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Abstract. Standard TCP congestion control mechanisms degrade performance 
of small flows, especially during the Slow Start phase, which often causes 
multiple packet losses. We propose a modified TCP startup mechanism, called 
Burst TCP (B-TCP), which employs a responsive growth scheme based on 
current window size, to improve performance for small flows. Our simulation 
experiments, considering heavy-tailed traffic, show that B-TCP can 
significantly reduce both transfer times and packet losses for small flows 
without causing damage to large flows. Additionally, B-TCP is easy to 
implement and requires TCP adjustment at the sender side only. 

1. Introduction 

The Transmission Control Protocol (TCP) is responsible for supplying reliable data 
transport service on the TCP/IP stack and for carrying most than 90% of all Internet 
traffic [Fraleigh et al. 2003]. In addition, the stability and efficiency of the actual TCP 
congestion control mechanisms have been extensively studied and are indeed well 
known by the networking community [Chiu and Jain 1989]. However, new Internet 
applications and functionalities continuously modify its traffic characteristics, 
demanding new research in order to adapt TCP to the new reality of the Internet. In 
particular, a traffic phenomenon known as "mice and elephants" has been motivating 
important researches around the TCP. 

 The mice and elephants metaphor alludes to a characteristic observed in traffic 
of heavy-utilized Internet links, where many flows (mice flows) carry few packets (or 
bytes), and few flows (elephants flows) carry many packets (or bytes). In some cases, for 
example, as little as 0.02% of all flows contribute with more than 59.3% of the total 
traffic volume [Mori et al. 2004]. 

 It can be said that elephant flows are those that do not only contribute 
significantly to the total load, but also show long-lasting duration. However, there is no 
consensus on an exact quantitative definition of what elephant or mouse flows are. 
Consequently, many network operators use their own criteria for establishing a 
definition. For example, a possible quantitative definition of an elephant flow is those 
that contribute with more of 0.1% of all sampled packets [Mori et al. 2004]. 
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 In this scenario, the main point is that the TCP was designed for elephants. This 
causes several problems for mice flows forcing it to achieve poor performance. One 
well-known problem is that the initial and final TCP phases represent a significant 
amount of the life time for small flows, and cause minor overhead for large flows 
[Padmanabhan and Mogul 1994]. Moreover each TCP flow examines the available 
bandwidth in an independent way, even if other concurrent flows exist in the path. 
Therefore each new flow is forced to run the Slow Start. 

 The Slow Start algorithm initiate with a small congestion window (cwnd) of 
typically one segment, and each new acknowledgement (ACK) is an explicit permission 
for sending two new packets [Chiu and Jain 1989], which causes the known exponential 
behavior. However, at Slow Start phase, TCP uses little network bandwidth and small 
flows do not achieve optimal performance. Moreover, this slowness is one of the causes 
of insufficient data for activate Fast Retransmit/Fast Recovery, and thus, Retransmission 
Time Out (RTO) is the only mechanism for loss detection, increasing small flows 
latency because it higher initial estimative. 

 While the first problem is based in the slow increase of the exponential 
algorithm, the second problem is consequence of its increasing rule, which states that 
Slow Start must duplicate its cwnd at each round trip time (RTT). This rule associated 
with the use of default parameters at the beginning of transmission, often cause a severe 
buffer overflow at the bottleneck link. This buffer overflow results in multiple packet 
losses, which lowers the aggregate throughput and forces TCP performance to degrade 
substantially. 
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Figure 1. Example of bad bandwidth estimative of Slow Start 

 Figure 1 shows this problem. Please assume that the maximum number of 
packets accepted on the network is 32, indicated by the bolded line, and the Slow Start 
threshold (ssthresh) variable is set to 64 packets or more. While cwnd is below of 32 no 
problem happens, but when cwnd reaches 32 (in the fifth RTT) and new packets start to 
be acknowledged problems came arise. When all packets are acknowledged the cwnd 
reaches 64 packets. Thus, the number of sent packets in next RTT will be 64 packets, 
but as the available bandwidth is 32 packets, about 50% of all packets will be lost. 
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 This undesirable effect happens because Slow Start is “blinded” for its own 
congestion contribution, i.e., Slow Start estimate that if a new ACK returns then more 
packets can be sent. But the truth is that increasing it window in this greedy way 
contributes to increase the number of packets in the network, increase the drop 
probability in bottleneck routers [Wang et al. 2004] and reducing the overall network 
throughput. As an aggravation, when this algorithm is applied to mice flows the 
problem is still bigger, because small flows depends of timeouts and will experience 
large delays to recover of these multiple losses [Wang et al. 2000]. 

