrixres
tion problem as a non-negativity constrained optimizagooblem, and then a
projection method is used to solve it. We conduct expersrasth on synthetic
and real measurement data obtained from the Abilene netvldré results indi-
cate that the estimated traffic matrices are more accurastimated when our
approach is used than when the tomogravity method is enghloje also de-
velop a novel approach for estimating traffic matrices whptinal multi-path
routing is employed. We formally formulate the problem adevbl program-
ming problem. Then a genetic algorithm is used to solve it.

1. Introduction

A traffic matrix (TM) reflects the volume of traffic that flows tveeen any source-
destination pair of nodes in a communication network. Thaasacould be links, routers,
Points-of-Presence (PoPs) in the Internet. The choice dé type affects the granularity
and type of the traffic matrix. For example, in a router-routaffic matrix, the traffic
that flows in and out of a given router includes all of the diseand peers attached to that
router. Obtaining traffic matrices is a very important pegblto the network operators
because many traffic engineering and network managemek# teeed the information
provided by traffic matrices, in order to improve the perfame and efficiency of the
network. These tasks include logical topology design, ciypglanning, routing proto-
col configuration, load balancing and network reliabilityadysis.

The problem of traffic matrix estimation depends on the rgythechanism in the
network. The most commonly used intra-domain Internetinguprotocols today are the
shortest path first (SPF) protocols such as Open ShortasHirrat (OSPF) and Interme-
diate System-Intermediate System (IS-IS). In these podéoeach link is associated with
a weight and the length of a path is defined as the sum of thehtged all the links
on that path. The shortest path is that with minimum lengtfaffit is routed along the
shortest path to the destination. However, these traditimuting protocols that rely on
a single path between a source-destination pair, may notegftly utilize the network re-
sources. To make optimal use of network resources and naeidelays, traffic between
source-destination pairs may often have to be split ancetbatong multiple paths each
carrying a fraction of the total flow. This routing mechanisneaommonly called, optimal
multi-path routing [Bertsekas and Gallager 1992].

In this work we tackle two traffic matrix estimation problenihe first Problem
A) proposes a solution for the case in which the network enggdbgrtest path routing
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In the secondRroblem B), a new technique is presented when tpimal multi-path
routingmechanism is assumed.

All of the previous works that attempt to solve problem A canrdughly classified
into two categories: direct and indirect methods. The direethods, as the name indi-
cates, directly measure traffic volumes between source astihadtion nodes. However,
those approaches have not been fully explored in large IRanks because they still
face challenging engineering obstacles such as the lackopep measurement infras-
tructure, high communication and computational costs arfigferring large amounts of
information. Indeed, most of the previous approaches gitémestimate traffic matrices
from other available data, typically link load measurenseantd routing configurations.
Roughly, the estimation problem is based on solving a sysfdimear equationg\x =y,
wherex is the traffic matrix vectorized as a column vectpiis a vector of link counts,
andA is a matrix reflecting the routing, where elemeht is equal to 1 if the OD paiy
traverses link, or zero otherwise. Moreover, the elemedts may be positive numbers
betweer) and1 if traffic splitting is supported. The link counyscan be readily obtained
through standard Simple Network Management Protocol (SNMPasurements. The
routing matrixA can be obtained by gathering IGP link weights and networgsltmy
information and then computing the shortest paths betwk&mDapairs, in case shortest
path routing is used. The problem at hand is to compute tffectraatrix x given the link
countsy and the routing matriXA. However, this is not a straightforward task because
the linear system is highly under-determined or ill-posede the number of OD pairs is
much larger than the number of links in almost all networksisTmeans that there is and
infinite number of feasible solutions far

In order to deal with the ill-posed problem, some previousksdVardi 1996,
Cao et al. 2000] are able to estimate the TM after assumirtghiearaffic flows follow
a Poisson or Gaussian distribution. Typically, after agsgrPoisson or Gaussian mod-
els for OD traffic pairs, additional constraints are introdd to obtain a solution. TM
estimation is performed with both constraints on the firsl aecond order moments.
Vardi [Vardi 1996] proposes a Poisson distribution model traffic demands and use
the maximum likelihood estimation technique to estimatetthffic demands. Cao et al
[Cao et al. 2000] followed Vardi's approach, but use a Gausgsiodel with the assump-
tion of a power-law relationship between the mean and veeant the traffic demands.
A comparative study of these methods in [Medina et al. 2088\ that they are highly
dependent on an initial starting point, callgdor.

