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Abstract. Hidden Markov Models (HMMs) have been widely used in the liter-
ature for modeling computer systems, for describing and predicting the loss
and delay packet processes over the Internet and for solving network plan-
ning/dimensioning problems. This paper proposes a system of differential equa-
tions for calculating the distribution of the cumulative reward, when HMMs are
used. Furthermore, we propose an iterative algorithm for obtaining an approx-
imated solution for the differential equations. The overall technique for calcu-
lating the measure of interest is numerically robust and has a significant smaller
computational cost when compared with approaches found in literature.

1. Introduction
Markov reward models are a widely used mathematical tool in computer systems per-
formance evaluation. In these models, rate rewards are associated with the states
of a Markov chain or impulse rewards may be associated with transitions between
states. In traditional Markov rate reward models, there is a one-to-many map-
ping between a reward value (from the set of all possible values) and the states
in the model. In this framework, there are efficient algorithms in the literature
to calculate many different measures of interest. Examples of such measures are:
distribution of the cumulative reward over a finite interval of time, or in steady
state, mean time to accumulate a given reward value, etc. (See [Anick et al. 1982],
[Mogens Bladt and Sericola 2002], [de Souza e Silva and Gail 1998], [Leão et al. 2001],
[Nabli and Sericola 1996], [Mahevas and Rubino 2001], [da Silva and Rubino 2006],
[de Souza e Silva et al. 1995] and the references therein).

The type of models mentioned above and the major random variable of interest,
can be formally defined as follows. Consider a homogeneous continuous-time Markov
process X = {X(t); t ≥ 0} with finite state space S = {si; i = 1, · · · , M}. To each state
s ∈ S, we assign a reward rate from a given set of reward valuesR = {r1, · · · , rK}. The
random variable IR(t), the instantaneous reward at time t, is IR(t) = rc(s) if X(t) = si,
where c(s) is index of the rate reward value associated with state si. The cumulative
reward during an observation period (0, t) is:

CR(t) =

∫ t

0

IR(τ)dτ.
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Calculating statistics for the random variable CR(t), such as its steady state distri-
bution, P [CR ≤ y] = limt→∞ P [CR(t) ≤ y], is a valuable though not easy problem, since
CR(t) can be associated with important quantities of interest in many different areas. One
of these is fluid modeling, which is a powerful tool for solving computer network models,
both analytically or via simulation. In most packet models of networks with high speed
links, the rate at which packets are generated is orders of magnitude higher than the rate
of changes of these generation rates. Therefore, one can consider the packet traffic as a
continuous flow with rates that change over time, governed by some stochastic process.
The buffer that queues packets for transmission can be thought of a bucket that stores
fluid at rates that vary according to, for instance, a Markovian model. Several papers
propose algorithms that calculate P [CR ≤ y] efficiently when each state of a fluid model
is associated with a single fluid rate [Anick et al. 1982], [Ahn and Ramaswami 2003],
[da Silva Soares and Latouche 2003], [da Silva et al. 2004].

More recently, Hidden Markov Models (HMMs) have shown to be very useful
in computer network modeling, besides the huge number of applications in other areas
[Duarte et al. 2003], [Wei et al. 2002], [Filho et al. 2006], [Salamatian and Vaton 2001],
[de Souza e Silva et al. 2004]. For instance, HMMs [Rabiner 1989] have been applied to
traffic modeling and to model the packet loss rate process in a network path, to cite just a
few applications. Briefly, a Hidden Markov Model is composed of two coupled stochastic
processes. The first is a Markov chain and the second is a process that generates observ-
able symbols as time evolves. The probability distribution of generating one particular
symbol of a given set at time t is fully determined by the current state of the chain. Note
that one can think of the observable discrete symbols as rate values associated with the
model states.