 The war between mice and elephants allied to TCP traffic prevalence on the 
Internet show the constant necessity to reexamine the TCP congestion control 
mechanisms, in order to adapt it to the new traffic characteristics emerging in the 
Internet. Thus, the objective of this work is present Burst TCP, B-TCP for short, an 
intuitive TCP modification, which changes the initial TCP growth scheme to improve 
small flows performance without causing damage to large flows. 

 The remaining of this paper is organized as follows. Section 2 discusses similar 
researches on adjusting TCP congestion control behavior, with emphasis on those that 
proposed modifications in the Slow Start phase. Section 3 presents the B-TCP, a new 
approach for the window growth scheme aiming to favor mice flows with minor impact 
on other flows. A simulative analysis of B-TCP is presented in Section 4 and results are 
discussed for various metrics. The paper is concluded in Section 5. 

2. Related Work 

TCP was first specified in [Postel 1981], despite of many later modifications [Braden 
1989], four main algorithms used for congestion control are responsible for its general 
behavior: Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery. 

 The Slow Start algorithm aims at finding out the available bandwidth, assuming 
that there is no existing information regarding to the network conditions. Hence, it 
increases exponentially the transmission rate until a certain threshold is reached. Then, 
if no segment loss is verified, the Congestion Avoidance algorithm is activated, which 
increases linearly the transmission rate preventing packet drops. In both cases, any 
packet drop forces TCP to call the beginning of the Slow Start and to reduce the 
threshold.   

 The packet loss detection is done using a timer, named RTO: if no ACK is 
received after the time indicated by the RTO value, the lost packet is retransmitted. If 
the sender TCP receives three or more ACK for a given segment, it is assumed that a 
loss occurred for that segment, since those ACKs were triggered by subsequent 
segments arriving at the receiver. In this case, the Fast Retransmit algorithm is activated 
to retransmit the lost packet even before the RTO being reached. However, after the Fast 
Retransmit, the congestion control uses the Fast Recovery that, differently of the timer 
scheme, calls the Congestion Avoidance phase and not the Slow Start phase. 

 There is a considerable amount of research intending to solve this problem with 
the main goal to enhance the performance for small flows. Earlier research works 
proposed to maintain history information from previous flows to infer the network state. 
The Control Block Interdependence, described in [Touch 1997] and implemented in 
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[Balakrishnan et al. 1998], considers sharing state information contained in an already 
existent data structure: the TCP Control Block, which maintains RTT estimates and 
congestion control variables. Thus, each new TCP connection can receive a portion of 
the network resources based in the Control Block estimate. Balakrishnan et al. (1999) 
present the Congestion Manager (CM), whose idea is to maintain network statistics for 
all host flows, independently of transport protocol used.  

 Other works proposed modifying the standard Slow Start mechanism in order to 
achieve higher utilization during this initial phase. Allman et al. (2002) surveys works 
that enhance TCP performance increasing the initial window from one to four segments. 
These evaluations show that larger initial window scheme improves the throughput and 
transfer time of short-lived TCP in a variety of scenarios, such as satellite links and 
dialup modems links. However, in heavily congested scenarios where all flows use an 
initial window of four segments, the drop rate increases by 1% to 2%. 

 Smooth Start [Wang et al. 2000] address the aggressive behavior of the Slow 
Start growth, and proposes to alleviate the transition between the Slow Start phase and 
the Congestion Avoidance phase, creating a transitional phase called Smooth Start 
phase, where the cwnd grows with a lesser rate. Through simulations authors shown that 
it simple modification can significantly reduce packet losses and produce less bursty 
traffic than slow start. 

 In this same line, Wang et al. (2004) propose a modification in the Slow Start 
mechanism, called Adaptive Start (Astart), which uses the Eligible Rate Estimate (ERE) 
mechanism employed in TCP Westwood [Mascolo et al. 2000] for setting the value of 
the slow start threshold (ssthresh) variable. Thus, when ssthresh is reset to a value 
higher than the current one, the cwnd grows exponentially to the new value. This 
mechanism avoids overestimates as well as underestimates of available bandwidth. 