Unfortunately the statistical methods cannot guarantae dal of the estimated
TM elementsA;; will have positive values. To cope with the problem, an itiesapro-
portional fitting algorithm (IPF) is applied to perform finadljustments on the estimated
traffic matrix. The IPF algorithm has been used extensivethé context of contingency
tables [Deming and Stephan 1940]. The idea is to expres Iconstraints given by
EquationAx =y, using a contingency table composed of the estimated tra#icix and
an extra value for each row and each column, corresponditigetmw and column sums,
respectively. The IPF algorithm proceeds to adjust theegbf the estimated traffic ma-
trix such that the row and column sum errors are minimizede ddnvergence of the IPF
algorithm is proven [Deming and Stephan 1940].

These statistical inference methods do not work well innesting the TM be-
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cause they are very sensitive to the assumptions (Poissussian distributions), which
do not hold in real network traffic data [Medina et al. 2003hisllimitation has led to
other models that employ extra information and differerstuasptions. The most promi-
nent approach is the tomogravity model [Zhang et al. 2003}e Key idea behind the
tomogravity method is to find the best among all of feasitdéitr matrix solutions based
on some criterion. The criterion can be described by an tiggtunction, and the linear
equationsAx = y are the constraints in an optimization problem. A gravitydalois
used to obtain the prior traffic matrix, then the least-squsiution which minimize the
Euclidean distance to the prior traffic matrix is obtained.

The least-square solutions may result in negative valueshybf course, have no
physical meaning. In order to achieve a fast and effectilation, the Iterative Propor-
tional Fitting is also used to ensure non-negativity indteformulating the problem as a
constrained optimization problem. As described in [Zhaingl.€2003], the initial starting
point is not as complex as that in [Cao et al. 2000]. They jastthe least square solution
for the traffic matrix, with zero replacing the negative etmts of the matrix. It is also
reported in [Zhang et al. 2003] that it only takes a few itienad to reduce errors in the
constraint equations to the point at which they are negkgibpractice.

Since both the least square optimization and IPF technigigesased on the sys-
temAx = y and the measured link traffic always contains errors, tHevahg question
may be asked:

Instead of using the tomogravity method (least square + Jle&h we for-
mulate the estimation problem as a non-negative constdaapéimization
problem? How?

Contributions for Problem A

We propose an approach which formulates the traffic mattirnegion problem as a non-
negative constrained optimization problem and a projeatiethod is then used to solve
it. We conduct experiments both on synthetic and real measemt data obtained from
the Abilene network. We show that our approach is capablstihating traffic matrices
more accurately than the tomogravity method.

Contributions for Problem B

Existing traffic matrix estimation techniques are not apgdhle to the optimal multi-path
routing networks. This is true since the relationship bemvéhe original traffic matrix

x and the link datay changes from linear to nonlinear. This means that routingois

longer static, but dynamic and depends on the original ¢traéimands. In other words,
the routing matrixA and the link datay are nonlinear functions of the original traffic
matrix x.

To the best of our knowledge, this paper is the first work atsacerned with the
traffic matrix estimation problem in optimal multi-path ting networks. We formally
formulate the traffic matrix estimation problem in an optimmaulti-path routing network
as a bilevel programming problem. In the bilevel prograngnoblem, the upper level
problem is responsible for the traffic matrix estimation ahe the lower level problem
represents the optimal routing problem. A genetic algariik used to solve the bilevel
programming problem.



192 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

The remaining of this paper is organized as follows. In Secf, we present
the background material. Section 3 presents our methodddaling with problems A
and B. The non-negativity constrained traffic estimatioobpem is proposed (problem
A) and a projection method used to obtain the final solutioar gfoblem B, a bilevel
programming model is proposed and a genetic algorithm usedlte it. In Section 4,
we validate the results for problem A, based both on syntheid real network traffic
matrices. For Problem B, we show numerical results basedwotheatic network traffic.
Our conclusions are presented in Section 5.

