
FLAVOR: A dynamic and open framework for the
development of network measurement access

and visualization tools
Ivo K. Koga1, Leobino Sampaio1,2, José A. S. Monteiro1

1Computing and Networking Research Group – NUPERC

Universidade Salvador (UNIFACS)

Rua Ponciano de Oliveira, 126 - Rio Vermelho

41950-275 – Salvador – BA – Brazil

2Informatics Center – CIn

Universidade Federal de Pernambuco (UFPE)

50732-970 – Caixa Postal 7851 – Recife – PE – Brazil

{ivo.koga, leobino, suruagy}@unifacs.br

Abstract. This paper presents the development of a dynamic and open frame-
work for network measurement access and visualization tools. This framework
has been developed under the concept of making network measurement data ac-
cess easier, providing an extensible way to develop end user tools. This is shown
from a high-level and component-like point of view, explaining the nature of the
components and how they are integrated into the framework. The ICE tool has
been developed using the framework in order to validate this idea.

1. Introduction
Network monitoring can provide information about the state of the network, helping net-

work managers make decisions in order to maintain and optimize the operation of the

provided services among other benefits. In this way, the monitoring activity should make

network performance data available to the users, preferably in an easy way and related

to the complete end to end path (i.e., including information about all the intermediary

nodes).

In order to achieve this goal, some initiatives started to build measurement infras-

tructures that deal with the problems of network measurement data access from differ-

ent network domains. Some of these efforts are the End to End performance initiative

(E2Epi)1 from Internet2, the Géant 2 Joint Research Activity 1 (JRA1)2 and the Mea-

surement Working Group3 from the Brazilian National Research and Education Network

(RNP). All these initiatives have provided network monitoring services that make easier

the access to network monitoring data.

Beyond the availability of network monitoring services, there is also a need for

flexible and easily customizable tools capable of accessing and processing the monitoring

information that comes from different network services in different domains. An exam-

ple of an effort that provides a dynamic and scalable system is MonALISA (Monitoring

1http://e2epi.internet2.edu
2http://www.geant2.net/server/show/nav.754
3http://wiki.nuperc.unifacs.br/

SBRC 2007 - Medição e Monitoração em Redes 665



Agents in A Large Integrated Services Architecture)4. MonALISA is a scalable Dynamic

Distributed Services Architecture that provides “the ability to each service to register
itself and then to be discovered and used by any other services” [Legrand et al. 2004].

With this capability, the user can get the data from a measurement data access service and

visualize them using, for example, MonALISA’s GUI.

But visualizations sometimes need to be restructured or adapted for different au-

diences, details may be added or taken away, variables could be composed into the same

visualization or translated into another. There are also some cases where users want to

extend the functionalities of the current monitoring tools. This could be achieved by

reusing the available network monitoring application code that serve as the basis for the

visualization and analysis capabilities without having to “reinvent the wheel”.

That was the major motivation for this work: the possibility of reusing the avail-

able code and make it available to the users so that it can be plugged into the user’s own

network monitoring application. Everything achieved by the development of a frame-

work that provides easier possibilities of development of flexible and extensible software

components.

This paper is organized as follows: Section 2 provides information about some

multi-domain nework monitoring enviroments efforts, Section 3 presents some definition

of components and some available technologies for their development. In Section 4 the

FLAVOR framework is presented with its details and specifications. Section 5 describes

the tests of the framework and how it was validated with the development of a visualiza-

tion environment called ICE. Finally, we briefly discuss some future work before drawing

some conclusions in section 6.

2. Multi-Domain Monitoring Efforts

Following the interest in the availability of network monitoring data, the Internet2 ini-

tially proposed a scalable and distributed system for monitoring, testing, and reporting

end to end performance, called piPEs (performance initiative Performance Environment

system) [Internet2 2003]. After that initiative, Internet2 and Géant2 started a joint work

where they developed a document that specified a service oriented measurement infras-

tructure called General Framework Design (GFD)5. The main goal of that infrastructure

was to provide the concepts needed to perform measurements between domains, making

possible the exchange of measurement information through standardized services, each

one executing actions that offer necessary functionalities to provide better acessibility to

the network monitoring information.