 Gallop-Vegas mechanism [Ho et al. 2005] aims at solving a problem of TCP 
Vegas [Brakmo and Peterson 1995], which changes too early from Slow Start to 
Congestion Avoidance phases. Gallop-Vegas mechanism tries to reduce the burstiness, 
to raise the rate to the available bandwidth in shorter time, and to improve the start-up 
performance. Such an approach puts the cwnd increasing phase between the exponential 
growth and the linear growth. 

 The TCP Smart Framing (TCP-SF) [Mellia et al. 2005] enhances TCP 
performance in the operating region where the cwnd is small. A sender host using this 
algorithm is allowed to send four small segments, whose aggregate payload is equal to 
the initial cwnd. Thus, the sender will have a better chance to infer loss with Fast 
Retransmit, and without increasing heavily the network load. Despite the better small 
flows performance achieved, Iyengar et al. (2003) argue, based on the heavy-tailed 
behavior of Internet traffic, that TCP-SF causes an increased amount of ACKs in the 
reverse path. 

 The technical report of Iyengar et al. (2003) discusses some of these proposals, 
and suggests a classification scheme with three categories: proposals that reduce the 
overhead of initialization or finalization connection phases; proposals that employ 
mechanisms to share network state; and proposals that improve Slow Start performance. 
Moreover, this work proposes some guidelines to compare and evaluate these proposals. 
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 Thus, a new TCP start scheme is acceptable due to the fact that the cited 
proposals have some limitations. Smooth Start solves the Slow Start problem of 
multiple packet losses, but it does not solve the initial slow increase problem, that is, it 
does not focus on the problem of mice flows. The TCP-SF activates the Fast Retransmit 
in cases of loss, but maintains both problems of Slow Start (few initial packets and 
multiple losses). The Astart and the Gallop-Vegas solve these two problems, but both 
proposals use bandwidth estimation schemes that can be inaccurate due to route 
changes, for example. 

3. The Burst TCP 

In this section we present B-TCP, a new window growth approach during the TCP start 
phase, which aims to favor mice flows with minor impact on elephants. As explained in 
Section 1, Slow Start presents some problems associated with it exponential behavior. 
One of them is that it initiate with a very low rate, even increasing it very faster. Hence, 
firstly, we developed a simple Slow Start generalization, which maintains the 
exponential growth of Slow Start but modifies it exponential base. 

 Jin et al. (2004) explained that current TCP congestion control research follow 
an important guideline: the congestion control behavior is designed at a flow level and, 
after this, the packet level implementation is considered. The first approach models the 
macroscopic constraints of the flow, such as achieved throughput and fairness. On other 
hand, the packet level specification is determined by the constraints and objectives 
described at flow level. 

 Analyzing the congestion window dynamics of Slow Start in the packet level, we 
understand that cwnd increases by one packet for each ACK arrival. Thus, disregarding 
the effect of some issues such as delayed ACKs receivers and the topological diversity 
of the Internet, we have that for each ACK arrival 

1+← cwndcwnd

but in the flow level, cwnd grows exponentially in the base 2 
RTTcwnd 2← .

 From the flow level model we generalize the Slow Start algorithm as below,  
RTTbcwnd ←

where b is the base. The packet-level scheme becomes 

)1( −+← bcwndcwnd .

 Figure 2 compares the congestion window dynamics of Slow Start and it 
generalization using a base equal to 3. Please note that the generalization increases the 
window growth and consequently it improves the individual transfer time for small 
flows when there is available bandwidth.  

 However the generalized Slow Start shows the fail of the exponential growth 
behavior. For instance, from Figure 1, one can note that Slow Start achieves the cwnd of 
64 packets in six RTTs. But, using the base equal to 4, it reaches the same value in just 
three RTTs. This means that generalized form of Slow Start anticipates network 
congestion, since while Slow Start sends 95 packets before occur losses it generalized 
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form sends only 53 packets, thus, considering a file size of 64 packets, Slow Start could 
terminate the transfer without retransmissions. 
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Figure 2. Slow Start and generalized Slow Start congestion window dynamics   

 This problem in the exponential design motivated us to propose a second 
algorithm for reduce the two Slow Start problems, called Burst TCP. 

 Please note that the function of Slow Start is increasing the TCP rate (or 
congestion window, in practical terms) to reaches the  available link bandwidth. So we 
can metaphorically say that this process looks like the task of fill a pipe or a bottle with 
water. However, Slow Start approach is counter-intuitive to the standard manner to do 
this task [Wang et al. 2000]. Indeed, to do this we must initiate pouring out water in the 
bottle quickly and reducing it progressively to avoid spill out water.  B-TCP follows this 
concept, that is, at initial RTTs, the algorithm increase the congestion window through 
large steps and reduces these steps gradually. 