This paper is concerned with the evaluation of the steady state distribution of
cumulative reward in probabilistic functions of Markov chains, for instance, when HMMs
are used to model traffic. The contribution of our work can be summarized as follows:
(i) we show that the measure P [CR ≤ y] = limt→∞ P [CR(t) ≤ y] for an HMM can
be calculated using a set of differential equations that it is a generalization of the well-
known traditional set of equations (e.g. [de Souza e Silva and Gail 2000]), for the case of
traditional fluid (or reward) models; (ii) we develop an iterative algorithm for obtaining
an approximate solution of the system of differential equations proposed.

The remainder of the paper is organized as follows. In Section 2 we present the
notation we use and briefly survey known results that are useful in the development of our
algorithm. Section 3 obtains the system of differential equations for calculating the distri-
bution of CR. In Section 4, we present our iterative approximation algorithm for solving
the differential equations. An application example, useful for network dimensioning is
presented in Section 5. Section 6 summarizes our contribution.

2. Notation and Background Material
In this section we present the notation used throughout the paper and the background
needed. In what follows, matrices are denoted by uppercase boldface letters and each
corresponding lowercase letter represent an entry in the matrix. Vectors will be denoted
by lowercase boldface letters. Ai∗ and A∗j denotes the ith row and jth column of matrix
A, respectively. We use the symbol “•” to indicate an element-wise vector multiplication.
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We begin by defining a Hidden Markov Model, based on [Rabiner 1989]. Briefly,
a Hidden Markov Model is composed of two coupled stochastic processes. The first is a
Markov chain and the second is an observation process whose distribution at any given
time is fully determined by the current state of the chain.

Let X ∗ = {X∗(k); k ≥ 0} be a discrete-time Markov chain, with state
space set defined by S∗ = {s1, s2, · · · , s|S∗|} and cardinality |S∗|. In our notation,
the process X ∗ is the discrete equivalent of a continuous-time Markov process X =
{X(t); t ≥ 0}, after the uniformization technique is applied. (Details can be found
in [de Souza e Silva and Gail 2000].). The initial state distribution is given by the |S∗|-
dimensional vector π(0), with πi(0) = P [X∗(0) = i]. The state transition probabilities
are given by the |S∗|×|S∗|matrixP = {pij}, where pij = P [X∗(k) = j |X∗(k−1) = i].

The observation process is denoted by Y = {Y (k); k ≥ 0}, with a total of |R|
emission symbols that belong to the setR = {r1, r2, · · · , r|R|}, controlled by the |S|×|R|
matrix Γ = {γij}, where γij = P [Y (k) = j |X∗(k) = i]. In this paper, each symbol
corresponds to a rate reward value. The stochastic process Y is called an observable
Markov model and is completely determined by the process X ∗. For convenience, we use
the compact notation θ = (P,Γ, π) to indicate the complete parameter set of a Hidden
Markov model. A comprehensive survey on HMMs is [Rabiner 1989].

Let W = {W (k); k ≥ 0} be a discrete-time Markov process, with the set of
states T = {t1, t2, · · · t|S∗|×|R|} and cardinality |S∗| × |R|. The ith state of W belongs
to the Cartesian product of sets S and R. The probability matrix that governs the state
transitions is denoted by P̂ = {p̂i,(j,s)}, where p̂i,(j,s) = pijγjs. We refer to processW as
the expanded version of processes X ∗ and Y .

Using a straightforward argument (based in part on Section III of [Rabiner 1989])
Lemma 1 shows that process X ∗ is equivalent to the expanded process W, given the
sequence of rewards emitted by the observation process Y . This equivalence is essential
to analyze the set of differential equations presented in Section 3.

Lemma 1 Let Ω be an observation sequence, with length K, Ω = {r1, r2, · · · , rK}, of
the Hidden Markov Model θ and P [Ω | θ] and P [Ω |W] be the probability of occurrence
of the sequence Ω, given the model θ and the expanded process W, respectively. Then
P [Ω | θ] = P [Ω |W].