The services defined by the GFD are: Measurement Point (MP), used to collect

measurement data; Transformation service (TS), used to pipeline data between the other

services within the framework; Measurement Archive (MA) which stores measurement

data collected by the MPs or transformed by the TS; Lookup Service (LS) used to dis-

cover and publish services enabling the insertion and query of the environment services;

Authentication Service (AS) which allow the authentication and authorization in the en-

vironment and provide decision attributes for what can be shown for a given resource or

4http://monalisa.cacr.caltech.edu/
5http://wiki.perfsonar.net/jra1-wiki/images/9/95/GN2-05-057v5.pdf

666 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



service; Topology Service (TopS) that provides information about the network topology.

The development of a prototype called perfSONAR (Performance focused Service Ori-

ented Network monitoring ARchitecture) [Hanemann et al. 2005] was started following

these defined services.

Boote et al. emphasized that its implementation “will follow a consistent approach
that respects the multi-domain organization of the networking environment and identified
user requirements” [Boote et al. 2005] and will serve for the accomplishment of consis-

tency tests of the GFD. This implementation aims initially at the development of the basic

and simpler services of the infrastructure like the MP, MA and the LS.

Beyond the perfSONAR initiative, the Brazilian National Research and Education

Network (RNP) Measurement Working Group developed and deployed an environment

called piPEs-BR [Sampaio et al. 2006] which follows piPEs’ principles. Currently, the

Measurement WG tries to adjust the piPEs-BR with the development of an environment

called piPEs-BR/GFD which uses end to end performance monitoring tools following

GFD in a joint development of perfSONAR services.

All these efforts have the goal to provide important network monitoring data to

the users, problem prevention and detection and give information that is currently un-

available or is much difficult to access like performance information between different

administrative domains.

The infrastructure of the constructed environments gives a layer of services using

the SOA architecture that intends to abstract the internal differences of each component,

that is, abstract the interaction and availability of the provided data and opens a perspec-

tive to the creation of applications that interact with it.

3. Component-based development
The concept of building software components is not new [Crnkovic 2001]. The reuse

approach to software development has been used for many years, but this alone does not

lead to a consistent agreement about what software components are, probably because the

term is used to denote many different things. However, there is a general agreement on

what constitutes software component technology.

D’Souza outlines that components are “A coherent package of software artifacts
that can be independently developed and delivered as a unit and that can be composed,
unchanged, with other components to build something larger.” [D’Souza and Wills 1999].

Another definition that is very frequently used comes from Szyperski which defines a soft-

ware component as “... a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.” [Szyperski et al. 2002].

So, components are closed and well defined pieces of software which have some

functionalities inside, can be composed and should be developed in any programming

language. It can be deployed as a black box and also have an external specification,

which is independent of its internal functionalities.

Developers benefits from the flexibility, reusability, easy maintainability of those

components technologies. All these can be achieved using a component-based devel-

opment (CBD) which is a software development approach in which all artifacts can be

SBRC 2007 - Medição e Monitoração em Redes 667



built by assembling, adapting, and connecting together existing components into a va-

riety of configurations. Using this component-based development approach, developers

can improve the development process and provide components to be used by many other

projects, systems or tools benefiting all the computer network community.

There are many initiatives to provide component infrastructure technologies.

Among others there are: The Object Management Group’s (OMG’s) Common Object Re-

quest Broker Architecture (CORBA) [Siegel 1998], Microsoft Component Object Model

(COM) [Gray et al. 1998], Sun’s Java-based distributed component technology (EJB6 and

JavaBeans7 standards) and the Open Services Gateway Initiative (OSGi)8. All of these

technologies promises processes to speed up application development.

3.1. OSGi

The Open Services Gateway Initiative (OSGi) established in 1999, is an independent,

non-profit corporation working to define and promote open specifications for the delivery

of managed services to networks in homes, cars, and other environments. The OSGi is

composed of leading device manufacturers, software suppliers, gateway operators, and

service providers.