2. Background

2.1. Tomogravity Method

In [Zhang et al. 2003], the authors developed a method fanesing traffic matrices that
starts by building a prior TM using a gravity model. The kegw@asption underlying the
gravity model is that the traffic entering the network at aiweg node exits the network
at a particular egress node proportionally to the totafitragxiting at that egress. Let
x(i,*) denote the total traffic entering an ingress node i. Lt j) denote the total
traffic departing the network from node j. The gravity modespulates that,

olid) = ali ) @

This implies that the total amount of data node i sends to nagl@roportional
to the amount of traffic departing the network at | relativehe total amount of traffic
departing the entire network. The authors call this assionphesimple gravity model

This simple gravity model essentially assumes completepgaddence between
sources and destinations. However, as pointed out in [Zbaaf 2003], traffic transit
between peering networks behaves very differently. Theddhto the generalized gravity
model, where traffic between peers is forced to zero.

The gravity model is used inside a least square optimizairoblem. They for-
mulate the optimization problem as

mxin (X = Xg) " (X = Xg) (2)

subject to: (Ax —y)T(Ax —y) is minimized

The idea is that among all the traffic matrices that satiséylithk constraints, the
method chooses one closest to the gravity maglelThe overall method works as a two
step process within each time interval t: first an initialresttex,, is calculated using (1)
and then, the optimization problem in (2) is solved.

2.2. The Formulation of Optimal Routing Problem

The objective of optimal multi-path routing is to distrileutraffic demand on its all pos-
sible paths such that the total network “cost” is minimizélthe cost may be average
network delay, etc. The network is modeled by a grgph (£, M) which L is the set of
L nodes and\ is the set of\/ directed links. Each link € M has a known capacity,
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and is assigned a cost functignbased on its capacity and the amount of traffic passing
through it. The most popular link cost function is the linkadefunction which is derived
from the M/M/1 queueing model [Kleinrock 1964].

la(Corti) = 3)

wherey, is the traffic at linka.

The formulation of the optimal multi-path routing problem i

1 Ya
gnzugl D aem Ca—Ya (4)

subjectto . x;; = ;1 €N
sz 1508 = Ya
xij 2 0
0<y, <C,

wherez; is the traffic of OD pair (recall that we reduce the TM to a vector) and
z;; is the traffic of thej path of OD pairi. The indicatow is 1 if the j path of OD pair
pass through link;, and zero otherwise.

3. Solutions

3.1. Solutions for Problem A: Non-negativity Constrained Taffic Matrix
Estimation Problem

3.1.1. Uncertainty in Gravity Model and SNMP Data

Since the initial estimate in gravity modg|,, is calculated from (1), itis very unlikely that
the initial estimate satisfies the equatix = y. As pointed out in [Roughan et al. 2003],
SNMP link datay has many limitations. Missing data (SNMP uses unreliabléWans-
port), incorrect data (through poor router vendor impletagons), and a coarse sampling
interval (five minutes is typical) are examples of thesetiaton. Therefore, the SNMP
link data collected is not error free, and its reliability ynzary.

In the gravity model presented in the last section, errorfSNMP data are not
considered. The maximum belief is placed on it. But one fssionsequence of errors
in SNMP data is that the equatidxx = y becomes inconsistent. Even if those errors are
small, it could bring large errors to the estimated traffictmxa

One way to handle this inconsistency is formulate the folhmgmwveighted least
square problem

min  f(X) = (X —Xg)" (X = %) + (AX — §)"WH(AXx ) (5)
wherey is measured SNMP link datay—! is a weight matrix that is positive semi-
definite. In this present paper, we consitiér' as an identity matrix.

Since the objective function (5) is convex, we have that atpos a solution if and
only if Vf(x) = 0 holds. By the Matrix Inversion Lemma [Tylavsky and Sohie 8P8
the solution can be expressed as,

X =X, + AT(AAT + W)~y — AX,) (6)
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3.1.2. Handling the non-negativity

The solution of (6) doesn’t ensure the non-negativity of ¢k@ments of the traffic ma-
trix. In [Zhang et al. 2003], the Iterative Proportional tig (IPF), as suggested in
[Cao et al. 2000], is used to ensure non-negativity. Theredad traffic matrix, solu-
tion of (2), with zero replacing the negative elements of riietrix is used as an initial
starting point of the iterative fitting process. It is reattin [Zhang et al. 2003] that the
IPF proceeds by successively refining the estimate andyttakés a few iterations to re-
duce errors in the constraint equations to the point at wiielt are negligible in practice.
Note that the IPF is also based on the linear systéem= y. Thus, the errors iy also
have great influence on the accuracy of estimated trafficixpathen the IPF procedure
IS used.