Proof: Consider the state sequence: π = {s1, s2, · · · , sK}. Let c(k) be the function that
gives the index of one of possible reward rate values associated with state sk. (In the
expanded process, only one reward rate is associated to a state.) From our notation, recall
that, if the process is in state sk, the reward rc(k) is observed with probability γskrc(k)

.
Then,

P [Ω | π, θ] =
K∏

k=1

P [rc(k) | sk, θ] = γs1c(1)γs2c(2) · · · γsKc(K), (1)

where the last equality is true since an observation depends only on the current state and
the emission probability at that state.

The probability of a such state sequence π is:

P [π | θ] = πs1ps1s2ps2s3 · · · psK−1sK
. (2)
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Therefore:

P [Ω | θ] =
∑
∀π∈P

P [Ω | π, θ]P [π | θ] =
∑

s1s2···sK

πs1γs1rc(1)
ps1s2γs2rc(2)

· · ·psK−1sK
γsKrc(K)

.

(3)

The probability P [Ω |W] can be obtained in the same way, but nothing that, in
state sk, γsKrc(K)

= 1. Recall that p̂sk,(sk,rc(k)) is obtained from the original HMM and
from the emission probabilities at sk. Then,

P [Ω, m |W] = πs1 p̂s1,(s2,rc(2))p̂s2,(s3rc(3)) · · · p̂sK−1,(sKrc(K)). (4)

By the definition of p̂i,(j,s), equation (4) is rewritten as:

P [Ω, m |W] = πs1γs1rc(1)
ps1s2γs2rc(2)

ps2s3γs3rc(3)
· · · psK−1

γsKrc(K)
.

Summing over all paths inM, the Lemma is established. �

In what follows we introduce a few results on systems of differential equations
that we will use later in this paper. Let:

dx(y)

dy
= Ax(y) + g(y) (5)

be a general nonhomogeneous system, as presented in [Boyce and Diprima 2004] (chap-
ter 7).

Define T as the matrix whose columns are equal to the eigenvectors
{ξ(1), · · · , ξ(n)} of another matrix A, with dimension n × n, and ζ(y) is a vector with a
set of dependent variables, written as:

x(y) = Tζ(y). (6)

Substituting Equation (6) into (5) and multiplying the result equation by T−1, the follow-
ing system of differential equations is obtained:

dζ(y)

dy
= T−1ATζ(y) + T−1g(y) = Dζ(y) + h(y), (7)

where h(y) = T−1g(y) and D is a diagonal matrix whose the diagonal elements are the
eigenvalues {r1, · · · , rn} ofA, for the cases where matrix A is diagonalizable. Equation
(7) is a system with n independent equations for the {ζ1(y), · · · , ζn(y)} variables that can
be solved independently for each j = {1, · · · , n}:

dζj(y)

dy
= rjζj(y) + hj(y), (8)

where hj(y) is a linear combination of {g1(y), · · · , gn(y)}.

Equation (8) is a first order linear equation, with the following solution:

ζj(y) = eλjy

∫ y

y0

e−λjshj(s)ds + cje
λjy, j = 1, · · · , n (9)

where cj is an arbitrary constant known as constant of integration. The solution of equa-
tion (5) is obtained by (6) and (9).
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3. The Distribution of the Cumulative Reward
In this section, we derive a set of differential equations for P [CR ≤ y], when a HMM is
used, as defined in previous section. LetX = {X(t); t ≥ 0} be a continuous-timeMarkov
chain with a finite state space S = {s1, s2, · · · , s|S|} with cardinality |S|, and generator
matrixQ = {qij}. As before, Y = {Y (t); t ≥ 0} is defined as a probabilistic function of
X with state space in the setR = {r1, r2, · · · , r|R|}, with |R| elements. We transform X
into a discrete-time Markov chain through uniformization. Let Λ be the uniformization
rate, where Λ ≥ maxi |qii|, and therefore, P = I + Q/Λ is the discrete-time transition
probability matrix.

