

Burst TCP: an approach for benefiting mice flows

Glauco E. Gonçalves1, Stenio Fernandes2,1, Denio Mariz3,1, Djamel Sadok1

1Universidade Federal de Pernambuco – UFPE
 Caixa Postal 7851 – 50732-970 – Recife – PE

2Centro Federal de Educação Tecnológica de Alagoas – CEFET-AL
Rua Barão de Atalaia, s/n – 57020-510 – Maceió, AL

3Centro Federal de Educação Tecnológica da Paraíba – CEFET-PB
Rua 1º de Maio, 720 – 58015-180 – João Pessoa, PB
{glauco, stenio, denio, jamel}@gprt.ufpe.br

Abstract. Standard TCP congestion control mechanisms degrade performance
of small flows, especially during the Slow Start phase, which often causes
multiple packet losses. We propose a modified TCP startup mechanism, called
Burst TCP (B-TCP), which employs a responsive growth scheme based on
current window size, to improve performance for small flows. Our simulation
experiments, considering heavy-tailed traffic, show that B-TCP can
significantly reduce both transfer times and packet losses for small flows
without causing damage to large flows. Additionally, B-TCP is easy to
implement and requires TCP adjustment at the sender side only.

1. Introduction

The Transmission Control Protocol (TCP) is responsible for supplying reliable data
transport service on the TCP/IP stack and for carrying most than 90% of all Internet
traffic [Fraleigh et al. 2003]. In addition, the stability and efficiency of the actual TCP
congestion control mechanisms have been extensively studied and are indeed well
known by the networking community [Chiu and Jain 1989]. However, new Internet
applications and functionalities continuously modify its traffic characteristics,
demanding new research in order to adapt TCP to the new reality of the Internet. In
particular, a traffic phenomenon known as "mice and elephants" has been motivating
important researches around the TCP.

 The mice and elephants metaphor alludes to a characteristic observed in traffic
of heavy-utilized Internet links, where many flows (mice flows) carry few packets (or
bytes), and few flows (elephants flows) carry many packets (or bytes). In some cases, for
example, as little as 0.02% of all flows contribute with more than 59.3% of the total
traffic volume [Mori et al. 2004].

 It can be said that elephant flows are those that do not only contribute
significantly to the total load, but also show long-lasting duration. However, there is no
consensus on an exact quantitative definition of what elephant or mouse flows are.
Consequently, many network operators use their own criteria for establishing a
definition. For example, a possible quantitative definition of an elephant flow is those
that contribute with more of 0.1% of all sampled packets [Mori et al. 2004].

SBRC 2007 - Desempenho e Escalabilidade 927

 In this scenario, the main point is that the TCP was designed for elephants. This
causes several problems for mice flows forcing it to achieve poor performance. One
well-known problem is that the initial and final TCP phases represent a significant
amount of the life time for small flows, and cause minor overhead for large flows
[Padmanabhan and Mogul 1994]. Moreover each TCP flow examines the available
bandwidth in an independent way, even if other concurrent flows exist in the path.
Therefore each new flow is forced to run the Slow Start.

 The Slow Start algorithm initiate with a small congestion window (cwnd) of
typically one segment, and each new acknowledgement (ACK) is an explicit permission
for sending two new packets [Chiu and Jain 1989], which causes the known exponential
behavior. However, at Slow Start phase, TCP uses little network bandwidth and small
flows do not achieve optimal performance. Moreover, this slowness is one of the causes
of insufficient data for activate Fast Retransmit/Fast Recovery, and thus, Retransmission
Time Out (RTO) is the only mechanism for loss detection, increasing small flows
latency because it higher initial estimative.

 While the first problem is based in the slow increase of the exponential
algorithm, the second problem is consequence of its increasing rule, which states that
Slow Start must duplicate its cwnd at each round trip time (RTT). This rule associated
with the use of default parameters at the beginning of transmission, often cause a severe
buffer overflow at the bottleneck link. This buffer overflow results in multiple packet
losses, which lowers the aggregate throughput and forces TCP performance to degrade
substantially.