Since (5) is a weighted least square optimization problamgirect way to ensure
non-negativity is to add the non-negativity constrainbitite problem. We have,

min - f(X) = (X —Xg)T (X = %) + (AX — §)"WH(Ax ) ()
subject to: x>0

Note that the solution of (6) is not the solution of the abowgbfem, since the
non-negativity isn’t ensured in it. Therefore, the gradiprojection method is used to
solve this issue.

3.1.3. Gradient Projection Method
Projection onto non-negativity sets

Let C C R™ be a closed, convex set. Givere R", the Euclidean projection of ontoC
is Po(X) = arg minycc |[X—V||. In other words P(X) is the closest point i€ to x related
to the euclidean norm. In our casejs given by,C = {z € R"|z; > 0,i =1,2,...,n}
Hence, the i-component é%:(X) is, Po(X); = max(z;,0) i=1,2,...,n.

Gradient Projection Algorithm

The idea of the method is that, at a current paing; x,, a steepest descent direction for
the unconstrained problem,= —V f(X) is considered. A search along the line through
X, in the direction—p, a new poink = x+ 7,p is found. Then this new point is projected
onto the nonnegative sets to ensure its feasibility. Therdlgn continues until the a
final point has been found. This can be viewed as a geneializat the steepest descent
method for unconstrained optimization.

In Algorithm 1 below, instead of a one-dimension search thahy optimization
algorithms use, the stepsizgin (9), can be expressed as

PP (xe = Xg) 4 (Ap)TW T (AX, — Y)
Tk = — T T —1 (12)
Py, Py + (AP, )TW ™ (Ap,,)

sincep,, is a descent direction anflx; + 7p, ) is a strictly convex function.
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Algorithm 1 Gradient Projection Method
Step llinitializationk = 0; o > 0(nonnegative initial solution);
Step 2Gradient Projection Iterations

P = =V f(X); (8)
7, = argmin f (Xk + 7Py); %)
k=k+1; (11)

Step 3If p, = 0 ormax; | z,, —z} |< €, the algorithm is terminated. Otherwise, return
to step 2.

3.2. Solutions for Problem B

We begin the section by presenting the proposed estimatmatehwhich is illustrated
in Figure 1. The model is divided in two levels. In the upperele we use the least
square method to perform the traffic matrix estimation. k& lbwer level, we model the
optimal routing by a nonlinear programming. Both problemes @anified by formulating
a bilevel programming model. Then, we present a genetiaidigo to solve it. The goal

T,y J- Traffic matrix

S Estimation -4

> Least square

—|— estimation

J_ multipath optimal J_
— —— routing
i (3) Nonlinear :I—

programming

bilevel programming

Figure 1. The proposed traffic matrix estimation model
is to estimate the traffic matrix in the optimal multi-patlutimg based network given the
measured link traffig.

In our model, we want to find the vectrisatisfying the link traffic by minimizing
the distance between measured link traffic and real linKitrahd the distance between
the prior traffic matrix and the real traffic matrix. The olijge function of the upper level
is

(X =X)"(%=x) + (Y = Y)Wy ~y) (13)
whereW ! is a given positive semidefinite matrix.

By combining the upper and the lower level problems, the fdation of problem
Bis,
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min (X—X)TX=x)+ (§—y) "Wy —vy)

X

subject to x>0
wherey is the solution of,

min 3 1ol Co i) (14)
subject to Zj zij = x;,1 €N
Zij xij(scizj = Ya
x>0
0<y, <C,

wherel, (Cy, y) = Cy+y

Genetic algorithm

It is important to observe that the lower problem has only sol@tion because the ob-
jective function is strictly convex on the feasible set. Smblem B is well defined. A

bilevel problem is nonconvex since its feasible set, giverihe solutions of the lower
problem, is nonconvex. Nonconvexity implies the existeotckcal solutions and so it
can be difficult to find the global optimal solution.

Some algorithms have been developed based on classicahipgtiion ap-
proaches such as the branch-and-bound technique, thebleagtimination method
based on Kuhn Tucker approach and algorithms based on tladtyp&mction approach
[Vicente and Calamai 1994]. It is reported in [R. Mathieu @wrdhndalingam 1994] that
most of the traditional approaches are problem-dependdying on knowledge of the
search space and are not sufficiently robust. Hall et al.l ¢tall. 1980] propose a heuris-
tic iterative algorithm to find a solution of the bilevel ptelm applied in the evolution of
traffic management schemes. However, the iterative algarihay not converge if the
upper-level and lower-level problems are decoupled.