In the uniformized system, Y (t) = l with probability γjl given that X(t) = j.
Recall that the value of Y (t) determines the current rate rY (t). The cumulative reward at
t is, as introduced in Section 1,

CR(t) =

∫ t

0

rY (t)dt. (10)

Let F(y, t) be the joint distribution matrix with the (i, j)-th element Fij(y, t) =
P [CR(t) ≤ y, X(t) = j |X(0) = i]. LetW(y, t) be the corresponding density matrix,
Wij(y, t) = P [CR(t) = y, X(t) = j |X(0) = i] 1. Let Fl(y, t) be the matrix with entries
Fijl(y, t) = P [CR(t) ≤ y, X(t) = j, Y (t) = l|X(0) = i] andWl(y, t) the corresponding
density matrix.

In what follows we obtain a partial differential equation for W(y, t) following
similar steps as in [de Souza e Silva and Gail 2000]. (Due to the lack of space, we refer
the reader to [da Silva 2006] for more details about the derivation of this equation.) Using
Bayes’ rule we obtain:

Wijl(y, t) =

|S|X
k=1

|R|X
n=1

Z
z

P [CR(t) = y, X(t) = j, Y (t) = l|CR(t − h) = z, X(t − h) = k, Y (t − h) = n, X(0) = i]

P [CR(t − h) = z, X(t − h) = k, Y (t − h) = n|X(0) = i]dz.

(11)

If h is sufficiently small, there is at most one state transition in (t−h, t]. From the
Markov property and nothing that CR(t) is independent ofX(t) and Y (t), givenX(t−h)
and Y (t − h):

Wijl(y, t) =

|S|∑
k=1

|R|∑
n=1

∫
z

P [CR(t) = y|CR(t − h) = z, X(t − h) = k, Y (t − h) = n]

P [X(t) = j, Y (t) = l|X(t − h) = k, Y (t − h) = n]Wikn(z, t − h)dz.

(12)

For h small, CR(t) = CR(t−h)+ rY (t−h)h+o(h) (where o(h) is an error function which
converges to 0 faster than h) and then:

P [CR(t) = y|CR(t−h) = z, X(t−h) = k, Y (t−h) = n] = δ(y−(z+hrn)+o(h)), (13)

1although CR(t) is a continuous random variable, we use the notation CR(t) = y to facilitate the

exposition
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where δ() is the Dirac delta function.

In Equation (12) note that P [X(t) = j, Y (t) = l|X(t − h) = k, Y (t − h) = n]
is the transition probability of the expanded version of original HMM as defined in the
previous section. Since state transitions of the uniformized process occur at a Poisson
rate Λ, after some algebraic manipulations and taking the limit as h → 0 and t → ∞, we
obtain:

dwl(y)

dy
= w(y) [Q + ΛI] diag

{
γjl

rl

}
j

−
Λ

rl

wl(y). (14)

where vectorswl(y) andw(y) are each one of the identical lines of matricesWl(y, t) and
Wl(y, t) as t → ∞.

Define Rl as the diagonal matrix diag{γjl/rl}j. Then f l(y) and f(y), defined in
the same way as wl(y) and w(y) immediately follows from (14).

df l(y)

dy
= f(y) [Q + ΛI]Rl −

Λ

rl

f l(y). (15)

Summing over all rewards in the setR and definingR = diag{
∑

∀l(γjl/rl)}j , we finally
obtain:

df(y)

dy
= f(y) [Q + ΛI]R− Λ

∑
∀l

f l(y)

rl

. (16)

Solving equation (16) is equivalent to solving the set of |R| equations in (14).
Although the set of equations of type (14) has a closed form solution written in terms
of its spectral expansion (similarly to [Anick et al. 1982], for the case in which there is
only one rate reward assigned to each state of the process under study), the computational
complexity of calculating f l(y) can be high if the process under study has several rate
rewards associated with each hidden state. Furthermore, numerical errors are likely to
occur in this case.

In order to reduce the computational cost and to solve the system of differential
equations that describes the HMM under study, we propose an iterative algorithm that
produces an approximation solution of (16). This algorithm will be presented in Section
4.