The OSGi specifications define a standardized, component oriented, computing

environment and provide a general-purpose, secure, managed Java framework that sup-

ports the deployment of extensible and downloadable service applications known as bun-

dles [Marples and Kriens 2001]. Bundles are jar files which contain Java classes and

other resources that provide functions to the end-user and, optionally, to other bundles.

They contain the resources to implement zero or more services which are the exported

capabilities of the bundles. They contain a manifest file that describes the JAR contents

and provide information about the bundle, states dependencies on other resources, such

as Java packages that must be available to the bundle before it can run, and designates a

special class in the bundle to act as a bundle activator.

The OSGi framework, as depicted in Figure 1, sits on top of the Java runtime

environment and allows the OSGi-compliant devices to download, install, update and

remove bundles when they are no longer required. These bundles can access capabilities

in the framework, the underlying virtual machine (VM), and the operating system as

required using the Java Native Interface (JNI)9 technology. The installed bundles can

share resources with other bundles and also import and export Java packages under strict

control of the framework which could be asserted between the parts involved using signed

Java jar files.

The OSGi bundles lifecycle is depicted in Figure 2 and shows that when a bundle is

installed it goes to a resolved state where the framework checks the deployment manifest

for dependencies on external Java packages. Once it is resolved, the framework is free

to use the Java packages this bundle provides for resolving other bundles. After that, the

resolved bundle can be activated.

6Enterprise JavaBeans - http://java.sun.com/products/ejb/index.jsp
7http://java.sun.com/products/javabeans/index.jsp
8http://www.osgi.org/
9http://java.sun.com/j2se/1.4.2/docs/guide/jni/

668 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



Figure 1. OSGi Service Platform Components Relationship.

Figure 2. OSGi Bundles Lifecycle.

The activation results in the creation of an instance of the activator class refer-

enced in the deployment manifest. The activator class implements an interface with two

methods: one is called when the bundle is activated, and the other when the bundle is deac-

tivated. These methods receive a context object that gives the bundle access to framework

functionalities, such as accessing other bundles, performing bundle management opera-

tions, registering services, looking for other services, and registering itself as a listener to

different types of events [Hall and Cervantes 2004].

The OSGi technology provides the standardized primitives that allow applications

to be constructed from small, reusable and collaborative components. This framework

manages bundles installation and update in a dynamic and scalable fashion, and man-

ages the dependencies between bundles and services. It provides the developer with the

necessary resources to take advantage of Java’s platform independence and dynamic code

loading capability in order to easily develop, and deploy on a large scale, services for

small-memory devices [Marples and Kriens 2001].

For those reasons, the OSGi framework seems to be very useful to the implemen-

tation of the proposed Framework Layer for Access and Visualization Of network moni-

toring Resources (FLAVOR) where dynamicity, flexibility and resources management are

needed.

4. The FLAVOR Framework
Network monitoring development teams can benefit from the FLAVOR framework by us-

ing its basic infrastructure for a fast and reliable development. FLAVOR provides ways

to implement OSGi components that can be reused and assembled together in many com-

binations and in different contexts.

SBRC 2007 - Medição e Monitoração em Redes 669



4.1. FLAVOR overview

The FLAVOR is composed of a set of Java interfaces and some developed OSGi network

monitoring bundles. It allows the user develop his/her bundles implementing one of those

interfaces showed in Figure 3. It also presents the FLAVOR hierarchy interfaces structure

where the root interface is the FlavorPlugin which has the basic functionalities that a

bundle has to have to be considered a FLAVOR Plugin.

Figure 3. FLAVOR Interfaces and Bundles.

Under that interface, the FlavorDataPlugin is the one that provides methods that

deal with local data access like the access of a local text file, a local database or any other

local data source. The FlavorRemoteDataPlugin interface is also a child of FlavorPlugin
and provides methods to handle remote data sources like the access of a Web Service or

any other remote access.

The FlavorViewPlugin deals with the basic functionalities of a visualization plu-

gin. It provides methods to handle the operations of visualization like opening a window

inside an application. The FLAVOR framework also provides classes that implement a

desktop and internal frame to do the development of the visualization bundles.