 In this way, the B-TCP proposal is to create a window growth scheme inversely 
proportional to the window size. The intuition behind this scheme is that if a flow 
increases it window size then it has more data to send, and if this flow grows then it 
leaves the mice class and turns an elephant. Thus, this proposal employs the mice 
threshold (mice_t) for indicate flow’s class change. 

To obtain the desired dynamics, the flow level behavior was first defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+←

f

cwndtmice
floorcwndcwnd

_

where f is the smooth-out factor responsible to control the aggressiveness of B-TCP(f), 
and the floor function returns the largest integer less than or equal to mice_t – cwnd. The 
threshold, called mice threshold (mice_t), indicates whether a flow has been changed 
from a mouse to a small elephant, that is, when the window reaches this value the flow 
can not be considered a mouse because it already have data to send. Thus, the packet 
level implementation was designed as: 
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cwnd

f

cwndtmice
floor

cwndcwnd
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

+←

_

.

 The idea of this implementation is that each increment in cwnd will be a fraction 
of cwnd, guaranteeing the dynamic designed in the flow level specification. Figure 3 
compares the congestion window dynamics at flow level of Slow Start, B-TCP(4) and 
B-TCP(8) with mice_t equal to 32 packets. Please note as behave the packet-level 
implementation. 
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Figure 3. Slow Start, B-TCP(4) and B-TCP(8) congestion window dynamics 

 B-TCP has other parameter to be controlled beyond the mice threshold. The 
smooth-out factor f governs the increase window value, and a priori it value is constant 
and set arbitrarily. Moreover, other B-TCP modification is that a flow using it, must 
maintain it dynamics up to cwnd reaches a certain threshold or until the connection 
detect a loss, behaving as the standard Reno TCP, from this point and so on. The loss 
detection, on other hand, show that network is congested and therefore B-TCP must turn 
off it aggressive behavior. 

 Figure 4 shows the pseudo-code of B-TCP and illustrates it behavior in relation 
to the main TCP events: ACK arrivals, three duplicated ACKs detection, and timeout 
expiration. Others TCP pieces of code had not been shown directly, but are represented 
by the Standard TCP indication. The algorithm considers cwnd in packets, following 
the scheme used by the NS-2 simulator [NS-2 2007].  

 The btcp_enabled boolean variable implements the B-TCP turn off, which is 
set to FALSE when a loss is detected and remains with this value forever, i.e., the TCP 
protocol does not perform B-TCP algorithm ever again during the flow’s lifetime. Using 
this strategy B-TCP can avoid other losses caused by its aggressive growth. On the other 
hand, this strategy can be uninteresting for wireless environments where packet losses 
may be caused by transmission errors. However, the scenarios studied in this paper are 
limited to wired networks. 
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 Another observation in this pseudo-code is that, in some cases, the floor function 
can set the increment variable to zero, therefore this pseudo-code employs a condition to 
avoid that the congestion window obtains no increment. Moreover, such modification, 
jointly with the inversely proportional window growth of B-TCP, allows a smooth 
transition between the initial phase and the congestion avoidance phase. 

When non-duplicated ACK arrival: 

If (cwnd < ssthresh) { 

     If (btcp_enabled==TRUE) { 

  increment = floor((mice_t - cwnd)/f) 

      If (increment==0) increment = 1 

  cwnd += increment/cwnd 

    } else {   cwnd += 1  } 

}else {  //go to Standard TCP } 

When 3 Duplicated ACK or when Timeout expires 

btcp_enabled=FALSE 

//go to Standard TCP 

Figure 4. Pseudo-code of B-TCP(f) with mice threshold mice_t

4. Simulation Results and Discussion 

We carried out simulations using NS-2 to study the effect of B-TCP for mice traffic 
competing with elephant traffic. 

4.1. Simulation Scenario 

The simulation uses a dumbbell topology, as depicted in Figure 5, where each side has 
five nodes. The flow direction is left to right with ACKs in the opposite way. Each node 
has a variable number of TCP flows (50 to 250 flows per node). 