We still have to address the boundary conditions. A system of differential equa-
tions is not completely specified only by its equations, since the solution is a family of
curves. Therefore, it is essential to apply the boundary conditions which are algebraic
conditions on the values functions to obtain the final answer. However, this may not be a
trivial problem [Press et al. 1997].

In this paper we are concerned with models where both lower and upper bounds
on the cumulative reward random variable are specified. Let the lower bound be equal to
0 and the upper bound be equal to U . (For instance if CR models the content of a buffer,
then clearly CR ≥ 0 and U is the buffer upper limit.)

We assume that all rate rewards associated with a state are either strictly positive,
strictly negative or equal to zero. This is not a restrictive assumption and can always be
satisfied by an appropriate mapping of states to rewards. In what follows, due to space
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limitations, we do not consider the zero reward case, but it can be easily handled. We then
divide the set of states into two types: S+, where all rate rewards emitted at that state are
strictly positive and the complementary set S−, where all rate rewards associated with the
states are strictly negative. The states that belong to the first set are called filling states
and the states in the second one are emptying states.

The following boundary conditions are specified to the system of differential equa-
tions in (16) (for a detailed discussion on boundary conditions, we refer the reader to
[Anick et al. 1982] and [Schwartz 1996]):

1. For y = 0 and si ∈ S+, we have fi(0) = 0. This is true since, once in state si, the
system can only accumulate fluid.

2. For y = U− and si ∈ S−, we have fi(U
−) = πi. This is true since in si the

system is loosing fluid, so the accumulate reward (or buffer content) can not be at
its highest value.

It is straightforward to see that the following system of equations is equivalent to
(16) :

d[f(y)]T

dy
= R[Q + ΛI]T [f(y)]T − Λ

∑
∀l

(
[f l(y)]T

rl

)
(17)

To simplify the notation, we refer to vectors [f l(y)]T and [f(y)]T as f l(y) and f(y), respec-
tively.

4. The Iterative Algorithm
In this section we devise an iterative algorithm to obtain an approximate solution for
the system of differential equations in (17). The basic idea is to first obtain an initial
approximation for the solution. Then we try to refine the initial result by splitting the main
differential equation into two. Each of those has a term that is assumed to be constant and
obtained by solving the other equation in the pair. Both can be combined into a single
equation with unknowns that are calculated from the solution in the preceding step. The
iterative solution, for steps k = 0, 1 . . . is described next.

4.1. Initial Solution
In order to obtain an initial solution, we assume that the term:

ΛRf(y) − Λ
∑
∀l

(
f l(y)

rl

)

in (17) is small enough to be neglected.

The element f l
j(y) = P [CR ≤ y, X = j, Y = l] is equal to P [CR ≤ y, X =

j]P [Y = l|CR ≤ y, X = j] = fj(y)P [Y = l|CR ≤ y, X = j]. The assumption used for
calculating the initial solution is true if P [Y = l|CR ≤ y, X = j] ≈ P [Y = l|X = j],
that is if f l(y) ≈ f(y)•γ l (each element in γ l is the probability of emitting the reward l in
each hidden state). In other words, we are assuming that the rate reward emitted in state
j is independent of the present value of the accumulated reward. A good approximation
is expected if the rate reward values emitted in state j do not differ significantly.
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Applying the above assumption to (17), the initial solution f (0)(y) is estimated by
solving the following system:

df (0)(y)

dy
= RQT f (0)(y). (18)

It is well known that the solution of (18), f(y) = eRQT

, can be written in terms of the
spectral expansion of matrixRQT :

f (0)(y) =
∑
∀i∈S

aiσie
λiy.