Slow Start Cwnd

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

0 1 2 3 4 5 6 7
RTT

C
w

nd
 (p

kt
s)

Figure 1. Example of bad bandwidth estimative of Slow Start

 Figure 1 shows this problem. Please assume that the maximum number of
packets accepted on the network is 32, indicated by the bolded line, and the Slow Start
threshold (ssthresh) variable is set to 64 packets or more. While cwnd is below of 32 no
problem happens, but when cwnd reaches 32 (in the fifth RTT) and new packets start to
be acknowledged problems came arise. When all packets are acknowledged the cwnd
reaches 64 packets. Thus, the number of sent packets in next RTT will be 64 packets,
but as the available bandwidth is 32 packets, about 50% of all packets will be lost.

928 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

 This undesirable effect happens because Slow Start is “blinded” for its own
congestion contribution, i.e., Slow Start estimate that if a new ACK returns then more
packets can be sent. But the truth is that increasing it window in this greedy way
contributes to increase the number of packets in the network, increase the drop
probability in bottleneck routers [Wang et al. 2004] and reducing the overall network
throughput. As an aggravation, when this algorithm is applied to mice flows the
problem is still bigger, because small flows depends of timeouts and will experience
large delays to recover of these multiple losses [Wang et al. 2000].

 The war between mice and elephants allied to TCP traffic prevalence on the
Internet show the constant necessity to reexamine the TCP congestion control
mechanisms, in order to adapt it to the new traffic characteristics emerging in the
Internet. Thus, the objective of this work is present Burst TCP, B-TCP for short, an
intuitive TCP modification, which changes the initial TCP growth scheme to improve
small flows performance without causing damage to large flows.

 The remaining of this paper is organized as follows. Section 2 discusses similar
researches on adjusting TCP congestion control behavior, with emphasis on those that
proposed modifications in the Slow Start phase. Section 3 presents the B-TCP, a new
approach for the window growth scheme aiming to favor mice flows with minor impact
on other flows. A simulative analysis of B-TCP is presented in Section 4 and results are
discussed for various metrics. The paper is concluded in Section 5.

2. Related Work

TCP was first specified in [Postel 1981], despite of many later modifications [Braden
1989], four main algorithms used for congestion control are responsible for its general
behavior: Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery.

 The Slow Start algorithm aims at finding out the available bandwidth, assuming
that there is no existing information regarding to the network conditions. Hence, it
increases exponentially the transmission rate until a certain threshold is reached. Then,
if no segment loss is verified, the Congestion Avoidance algorithm is activated, which
increases linearly the transmission rate preventing packet drops. In both cases, any
packet drop forces TCP to call the beginning of the Slow Start and to reduce the
threshold.

 The packet loss detection is done using a timer, named RTO: if no ACK is
received after the time indicated by the RTO value, the lost packet is retransmitted. If
the sender TCP receives three or more ACK for a given segment, it is assumed that a
loss occurred for that segment, since those ACKs were triggered by subsequent
segments arriving at the receiver. In this case, the Fast Retransmit algorithm is activated
to retransmit the lost packet even before the RTO being reached. However, after the Fast
Retransmit, the congestion control uses the Fast Recovery that, differently of the timer
scheme, calls the Congestion Avoidance phase and not the Slow Start phase.

 There is a considerable amount of research intending to solve this problem with
the main goal to enhance the performance for small flows. Earlier research works
proposed to maintain history information from previous flows to infer the network state.
The Control Block Interdependence, described in [Touch 1997] and implemented in

SBRC 2007 - Desempenho e Escalabilidade 929

[Balakrishnan et al. 1998], considers sharing state information contained in an already
existent data structure: the TCP Control Block, which maintains RTT estimates and
congestion control variables. Thus, each new TCP connection can receive a portion of
the network resources based in the Control Block estimate. Balakrishnan et al. (1999)
present the Congestion Manager (CM), whose idea is to maintain network statistics for
all host flows, independently of transport protocol used.

 Other works proposed modifying the standard Slow Start mechanism in order to
achieve higher utilization during this initial phase. Allman et al. (2002) surveys works
that enhance TCP performance increasing the initial window from one to four segments.
These evaluations show that larger initial window scheme improves the throughput and
transfer time of short-lived TCP in a variety of scenarios, such as satellite links and
dialup modems links. However, in heavily congested scenarios where all flows use an
initial window of four segments, the drop rate increases by 1% to 2%.