The peripheral links bandwidth is 10 Mbps and its one-way delay is 5 ms, for the 
bottleneck these values are 1.5 Mbps and 35 ms, respectively. The queues sizes on each 
router were set equal to the bandwidth-delay product (BDP) of an individual link. Thus, 
with packets of 1024B, the queue size value was set to 7 packets. 

Each flow is a FTP transfer whose file size (in packets) follows a Pareto 
distribution with the scale parameter is 4 and the shape parameter is 1.2. The chosen 
scale value limits the lower bound of the Pareto distribution to 4 packets (4 KB), which 
is interesting because, for any TCP flavor (Newreno or B-TCP), size files below 4 
packets, in loss cases, do not activate the Fast Retransmit. The shape value (1.2) was 
chosen based on literature information [Carofiglio et al. 2007]. 

In order to avoid synchronization among flows, the initial time of each flow is 
chosen from a uniform distribution between 0 and 900 seconds. The total simulation 
time is set to 1000 seconds. Moreover, each flow is grouped in the mice or elephant 
classes according to a classification threshold. In this experiment, two different 
thresholds have been used. First, the classification threshold was set equal to 32 KB 
because this value is the mice threshold used on B-TCP. The other classification 
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threshold was chosen using the AEST method, which is a non-parametric statistical 
method created by Crovella and Taqqu (1999) for estimate the tail index of a heavy-tail 
distribution from empirical data. This method can be used to calculate the first point in 
the tail of the distribution, that is, the threshold between mice and elephants. Thus the 
calculated threshold was 82 KB.  
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Figure 5. Network topology for simulation 

 In each simulation, the number of TCP sources varies. Each case is repeated 50 
times to guarantee results that are statistically acceptable. And all results use a 95% 
confidence level. 

4.2 Simulation Results 

The first issue to be answered is how to determine the number of flows that causes 
congestion. Preliminary study demonstrates that the typical bottleneck link utilization is 
obtained for 250 flows and 1250 flows with Newreno TCP Flavor. For few flows (250 
flows) the mean link utilization is about 2.8%; however there are some peaks with 1 to 3 
seconds duration where the utilization reaches between 90% and 100%. In the other case 
(1250 flows) the mean link utilization obtained was around 19.6% with link utilization 
peaks of up to 85% lasting as long as one minute. 

 The values of the transfer time were computed for each class. Figure 6 shows the 
mean transfer time (in seconds) in a line graph for the mice class using different values 
as mice threshold. Considering  Figure 6(a), a first observation is that the small 
confidence interval guarantee reliability, in this case the accuracy is about 5%. 
Moreover, B-TCP(4) and B-TCP(8) obtain smaller mean values than Newreno, the 
difference is about 38% in the light congested case and 19% in the heavy congested 
case. This occurs because B-TCP considers its own contribution for congestion, and 
reduces its growing rate as the congestion window increases. 

Please note that the choice of the smooth-out factor affects the transfer time. At 
best B-TCP(4) improves the transfer time by approximately 18%. Despite this with 1000 
and 1250 flows nothing can be said because of confidence intervals overlap. A second 
observation is that the B-TCP(4) line slope is greater than that of B-TCP(8) and 
Newreno, hence indicating that the difference between them can diminish with the 
increase of the number of flows. 
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Therefore, we run this case for 1500, 1750, 2000, 2250, and 2500 flows, and our 
previous suspicion was confirmed: B-TCP(4) exceeds B-TCP(8) and reaches Newreno, 
but B-TCP(8) continues improving Newreno transfer times despite congestion increase, 
for instance, for 2250 flows the improvement is approximately 10%. For 2500 flows 
nothing can be said because confidence intervals overlap. 
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Figure 6. Transfer time graph for mice class using (a) 32Kb as threshold and 
using (b) AEST threshold 

Figure 6(b) shows transfer time results using AEST method in calculus of the 
threshold between mice and elephants. Please note that the linear behavior for each TCP 
flavor is the same that the one in Figure 6(a), despite its plotted values being different. 
Such result shows that our rule of thumb choice of 32KB is a good value for 
representing the threshold. 

A second metric evaluated in this experiment was the percentage of lost packets 
for each class. Figure 7 shows packet loss observed, which allow some comparisons. In 
these figures, the numbers 1, 2, 3, 4, and 5, are related to 250, 500, 750, 1000, and 1250 
flows, respectively. 