It is important to emphasize that, in order to estimate f (0)(y), it is necessary to ob-
tain the eigenvalues and eigenvectors of a matrix with dimension |S|× |S|. This contrasts
with the computational complexity if we use the expanded process defined in Section 2.
If the expanded process is used, the final solution requires the calculation of the eigen-
values and eigenvectors of a matrix with dimension |S| × |W|, potentially a much larger
matrix than the first. Furthermore, for the initial estimation, we have to solve a smaller
linear system of equations for obtaining the set of constants of integration, given by the
specified boundary conditions, as compared with the solution of the expanded process. In
summary, using the approach presented in this section, the computational complexity and
the probability of numerical errors are reduced for the cases where the cardinality of the
Cartesian product of the sets S andR is high.

4.2. Estimating Vector f (l,k)(y)

The next step of the iterative algorithm is to estimate the value of f l(y). Let us rewrite
Equation (15) as:

df l(y)

dy
= RlQT f(y) +

Λ

rl

[(f(y) • γ l)] −
Λ

rl

f l(y). (19)

For each distinct reward in set R, we have to solve the system described in (19).
As stated in Section 3, solving |R| linear systems of type (19) is equivalent of finding
the desired solution using the expanded process W, with state space cardinality equal
|S| × |W|.

Lemma 2 For l = {1, 2, · · · , |R|}, we can estimate f (l,k)(y) from:

f (l,k)(y) = φ(l,k)(y) +
(rl

Λ

)
[RlQT f (k−1)(y)] + (f (k−1)(y) • γ l) (20)

with φ
(l,k)
j (y) = α

(l,k)
j (y)e

“
−Λ
rl

”
y
, j = {1, · · · , |S|} and α

(l,k)
j (y) is the jth constant of

integration calculated using the boundary conditions specified in Section 3.

Proof: The proof follows immediately from the known solution of the nonhomogeneous
system of differential equations of the same type of Equation (20). �
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4.3. Estimating vector f (k)(y)

Using the estimation of f (l,k)(y) above, it remains to estimate f (k)(y).

Lemma 3 Consider the estimation of f (l,k)(y) from the previous lemma. Then:

f
(k)
j (y) = Υj∗ψ

(k)(y) j = {1, · · · , |S|}, (21)

where Υ is such that its columns are equal to the eigenvalues of RQT , and the elements
of vector ψ(k)(y) are

ψ
(k)
1 (y) = a

(k)
1 (y) + yΥ−1

1∗ κ(k)(y);

ψ
(k)
j (y) = a

(k)
j (y)eλjy +

1

λj

Υ−1
j∗ κ(k)(y) j = {2, · · · , |S|}.

a
(k)
j (y) is the constant of integration of the jth state, and

κ(k)(y) = ΛR
∑
∀l

f (l,k)(y) − Λ
∑
∀l

(
f (l,k)(y)

rl

)
,

and f (k)(y) =
∑

∀l f
(l,k)(y).

Proof: Similarly to the proof of Lemma 2, the lemma follows by identifying Equation
(21) with a nonhomogeneous system of differential equations with known solution. �

The stopping rule for our iterative algorithm is as follows. We compute the norm
of the difference of the results in consecutive iteration steps, f (k)(y) and f (k−1)(y). When
the difference is smaller than a specified tolerance, the iterative procedure ends. The tests
we performed indicate that this simple procedure works very well.

Below we address the computational complexity of the approximate algorithm.
We present the total number of multiplications, without justification. The details are be-
yond the scope of this paper but can be found in [da Silva 2006]. We assume that the
computational cost of calculating eigenvectors and eigenvalues of a matrix is 10M 3 mul-
tiplications and that the cost of solving a linear system isM 3 multiplications, whereM is
the dimension of the associated matrix [Moler and Loan 1978].

The computational complexity is dominated by the following operations:

1. The initial solution estimation. The total cost is 11|S|3 multiplications;
2. Solving for f l(y). If c is the total number of points needed for the distribution, the
total cost of this step is c|R|(2|S|2 + |S|);

3. Obtaining f(y). First, we have to solve c systems of linear equations, with |S|3

multiplications. Then, it is necessary to perform c(|S|3 + 2|S|2 + |S|) multiplica-
tions.