 Smooth Start [Wang et al. 2000] address the aggressive behavior of the Slow
Start growth, and proposes to alleviate the transition between the Slow Start phase and
the Congestion Avoidance phase, creating a transitional phase called Smooth Start
phase, where the cwnd grows with a lesser rate. Through simulations authors shown that
it simple modification can significantly reduce packet losses and produce less bursty
traffic than slow start.

 In this same line, Wang et al. (2004) propose a modification in the Slow Start
mechanism, called Adaptive Start (Astart), which uses the Eligible Rate Estimate (ERE)
mechanism employed in TCP Westwood [Mascolo et al. 2000] for setting the value of
the slow start threshold (ssthresh) variable. Thus, when ssthresh is reset to a value
higher than the current one, the cwnd grows exponentially to the new value. This
mechanism avoids overestimates as well as underestimates of available bandwidth.

 Gallop-Vegas mechanism [Ho et al. 2005] aims at solving a problem of TCP
Vegas [Brakmo and Peterson 1995], which changes too early from Slow Start to
Congestion Avoidance phases. Gallop-Vegas mechanism tries to reduce the burstiness,
to raise the rate to the available bandwidth in shorter time, and to improve the start-up
performance. Such an approach puts the cwnd increasing phase between the exponential
growth and the linear growth.

 The TCP Smart Framing (TCP-SF) [Mellia et al. 2005] enhances TCP
performance in the operating region where the cwnd is small. A sender host using this
algorithm is allowed to send four small segments, whose aggregate payload is equal to
the initial cwnd. Thus, the sender will have a better chance to infer loss with Fast
Retransmit, and without increasing heavily the network load. Despite the better small
flows performance achieved, Iyengar et al. (2003) argue, based on the heavy-tailed
behavior of Internet traffic, that TCP-SF causes an increased amount of ACKs in the
reverse path.

 The technical report of Iyengar et al. (2003) discusses some of these proposals,
and suggests a classification scheme with three categories: proposals that reduce the
overhead of initialization or finalization connection phases; proposals that employ
mechanisms to share network state; and proposals that improve Slow Start performance.
Moreover, this work proposes some guidelines to compare and evaluate these proposals.

930 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

 Thus, a new TCP start scheme is acceptable due to the fact that the cited
proposals have some limitations. Smooth Start solves the Slow Start problem of
multiple packet losses, but it does not solve the initial slow increase problem, that is, it
does not focus on the problem of mice flows. The TCP-SF activates the Fast Retransmit
in cases of loss, but maintains both problems of Slow Start (few initial packets and
multiple losses). The Astart and the Gallop-Vegas solve these two problems, but both
proposals use bandwidth estimation schemes that can be inaccurate due to route
changes, for example.

3. The Burst TCP

In this section we present B-TCP, a new window growth approach during the TCP start
phase, which aims to favor mice flows with minor impact on elephants. As explained in
Section 1, Slow Start presents some problems associated with it exponential behavior.
One of them is that it initiate with a very low rate, even increasing it very faster. Hence,
firstly, we developed a simple Slow Start generalization, which maintains the
exponential growth of Slow Start but modifies it exponential base.

 Jin et al. (2004) explained that current TCP congestion control research follow
an important guideline: the congestion control behavior is designed at a flow level and,
after this, the packet level implementation is considered. The first approach models the
macroscopic constraints of the flow, such as achieved throughput and fairness. On other
hand, the packet level specification is determined by the constraints and objectives
described at flow level.

 Analyzing the congestion window dynamics of Slow Start in the packet level, we
understand that cwnd increases by one packet for each ACK arrival. Thus, disregarding
the effect of some issues such as delayed ACKs receivers and the topological diversity
of the Internet, we have that for each ACK arrival

1+← cwndcwnd

but in the flow level, cwnd grows exponentially in the base 2
RTTcwnd 2← .