In this paper, a genetic algorithm is proposed to solve thevéi programming
problem. Genetic algorithms (GAs) are inspired by the thiedrevolution. Initially, a
population of chromosomes, each of which are potentialt®wig, are generated. These
chromosomes are altered or modified using the genetic apsr@rossover and mutation)
in order to create a new generation. This evolutionary gecerepeated a predetermined
number of times or until the solution is satisfied.

The motivation of using genetic algorithms (GAs) is due wsgimplicity, less
problem restrictions, globality and implicit parallelismin addition, it is quite robust
in dealing with non-convex as well as nondifferential pehk. So, it can handle the
problem of nonconvexity resulting from the bilevel programg problem.

The algorithm starts with a populatic{nrgo), ce x§3>}. In the iterative procedure,
given:cf.k)(k; =0,1,...), y(k) is calculated by solving the lower optimal routing problem.

7
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The upper objective function is evaluated at each (Jzéf?, y}k)) obtaining a selection of

the population which is used to generate a new populaljffhl). The proposed genetic
algorithm is given as follows,

Algorithm 2 The Genetic Algorithm

Step 1 Randomly generate an initial N populationxﬁlf). i€ N.Setk=1.

Step 2 Solve the lower-level optimal multi-path routing optiration problem problem
with each fixeckgk) and find its corresponding lower-level varialyii@

Step 3 Return to upper-level problem and calculate the fitnesstfan for each individ-
ual xgk) with ygk).

Step 4 Tournament selection is used to select fit individué’fé Perform the crossover
operation with probabilityP.. Perform the mutation operation with probabili,. Use
elitism strategy: the best solution is copied to the popartain the next generation. This
is done to prevent losing the best solution found so far. Tdeew populatiox*+1) is
generated.

Step 5 If k = maximum number of generations, the algorithm terrmasa Else, set
k =k + 1 and return to Step 2.

4. Evaluation Methodology

In what follows we evaluate our traffic matrix estimation imeds described in the previ-
ous section.

4.1. Evaluation Methodology for Problem A
4.1.1. Synthetic Data Experiments
We consider a small 4 node topology, shown in Figure 2. Theslmgy is also used in

[Medina et al. 2003]. All node pairs and their traffic can beimerated, which is useful
for illustrating how the methods behaves.

Figure 2. Topology of a four-node network

Synthetic data is very useful in order to evaluate the peréorce of traffic matrix
estimation techniques. This is true since we can study thewber of the technique
under evaluation with respect to complete traffic matrieglser than only partial matrices
obtained from measured traffic. By performing synthetitadaxperiments we can better
assess the errors yielded by the evaluated techniquesnérajestudies and comparative
evaluations in the literature rely on synthetically geteddraffic matrices based on strong
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assumptions regarding the underlying distributions ottafic demands between origin-
destination (OD) pair [Medina et al. 2003, Vardi 1996, CaaleR000]. For example, a
common approach assumes that OD demands are distributedimgrto Gaussian or
Poisson distributions. In our synthetic-data experimerd, consider the synthetically
generated Poisson TMs which is used in [Medina et al. 2003].

The synthetic TM is obtained by generating the Poisson patiens)\; for each OD
pair i uniformly from an interval100, 500]. Then, Poisson traffic demands are generated
according tor; ~ Poisson(\;). We route this TM onto the 4-node topology to obtain
synthetic link traffic. In order to evaluate the impact of SRMheasurement errors, we
introduce an error vecta. The error vector is formed by multiplying with a noise
vector,e =y x N(0, ¢), wherex denotes the element by element vector multiplication,
N(0, ¢) is a vector with random entries drawn form a normal distiitnutwith mean 0
and standard deviatiop. In summary, the synthetic measured link traffic are geedrat
by adding white noise tg, that isy = y + . Finally the prior traffic matrix is generated
from the simple gravity model (1). Its mean relative errorRHE) is about 33%, and so it
is not a good prior. Note that if the prior is good (close to the fir@ugion) the evaluation
process would not be appropriate.