The first observation on this metric is that the percentage of lost packets in the 
mice class for B-TCP(4) is many times bigger than B-TCP(8) or Newreno. On the other 
hand, B-TCP(8) achieves lower values than Newreno. This occurs because B-TCP 
initiates its connection with a bigger packet burst which can increase the number of lost 
packets. For instance, consider the bottleneck BDP and buffer of this experiment, whose 
values are 7 packets, and only two B-TCP(4) flows. After the first packet arrival of each 
flow, B-TCP(4) increases its congestion window to 8 packets, therefore the total number 
of packets in network will be greater than the BDP and the bottleneck buffer, causing 
lost of two packets. Thus, even with few concurrent flows, B-TCP(4) is more likely to 
lose it packets by routers drop. 

 The second interesting observation regarding the packet loss metric is relative to 
elephant graph. This graph shows that B-TCP algorithms reduce the mean number of 
lost packets for elephants. Please note that, for B-TCP(8) results, absolute values for 
elephants are, surprisingly, smaller than absolute mice values. In this line, the last 
observation is that the overall number of lost packets for B-TCP(8) is less than that of 
other cases, since it finishes its transmission before the sender rate reaches the available 
bandwidth therefore reducing the loss probability. 
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Figure 7. Packet losses graphs 

 Looking for transfer time metrics only, B-TCP(4) obtained better performance 
than B-TCP(8). But, this last metric has shown that B-TCP(4) has a greedy behavior 
which can achieve poor results in networks with high congestion level. Therefore we 
run the same case using a 1.0 Mbps bottleneck link. The idea here is also to increase the 
congestion and, at the same time, modify router buffers, which was set to only 4 
packets. 

 Figure 8 presents the mice transfer time for Newreno, B-TCP(4) and B-TCP(8) 
TCP flavors, and shows clearly that B-TCP(4) achieves poor performance in relation to 
Newreno and B-TCP(8). The latter, on the other hand, continues achieving good results. 
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Figure 8. Transfer time graph for mice class and 1Mpbs link rate 

  We still evaluated the effect of the buffer size. First we evaluated the effect of 
use RTT to calculate the buffer size. Thus, buffer size was set to 14 packets. Figure 9 
shows result for the transfer time of the mice class using this rule. As expected, B-TCP 
still achieves good performance, and the use of a large buffer improves it transfer time 
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reaching about 30% in the better case. Moreover, the difference between Newreno and 
B-TCP(4) increased to approximately 43%. 
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Figure 9. Transfer Time graph for mice class using augmented buffer  

 We also evaluated B-TCP using a small buffer size. Based on [Appenzeller et al. 

2004], we calculated the buffer size using ( ) nRTTxC , where n is the number of 
elephant flows in the set, and C is the link capacity. The number of elephant flows is 
about 10% of all flows therefore the buffer was set to 3 packets. Figure 10 shows result 
for this evaluation. In this case, B-TCP achieves poor results than Newreno due the 
bursty behavior of B-TCP. However, this bad result can be explained by the simplicity 
of our topology. Since it is known that the rule must be employed when there are a high 
number of flows through the link. 
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Figure 10. Transfer Time graph for mice class using reduced buffer 
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 Other scenarios and simulation parameters were also used but the results were 
quite similar to the results showed above. Thus, due to space restriction, we have chosen 
some representative scenarios to make the B-TCP explanation easier and to verify the B-
TCP efficiency. 

5. Conclusions 

This work proposed a new algorithm to start TCP connections, called B-TCP, which is 
an intuitive modification, easy to implement and that requires TCP adjustment at the 
sender side only. We evaluated performance of B-TCP in a scenario with elephant and 
mice flows competing on a congested network. The heavy-tailed traffic was generated 
following a Pareto distribution and its parameters were obtained from the literature. 

B-TCP, in a general way, improves the transfer time for mice flows and, in some 
cases, for elephant flows also. Moreover, results showed that under high congestion, B-
TCP performance for mice flows is quite similar to that of Newreno. However, in our 
experiments it was not possible to determine, with confidence, how much the use of B-
TCP harms elephant flows in this metric. 

Two versions of B-TCP were evaluated, using different smooth-out factor: 4 and 
8. The former proved to achieve the better transfer time values, but it increases packet 
loss for mice flows, affecting it performance in heavy congested links. The effect of 
buffer size also was evaluated showing that B-TCP performance is sensible to this 
parameter. 

Future work of this proposal includes considering other topologies and link 
types. Moreover, the effect of the background traffic and the reverse traffic will be 
evaluated. 
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