5. Examples
This section illustrates an application of the algorithm proposed in this paper. We have as-
sessed the efficiency of our iterative approximation algorithm running a hundred HMMs.
The HMMs used either represented hypothetical systems or are traffic models of the main
Internet link of the Computer and System Engineering Department at COPPE/UFRJ. The
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traffic modeled by the HMMs are assumed to feed a finite buffer. In this application, the
random variable CR is the number of bits in the buffer in steady state. Due to the lack of
space, we present our results using two sets of experiments. The first set uses an empirical
system, with a simple Hidden Markov model with two hidden states. The main purpose
of this test is to show the accuracy of the iterative approximation algorithm, for different
values of system load (ρ). For the second set of tests, a queue is fed by a HMM param-
eterized from real measurements performed at our main Department link. The value of
the parameters were radomly chosen in order to study the accuracy of the proposed itera-
tive approximation algorithm. We also briefly discuss the main results after applying our
method for solving 170 hypothetical HMMs. We refer the reader to [da Silva 2006] for
more examples.

In order to evaluate the accuracy of the method, we calculate two measures: (i) the
maximum absolute error ofP [CR ≤ y] and; (ii) the maximum relative error ofP [CR ≤ y].
Let P [CR ≤ y] and P̂ [CR ≤ y] be the exact and the approximated solutions, respectively.
The measure (i) is |P [CR ≤ y] − P̂ [CR ≤ y]|, and (ii) is |P [CR ≤ y] − P̂ [CR ≤
y]|/P [CR ≤ y].

In the first set of experiments, the HMM used has two hidden states: A, with
input rate δ1 = 0, and B, with input rates δ2 = 10000 and δ3 = 15000. We com-
pared the result of our iterative approximation algorithm against the method presented in
[Anick et al. 1982] using the equivalent expanded model in which states are associated
with a single rate reward only (see Section 2).

The following set of parameters were used. The channel capacity is μ = 4713,
buffer size is B = 500 and ρ = 0.99. The reward values assigned are: state A:
r1 = −4713; and state B r2 = 5287, with probability p2 = 0.2, and r3 = 10287, with
probability 0.8. (Note that the input rate and channel capacity where adjusted to match
the total utilization assuming that no losses occur.) The result is presented in Figure 1.
The maximum absolute error is equal to 4.62876e−3 only.
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Figure 1. Approximated solution for ρ = 0.99 and B = 500.

We change the utilization to ρ = 0.7 (the channel capacity is then μ = 6665),
and used the reward values R = {r1 = −6665, r2 = 3335, r3 = 10334} with the same
probability distribution as in the previous example. The result is shown in Figure 2. In
this case, the maximum absolute error is 1.5031e−2.
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Figure 2. Approximated solution for ρ = 0.7 and B = 500.

We now increase the buffer size to B = 1000, and use μ = −8332 with ρ = 0.5.
The set of rate rewards is R = {r1 = −8332, r2 = 1668, r3 = 6668}. Figure 3 shows
the result. The maximum absolute error is 2.8262e−2. The examples indicate that the
accuracy of our algorithm is good for different values of ρ.
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Figure 3. Approximated solution for ρ = 0.5 and B = 1000.

In the second set of examples, the rate rewards emitted by the observation process
Y represent the traffic rates on our main Department link. The HMM was parameterized
using real measures on that link. The HMMhas four states. Let |S| = {A, B, C, D} be the
set of hidden states and |R| = {ri | i = 1, · · · , |R|} be the set of observation rate rewards.
The buffer size is assumed to be equal to 1000. The following values are assigned to the
rate rewards: R = {r1 = −821, r2 = −663, r3 = −505, r4 = −347, r5 = −189, r6 =
−189, r7 = −347, r8 = −821 r9 = 2181, r10 = 2655, r11 = 3919, r12 = 127, r13 =
285 r14 = 601, r15 = 759}. The hidden state A emits {r1, r2, r3, r4, r5}, with uniform
distribution; stateB emits the rate rewards {r6, r7, r8}, with probability distribution {p6 =
0.3, p7 = 0.3, p8 = 0.4}; state C emits {r9, r10, r11}, with probabilities {p9 = 0.3, p10 =
0.3, p11 = 0.4} and state D emits the complementary set of rewards, with the following
probability distribution: {p12 = 0.3, p13 = 0.2, p14 = 0.1, p15 = 0.4}.