In order to evaluate our methods, we need to know the accufatye estimated
traffic matrices. First we consider the MRE metric, which édided as,

. (15)

.fi — T
Z;

1
MRE:N—T Z

iy >T

Here,x; is the true traffic matrix element and is the corresponding estimatd’y is the
number of matrix elements that are greater than a threstaiee¥'. In this experiment,
since the TM is generated with Poisson distribution and tfierdnce between its largest
and smallest value is not big, we consider all traffic matteneents in MRE evaluation.

Table 1 compares the estimated TM obtained by the tomognangthod with our
approach. We observer that the tomogravity method estifoatée traffic between OD
pair CB is a negative value. After IPF, this value is adjustedpproximately zero. Note
that this leads to a very large error. With our approach, gterate value is 53.51 which
is considerably better than the tomogravity estimate. it @iago be observed that, when
the tomogravity method is used, the Mean Relative Errohtliypdecreases after IPF. In
this example, our method just needs a single step, and does@d to engage an iterative
process. Its MRE is smaller than that obtained by the tonvitgrenethod.

4.1.2. Real-data Experiments

We use the 6 months of Abilene traffic matrices collected bgrgh[Zhang ]. The routing
matrix and the gravity model solution is also provided to tegearch community. We
perform two experiments on five hundred 5-minutes trafficrioes time series. The
beginning time of the first time series is March 1, 2004 andséheond is July 31, 2004.
The corresponding link traffic can be derived by calculatihg product of the traffic
matrix and the provided routing matrix. In order to validate our approach, we simulate
the measurement noise described in Section 5.1.
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™ Tomogravity Our Method
OD | Original | prior TM ™ ™ ™
Pair ™ (gravity) | before IPF| after IPF

AB 318 241.26 260.28 248.77 165.81
AC 289 344.40 221.17 228.91 192.42
AD 312 142.48 111.44 383.52 312.57
BA 294 256.79 538.94 292.91 223.33
BC 292 574.77 378. 258.95 238.51
BD 267 237.79 376.12 376.12 322.22
CA 305 350.82 165.18 147.95 224.70
CB 289 550.09 -48.50 0.81 53.51
CD 324 324.86 322.17 322.17 288.71
DA 283 157.52 308.52 298.68 246.45
DB 277 247.01 183.04 160.81 163.47
DC 291 352.60 396.69 428.76 275.10
MRE | 33.33% | 29.84% | 29.42% 26.88%

Table 1. Comparison with the tomogravity model

The most important traffic to be estimated is the largest ODtpatfic since its
accuracy has great impact on traffic engineering tasks ssi¢baa balancing or failure
analysis. In this experiment, we choose the valué ¢flefined in (15)) as 5.000.000 so
that the considered OD flows comprise approximately 85%taf taaffic.

Figures 3(a) and 3(b) show the empirical cumulative diatrdn function of the
estimated traffic matrix for the two methods we compare. Rstance, from Figure 3(a),
we can see that only approximately 10% of the traffic matriested by the Tomograv-
ity approach has errors which are smaller that 30%, while 8%he TM estimated by
our approach has errors smaller than 30%. Figure 3(b) shimwasbehavior. If we are
concerned with errors smaller than 35%, only 30% of the esttych TM by the Tomograv-
ity technique are under this threshold in comparison witho@ the TM estimated by our
method. From the figures we can conclude that our method haspaoved performance
in comparison with the tomogravity method. This shows theaathges of incorporating
AX — y in the objective function.

Empirical CDF

Fraction of estimated TM

(a) March 1,2004 (b) July 31, 2004

Figure 3. The empirical cumulative distribution function o f estimate TM

In what follows we evaluate the impact of different levelsoise in SNMP mea-
surement on the traffic matrix estimation. In particulag tioise leveb is that used in
e =Yy N(0,¢). Figure 4 shows the comparison of the Mean Relative Error gy\Rith



200 26° Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos

the tomogravity method under different noise levels for specific traffic matrix. Since
the SNMP measurement error is synthetically generated igom normal distribution
with mean 0 and varianag it is reasonable that the MRE increases with increasiras
shown in the figure.