 From the flow level model we generalize the Slow Start algorithm as below,
RTTbcwnd ←

where b is the base. The packet-level scheme becomes

)1(−+← bcwndcwnd .

 Figure 2 compares the congestion window dynamics of Slow Start and it
generalization using a base equal to 3. Please note that the generalization increases the
window growth and consequently it improves the individual transfer time for small
flows when there is available bandwidth.

 However the generalized Slow Start shows the fail of the exponential growth
behavior. For instance, from Figure 1, one can note that Slow Start achieves the cwnd of
64 packets in six RTTs. But, using the base equal to 4, it reaches the same value in just
three RTTs. This means that generalized form of Slow Start anticipates network
congestion, since while Slow Start sends 95 packets before occur losses it generalized

SBRC 2007 - Desempenho e Escalabilidade 931

form sends only 53 packets, thus, considering a file size of 64 packets, Slow Start could
terminate the transfer without retransmissions.

Cwnd Growth

0

50

100

150

200

250

300

0 1 2 3 4 5 6
RTT

C
w

nd
 (p

kt
s)

SlowStart

SS Base=3

Figure 2. Slow Start and generalized Slow Start congestion window dynamics

 This problem in the exponential design motivated us to propose a second
algorithm for reduce the two Slow Start problems, called Burst TCP.

 Please note that the function of Slow Start is increasing the TCP rate (or
congestion window, in practical terms) to reaches the available link bandwidth. So we
can metaphorically say that this process looks like the task of fill a pipe or a bottle with
water. However, Slow Start approach is counter-intuitive to the standard manner to do
this task [Wang et al. 2000]. Indeed, to do this we must initiate pouring out water in the
bottle quickly and reducing it progressively to avoid spill out water. B-TCP follows this
concept, that is, at initial RTTs, the algorithm increase the congestion window through
large steps and reduces these steps gradually.

 In this way, the B-TCP proposal is to create a window growth scheme inversely
proportional to the window size. The intuition behind this scheme is that if a flow
increases it window size then it has more data to send, and if this flow grows then it
leaves the mice class and turns an elephant. Thus, this proposal employs the mice
threshold (mice_t) for indicate flow’s class change.

To obtain the desired dynamics, the flow level behavior was first defined as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+←

f

cwndtmice
floorcwndcwnd

_

where f is the smooth-out factor responsible to control the aggressiveness of B-TCP(f),
and the floor function returns the largest integer less than or equal to mice_t – cwnd. The
threshold, called mice threshold (mice_t), indicates whether a flow has been changed
from a mouse to a small elephant, that is, when the window reaches this value the flow
can not be considered a mouse because it already have data to send. Thus, the packet
level implementation was designed as:

932 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

cwnd

f

cwndtmice
floor

cwndcwnd
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

+←

_

.

 The idea of this implementation is that each increment in cwnd will be a fraction
of cwnd, guaranteeing the dynamic designed in the flow level specification. Figure 3
compares the congestion window dynamics at flow level of Slow Start, B-TCP(4) and
B-TCP(8) with mice_t equal to 32 packets. Please note as behave the packet-level
implementation.

Cwnd Growth

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6
RTT

C
w

nd
 (

p
kt

s)

SlowStart

B-TCP(4)

B-TCP(8)

Figure 3. Slow Start, B-TCP(4) and B-TCP(8) congestion window dynamics

 B-TCP has other parameter to be controlled beyond the mice threshold. The
smooth-out factor f governs the increase window value, and a priori it value is constant
and set arbitrarily. Moreover, other B-TCP modification is that a flow using it, must
maintain it dynamics up to cwnd reaches a certain threshold or until the connection
detect a loss, behaving as the standard Reno TCP, from this point and so on. The loss
detection, on other hand, show that network is congested and therefore B-TCP must turn
off it aggressive behavior.

 Figure 4 shows the pseudo-code of B-TCP and illustrates it behavior in relation
to the main TCP events: ACK arrivals, three duplicated ACKs detection, and timeout
expiration. Others TCP pieces of code had not been shown directly, but are represented
by the Standard TCP indication. The algorithm considers cwnd in packets, following
the scheme used by the NS-2 simulator [NS-2 2007].