In order to obtain the exact solution, we first applied the exact method of
[Anick et al. 1982] to the extended model and calculated the eigenvalues and eigenvectors
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of a matrix with dimension 15×15. However, numerical errors affected the calculation of
the constants of integration and it was not possible to write the solution using its spectral
expansion form. (As stated before numerical errors are common in moderate size models.)
Then we used the method presented in [Leão et al. 2001] for calculating P [CR(t) > y]
for large values of t. Note that the cost of approach of [Leão et al. 2001] increases with
t, and gives a result with bounded error provided that the convergence to steady state was
reached for the value of t used. Figure 4 shows the approximated and exact solutions.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  200  400  600  800  1000-

Exact Solution

Approximated Solution

Queue Size

P
[C

R
 <

= 
Q

u
eu

e 
S

iz
e]

Figure 4. Approximated solution for the traffic model of our main Department
link.

The proposed algorithm gives an approximated solution, with maximum absolute
and approximate errors equal 6.7188e−2 at y = 1000 and 1.1018e−1, respectively. The
main advantage of the proposed algorithm is the small computational complexity. Solving
this problem by our method, we have to calculate the eigenvalues and eigenvectors of a
matrix with dimension 4 × 4 only. The total number of iterations for reaching the stop-
ping rule was 11 and a total of 8.2470e5 multiplications were performed by the iterative
algorithm. Using the method proposed in [Leão et al. 2001], it was necessary 2.3918e15
multiplications in order to evaluate the exact solution for a large value of t.

We also have analyzed the results of 170 hypothetical HMMs. The rate re-
ward value as well as the respective probabilities of emitting them were determined
by using an uniformly distributed random generator. We observed that only 7% of the
examples had numerical problems and from the subset without numerical problems,
90% had a maximum relative error less than 10%. Furthermore, the computational
cost is smaller than the computational cost of the approaches in [Anick et al. 1982] and
[Ahn and Ramaswami 2005] (The majority of the cases has a computational cost one or-
der of magnitude smaller than the approaches cited above). Concerned with the conver-
gence rate, the mean number of iterations for reaching the stopping rule was 6 iterations.

As a last remark, we observed that, the majority of examples with numerical prob-
lems have the following characteristics: the value of the rewards values differ from 4 or-
ders of magnitude or the probability distributions associated with rewards in each state
are very unbalanced.
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6. Conclusion

We conclude by summarizing the main contributions of this paper. We have obtained a
system of differential equations for calculating the steady state probability distribution
of cumulative reward in Hidden Markov Reward Models. To our knowledge, this is the
first algorithm that addresses the computation of this measure from a Hidden Markov
Reward model. We showed that one can “expand” the state space of the HMM to obtain
an equivalent Markov reward model. Traditional algorithms can be applied to solve the
equivalent Markov reward model, but the computational cost is high.

For obtaining the system solution with a smaller computational cost than previous
approaches that can solve the equivalent expandedMarkovian reward model, we proposed
an iterative approximation algorithm. As shown in Section 5, the accuracy of approximate
solution is very good. Furthermore, our approach is susceptible to less numerical errors
than traditional approaches applied to the extended model. This is due to the increase
in the size of the (expanded) model as compared to the solution of the smaller Hidden
Markov model.

We presented an example of a traffic model parameterized from measurements
collected at our department link and some result of 170 hypothetical HMMs. We were
able to accurately solve the overall queueing model.

Acknowledgments: The authors would like to thank Fernando Silveira Filho for
many helpful discussions about the system of differential equations.
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