0.05 015 0.20

0.10
noise level of SNMP link counts

Figure 4. Comparison with tomogravity method with differen t noise levels

Figure 5(a) shows the difference between the MRE of the toawity method and
our technique for five hundred traffic matrices, when the etesel is 0.05. We see that
411 (82.2%) values are positive. This means that, in mostscasir method has a smaller
MRE. The mean value of this difference is 0.93. Thereforegnvtine noise level is 0.05,
our method has a MRE which is about 0.93% smaller than thaedaftmogravity method.
Figure 5(b) shows the results when the noise level is 0.lhindase 453 (90.6%) values
are positive, and consequently, our method has a smaller.NTR&the mean value of this
difference is 2.69. This means that, when the noise levellisdur method has a MRE
which is about 2.69% smaller than that of the tomogravityhtegue.

o Difierence
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o S0 100 10 200 250 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 500
Traffic matrix

(a) March 1,2004 and noise level = 0.05 (b) July 31, 2004 arskrievel = 0.1

Figure 5. Comparison with the tomogravity method with diffe rent noise levels

Table 2 shows the mean value of MRE differences with differemse levels for
five hundred traffic matrices. The table shows that the acgusbour method increases
with the level of noise, as expected.

4.2. Evaluation Methodology for Problem B

The topology we consider is the 4-node topology for Probleramd is depicted in Figure
2. The routing mechanism is assumed to be the optimal math-puting in this case.
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noise level 0.01 0.03 0.05 0.09 0.11 0.13 0.15
MRE difference| 0.0592| 0.3431| 0.8665| 1.5372| 2,2174| 2.9455| 3.7584

Table 2. MRE difference with different noise levels

We generate synthetic traffic matrices from Poisson distigin and it is assumed that the
capacity of each link ig, 500 units. As described before, the prior TM is also generated
using the gravity model. The link traffic is obtained by salyithe optimal multi-path
routing problem. We also simulate the noise in the link teatid obtain the finabbserved
link traffic.

For this problem, the relationship of the objective funotand the fitness function
is defined as followsf (z) = C,.. — O(z), Wheref(x) is the fitness function, an@(z)
is the objective value of the upper-level problef,... is taken ad0, 000 in this paper.

Generatonnumber 707 GenemmonNember 7T el yaffic matrix elements

(a) Fitness (b) Mean Error (c) Comparison to the 'Real’ TM

Figure 6. Genetic Algorithm for Traffic Matrix Estimation

The convergence of the algorithm is shown in Figure 6(a).ah be seen that
the algorithm converges quickly in the first 200 generatioftgen it begins to converges
slowly. After 1,000 generations, the fitness of the currgatiroal solution is94, 83 which
is approximate the fitness of the ideal optimal solution Whg10, 000. Therefore, we
can take this near optimal solution as the final solution efttlaffic matrix estimation
problem.

Figure 6(b) shows the mean error of the solution in each geioer. We can
observe that the smaller upper-level objective functiolue@chieved by the genetic al-
gorithm does not necessarily imply a better estimate of thi¢ matrix. This can be
explained by the accuracy of the estimated TM that depentlemy on the genetic al-
gorithm itself but also on the upper-level objective funaotiand the prior traffic matrix.
Most importantly, the upper-level objective function (1@hich minimizes the distance
between the estimated TM and the prior TM, is an approximatioreach the real TM.
Obviously, a smaller value of objective function (13) med#nst the estimated TM is
closer to the prior TM, but may not be closer to the real TM.

The comparison of the “real” traffic matrix elements to théreated traffic matrix
elements is shown in Figure 6(c). The solid diagonal linenshequality, while the dashed
lines show+20% errors. We can see that, among 12 elements, the errors ofmépte
are smaller than 20%. The errors of the other 3 elements ase ¢tb 20%. We conclude
then that the algorithm works well for TM Estimation.
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5. Conclusions

In this paper we propose a new traffic matrix estimation metiwbich formulates the
traffic matrix estimation as a hon-negativity constraingtiraization problem. We con-
ducted extensive experiments both on synthetic traffic dathreal traffic data obtained
from the Abilene network. We found that the traffic matrix i@ accurately estimated
with our method in comparison with the tomogravity method.orbbver, the relative
accuracy increases with increasing noise levels.

We also develop a novel approach to estimate traffic matrdesn the optimal
multi-path routing mechanism is used. We formulate thidfem as a bilevel program-
ming problem. The upper level model represents the traffitrimnastimation problem
and the lower level model represents the optimal multi-pathing problem. A genetic
algorithm is used for the solution.
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