 The btcp_enabled boolean variable implements the B-TCP turn off, which is
set to FALSE when a loss is detected and remains with this value forever, i.e., the TCP
protocol does not perform B-TCP algorithm ever again during the flow’s lifetime. Using
this strategy B-TCP can avoid other losses caused by its aggressive growth. On the other
hand, this strategy can be uninteresting for wireless environments where packet losses
may be caused by transmission errors. However, the scenarios studied in this paper are
limited to wired networks.

SBRC 2007 - Desempenho e Escalabilidade 933

 Another observation in this pseudo-code is that, in some cases, the floor function
can set the increment variable to zero, therefore this pseudo-code employs a condition to
avoid that the congestion window obtains no increment. Moreover, such modification,
jointly with the inversely proportional window growth of B-TCP, allows a smooth
transition between the initial phase and the congestion avoidance phase.

When non-duplicated ACK arrival:

If (cwnd < ssthresh) {

 If (btcp_enabled==TRUE) {

 increment = floor((mice_t - cwnd)/f)

 If (increment==0) increment = 1

 cwnd += increment/cwnd

 } else { cwnd += 1 }

}else { //go to Standard TCP }

When 3 Duplicated ACK or when Timeout expires

btcp_enabled=FALSE

//go to Standard TCP

Figure 4. Pseudo-code of B-TCP(f) with mice threshold mice_t

4. Simulation Results and Discussion

We carried out simulations using NS-2 to study the effect of B-TCP for mice traffic
competing with elephant traffic.

4.1. Simulation Scenario

The simulation uses a dumbbell topology, as depicted in Figure 5, where each side has
five nodes. The flow direction is left to right with ACKs in the opposite way. Each node
has a variable number of TCP flows (50 to 250 flows per node).

The peripheral links bandwidth is 10 Mbps and its one-way delay is 5 ms, for the
bottleneck these values are 1.5 Mbps and 35 ms, respectively. The queues sizes on each
router were set equal to the bandwidth-delay product (BDP) of an individual link. Thus,
with packets of 1024B, the queue size value was set to 7 packets.

Each flow is a FTP transfer whose file size (in packets) follows a Pareto
distribution with the scale parameter is 4 and the shape parameter is 1.2. The chosen
scale value limits the lower bound of the Pareto distribution to 4 packets (4 KB), which
is interesting because, for any TCP flavor (Newreno or B-TCP), size files below 4
packets, in loss cases, do not activate the Fast Retransmit. The shape value (1.2) was
chosen based on literature information [Carofiglio et al. 2007].

In order to avoid synchronization among flows, the initial time of each flow is
chosen from a uniform distribution between 0 and 900 seconds. The total simulation
time is set to 1000 seconds. Moreover, each flow is grouped in the mice or elephant
classes according to a classification threshold. In this experiment, two different
thresholds have been used. First, the classification threshold was set equal to 32 KB
because this value is the mice threshold used on B-TCP. The other classification

934 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

threshold was chosen using the AEST method, which is a non-parametric statistical
method created by Crovella and Taqqu (1999) for estimate the tail index of a heavy-tail
distribution from empirical data. This method can be used to calculate the first point in
the tail of the distribution, that is, the threshold between mice and elephants. Thus the
calculated threshold was 82 KB.

R0 R1

S1

S2

S3

S4

10Mbps
1ms

1.5Mbps
35ms

S5

R1

R2

R3

R4

10Mbps
1ms

R5

TCP
Source

Initial
Time

(0 – 900)s

R0 R1

S1

S2

S3

S4

10Mbps
1ms

1.5Mbps
35ms

S5

R1

R2

R3

R4

10Mbps
1ms

R5

TCP
Source
TCP
Source

Initial
Time

(0 – 900)s

Figure 5. Network topology for simulation

 In each simulation, the number of TCP sources varies. Each case is repeated 50
times to guarantee results that are statistically acceptable. And all results use a 95%
confidence level.

4.2 Simulation Results

The first issue to be answered is how to determine the number of flows that causes
congestion. Preliminary study demonstrates that the typical bottleneck link utilization is
obtained for 250 flows and 1250 flows with Newreno TCP Flavor. For few flows (250
flows) the mean link utilization is about 2.8%; however there are some peaks with 1 to 3
seconds duration where the utilization reaches between 90% and 100%. In the other case
(1250 flows) the mean link utilization obtained was around 19.6% with link utilization
peaks of up to 85% lasting as long as one minute.

 The values of the transfer time were computed for each class. Figure 6 shows the
mean transfer time (in seconds) in a line graph for the mice class using different values
as mice threshold. Considering Figure 6(a), a first observation is that the small
confidence interval guarantee reliability, in this case the accuracy is about 5%.
Moreover, B-TCP(4) and B-TCP(8) obtain smaller mean values than Newreno, the
difference is about 38% in the light congested case and 19% in the heavy congested
case. This occurs because B-TCP considers its own contribution for congestion, and
reduces its growing rate as the congestion window increases.

Please note that the choice of the smooth-out factor affects the transfer time. At
best B-TCP(4) improves the transfer time by approximately 18%. Despite this with 1000
and 1250 flows nothing can be said because of confidence intervals overlap. A second
observation is that the B-TCP(4) line slope is greater than that of B-TCP(8) and
Newreno, hence indicating that the difference between them can diminish with the
increase of the number of flows.

SBRC 2007 - Desempenho e Escalabilidade 935

Therefore, we run this case for 1500, 1750, 2000, 2250, and 2500 flows, and our
previous suspicion was confirmed: B-TCP(4) exceeds B-TCP(8) and reaches Newreno,
but B-TCP(8) continues improving Newreno transfer times despite congestion increase,
for instance, for 2250 flows the improvement is approximately 10%. For 2500 flows
nothing can be said because confidence intervals overlap.

Mice Transfer Time

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Total number of flows

T
ra

n
sf

er
 t

im
e

(s
ec

o
n

d
s)

Newreno

B-TCP(4)

B-TCP(8)

(a)

Mice Transfer Time

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Total number of flows

T
ra

n
sf

er
 t

im
e

(s
ec

o
n

d
s)

Newreno

B-TCP(4)

B-TCP(8)

(b)

Figure 6. Transfer time graph for mice class using (a) 32Kb as threshold and
using (b) AEST threshold

Figure 6(b) shows transfer time results using AEST method in calculus of the
threshold between mice and elephants. Please note that the linear behavior for each TCP
flavor is the same that the one in Figure 6(a), despite its plotted values being different.
Such result shows that our rule of thumb choice of 32KB is a good value for
representing the threshold.

A second metric evaluated in this experiment was the percentage of lost packets
for each class. Figure 7 shows packet loss observed, which allow some comparisons. In
these figures, the numbers 1, 2, 3, 4, and 5, are related to 250, 500, 750, 1000, and 1250
flows, respectively.

The first observation on this metric is that the percentage of lost packets in the
mice class for B-TCP(4) is many times bigger than B-TCP(8) or Newreno. On the other
hand, B-TCP(8) achieves lower values than Newreno. This occurs because B-TCP
initiates its connection with a bigger packet burst which can increase the number of lost
packets. For instance, consider the bottleneck BDP and buffer of this experiment, whose
values are 7 packets, and only two B-TCP(4) flows. After the first packet arrival of each
flow, B-TCP(4) increases its congestion window to 8 packets, therefore the total number
of packets in network will be greater than the BDP and the bottleneck buffer, causing
lost of two packets. Thus, even with few concurrent flows, B-TCP(4) is more likely to
lose it packets by routers drop.

 The second interesting observation regarding the packet loss metric is relative to
elephant graph. This graph shows that B-TCP algorithms reduce the mean number of
lost packets for elephants. Please note that, for B-TCP(8) results, absolute values for
elephants are, surprisingly, smaller than absolute mice values. In this line, the last
observation is that the overall number of lost packets for B-TCP(8) is less than that of
other cases, since it finishes its transmission before the sender rate reaches the available
bandwidth therefore reducing the loss probability.

936 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

Packets Losses for mice class

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

250 500 750 1000 1250

Number of flow s

P
er

ce
n

ta
g

e
o

f
lo

st
 p

ac
ke

ts

New reno

B-TCP(4)

B-TCP(8)

Packets Losses for elephant class

0,0%

0,2%

0,4%

0,6%

0,8%

1,0%

1,2%

1,4%

250 500 750 1000 1250

Number of flow s

P
er

ce
n

ta
g

e
o

f
lo

st
 p

ac
ke

ts

New reno

B-TCP(4)

B-TCP(8)

Figure 7. Packet losses graphs

 Looking for transfer time metrics only, B-TCP(4) obtained better performance
than B-TCP(8). But, this last metric has shown that B-TCP(4) has a greedy behavior
which can achieve poor results in networks with high congestion level. Therefore we
run the same case using a 1.0 Mbps bottleneck link. The idea here is also to increase the
congestion and, at the same time, modify router buffers, which was set to only 4
packets.

 Figure 8 presents the mice transfer time for Newreno, B-TCP(4) and B-TCP(8)
TCP flavors, and shows clearly that B-TCP(4) achieves poor performance in relation to
Newreno and B-TCP(8). The latter, on the other hand, continues achieving good results.

Mice Transfer Time

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Total number of flows

T
ra

n
sf

er
 ti

m
e

(s
ec

o
n

d
s)

Newreno

B-TCP(4)

B-TCP(8)

Figure 8. Transfer time graph for mice class and 1Mpbs link rate

 We still evaluated the effect of the buffer size. First we evaluated the effect of
use RTT to calculate the buffer size. Thus, buffer size was set to 14 packets. Figure 9
shows result for the transfer time of the mice class using this rule. As expected, B-TCP
still achieves good performance, and the use of a large buffer improves it transfer time

SBRC 2007 - Desempenho e Escalabilidade 937

reaching about 30% in the better case. Moreover, the difference between Newreno and
B-TCP(4) increased to approximately 43%.

Mice Transfer Time

0,2

0,25

0,3

0,35

0,4

0,45

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Total number of flows

T
ra

n
sf

er
 ti

m
e

(s
ec

o
n

d
s)

Newreno

B-TCP(4)

B-TCP(8)

Figure 9. Transfer Time graph for mice class using augmented buffer

 We also evaluated B-TCP using a small buffer size. Based on [Appenzeller et al.

2004], we calculated the buffer size using () nRTTxC , where n is the number of
elephant flows in the set, and C is the link capacity. The number of elephant flows is
about 10% of all flows therefore the buffer was set to 3 packets. Figure 10 shows result
for this evaluation. In this case, B-TCP achieves poor results than Newreno due the
bursty behavior of B-TCP. However, this bad result can be explained by the simplicity
of our topology. Since it is known that the rule must be employed when there are a high
number of flows through the link.

Mice Transfer Time

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Total number of flows

T
ra

n
sf

er
 ti

m
e

(s
ec

o
n

d
s)

Newreno

B-TCP(4)

B-TCP(8)

Figure 10. Transfer Time graph for mice class using reduced buffer

938 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

 Other scenarios and simulation parameters were also used but the results were
quite similar to the results showed above. Thus, due to space restriction, we have chosen
some representative scenarios to make the B-TCP explanation easier and to verify the B-
TCP efficiency.

5. Conclusions

This work proposed a new algorithm to start TCP connections, called B-TCP, which is
an intuitive modification, easy to implement and that requires TCP adjustment at the
sender side only. We evaluated performance of B-TCP in a scenario with elephant and
mice flows competing on a congested network. The heavy-tailed traffic was generated
following a Pareto distribution and its parameters were obtained from the literature.

B-TCP, in a general way, improves the transfer time for mice flows and, in some
cases, for elephant flows also. Moreover, results showed that under high congestion, B-
TCP performance for mice flows is quite similar to that of Newreno. However, in our
experiments it was not possible to determine, with confidence, how much the use of B-
TCP harms elephant flows in this metric.

Two versions of B-TCP were evaluated, using different smooth-out factor: 4 and
8. The former proved to achieve the better transfer time values, but it increases packet
loss for mice flows, affecting it performance in heavy congested links. The effect of
buffer size also was evaluated showing that B-TCP performance is sensible to this
parameter.

Future work of this proposal includes considering other topologies and link
types. Moreover, the effect of the background traffic and the reverse traffic will be
evaluated.

References
Allman, M., Floyd, S. and Partridge, C. (2002) “Increasing TCP’s Initial Window”. RFC

3390.

Appenzeller, G., Keslassy, I., and McKeown, N. (2004) “Sizing Router Buffers”. ACM
SIGCOMM 2004, Portland, USA.

Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M. and Katz, R. (1998) “TCP
Behavior of a Busy Internet Server: Analysis and Improvements”. Proceedings of
INFOCOM.

Balakrishnan, H., Rahul, H. and Seshan, S. (1999) “An Integrated Congestion
Management Architecture for Internet Hosts”. Proceedings of SIGCOMM.

Braden, R. (1989) “Requirements for Internet Hosts -- Communication Layers”. RFC
1122.

Brakmo, L. and Peterson, L. (1995) “TCP Vegas: End-to-end Congestion Avoidance on
a Global Internet”, IEEE J. Sel. Areas Commun., VOL. 13, NO. 8, pp. 1465-1480.

Carofiglio, G., Garetto, M., Leonardi, E., Tarello, A. and Marsan, M. (2007) “Beyond
fluid models: Modelling TCP mice in IP networks under non-stationary random
traffic”. To appear in: Computer Networks, v. 51, i. 1, pp. 114-133, January 2007.

SBRC 2007 - Desempenho e Escalabilidade 939

Chiu, D. and Jain, R. (1989) “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks”. Computer Networks and ISDN
Systems, n. 17, pp. 1-14.

Crovella, M., and Taqqu, M. (1999) “Estimating the Heavy Tail Index from Scaling
Properties”. Methodology and Computing in Applied Probability.

Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T.
and Diot, C. (2003) Packet-level traffic measurement from the Sprint IP backbone.
IEEE Network Magazine, v. 17, n. 6, pp. 6-16.

Ho, C.-Y., Chan, Y.-C., and Chen, Y.-C. (2005) “An enhanced slow-start mechanism for
TCP Vegas”. 11th International Conference on Parallel and Distributed Systems, v. 1,
pp. 405-411.

Iyengar, J., Caro, A., and Amer, P. (2003) “Dealing with Short TCP Flows: A Survey of
Mice in Elephant Shoes”. Technical Report, University of Delaware.

Jin, C., Wei, D. and Steven, L. (2004) “FAST TCP: motivation, architecture, algorithms,
performance”. INFOCOM 2004, Hong Kong, pp. 2490-2501.

Mascolo, S., Casetti, C., Gerla, M., Lee, S. and Sanadini, M. (2000) “TCP Westwood:
congestion control with faster recovery”. UCLA, Technical Report #200017.

Mellia, M., Meo, M. and Casetti, C. (2005) TCP smart framing: a segmentation
algorithm to reduce TCP latency. IEEE/ACM Transactions on Networking, v. 13, pp.
316-329.

Mori, T., Uchida, M., Kawahara, R., Pan II, J. and Goto, S. (2004) “Identifying elephant
flows through periodically sampled packets”. Proceedings of Internet Measurement
Conference, pp. 115-120.

NS-2 Network Simulator (2007) LBL, URL: http://www.isi.edu/nsnam/ns/. Visitado em:
abril de 2007.

Padmanabhan, V. and Mogul, J. (1994) “Improving HTTP Latency”. 2nd International
World Wide Web Conference.

Postel, J. (1981) “Transmission Control Protocol”. RFC 793, IETF.

Touch, J. (1997) “TCP Control Block Interdependence”. RFC 2140, IETF.

Wang, H., Xin, H., Reeves, D., and Shin, K. (2000) “A simple refinement of slow-start
of TCP congestion control”. Fifth IEEE Symposium on Computers and
Communications, pp. 98-105.

Wang, R., Pau, G., Yamada, K., Sanadidi, M., and Gerla, M. (2004) “TCP Startup
Performance in Large Bandwidth Delay Networks”. INFOCOM 2004, Hong Kong,
pp.796-805.

940 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