Under these interfaces mentioned before, there are the implementations of seve-

ral bundles such as the AMP ICMP Data Access Bundle that provides access to ICMP

measurement data from the text files of the AMP measurement tool10 and is an imple-

mentation of the FlavorDataPlugin interface. The perfSONAR Measurement Archive

Service Access Bundle that provides access to a measurement archive services from perf-

SONAR monitoring environment [Hanemann et al. 2005]. There is also the perfSONAR

Command Line Measurement Point Service Ping Access Bundle which provides access to

the ping measurement data from any Command Line Measurement Point Service11 from

perfSONAR. The latest two are implementations of the FlavorRemoteDataPlugin inter-

face. Finally, the visualization example bundles are the Table View Bundle that provides

data visualizations in a tabular view and the Bar Chart View Bundle that provides data

visualizations in a bar chart view and implements the FlavorViewPlugin interface.

All these developed bundles are used on top of the FLAVOR framework which

sits on top of the OSGi framework as we can see in Figure 4. Therefore, the FLAVOR

10http://amp.nlanr.net/
11http://wiki.perfsonar.net/jra1-wiki/index.php/CLMPService

670 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



framework uses the OSGi capabilities and provides useful services to the development of

network monitoring applications.

Figure 4. FLAVOR Bundles.

4.2. FLAVOR approach
After the definition of the interfaces, implementation and packaging of the network mon-

itoring OSGi bundles, FLAVOR can be used and recognized by any tool that has an OSGi

implementation support. This can be achieved when the application developer embed one

of the available implementations of the OSGi framework and then integrates the FLAVOR

framework inside his application. First the OSGi framework will provide the functions to

manage the bundles lifecycle. The installation, search, update and removal of that bundles

will be done by this OSGi framework without much development effort as it was seen in

section 3.1. FLAVOR then will provide the interfaces and bundles to the developer for its

own use and development.

This interaction is showed in Figure 5 where one Network Monitoring Visualiza-

tion tool installs some bundles in the left side, and other tools in other environments and

contexts could also benefit from this framework by using the developed bundles, which is

represented in the right side of the picture. So, the developed bundles could be used by

any application that makes use of the FLAVOR framework, by just embedding an OSGi

framework, putting the FLAVOR Framework library in the classpath of the application

and using some of the required classes like the FlavorDesktopPane which extends the

JDesktopPane and provides functions to add a new window and organize the windows in

the desktop or the developed monitoring access and visualization bundles.

Figure 5. FLAVOR Architecture.

Another issue that has to be mentioned is that users also have the possibility to ex-

tend FLAVOR by developing their own bundles using the interfaces showed before. These

SBRC 2007 - Medição e Monitoração em Redes 671



developed bundles can also be used in any tool that provides the FLAVOR framework plu-

gins functionality. Moreover, if necessary, users can modify the framework interfaces and

plug it into the framework by using its open source code, but if the interfaces are mod-

ified, it will only be visible to others by using these new interfaces inside the FLAVOR

framework.

Figure 6 illustrates the steps necessary to develop and benefit from this approach.

In step one, user 1 developed a bundle to access some monitoring data to his/her own

use and makes it available. Another user can develop a visualization or improve them

developing another bundle. If this second user makes the visualization bundle available,

a third user that only wants to access the services, just have to download the bundles to

his/her tool and use them without any development.

Figure 6. FLAVOR development cycle.

These monitoring data bundle can be developed by just extending the RemoteSer-

viceDataSource abstract class from the FLAVOR framework which has some standard

methods already implemented (like the start and stop methods from the OSGi activator

interface) or directly implementing the FlavorDataPlugin or FlavorRemoteDataPlugin in-

terfaces. The following example of code shows the class declaration of the perfSONAR

Command Line Measurement Point Service Ping Access Bundle implementation that ex-

tends the RemoteServiceDataSource abstract class which implements the FlavorRemote-

DataPlugin:

public class CLMPPingBundle extends
br.unifacs.nuperc.flavor.api.data.impl.remote.RemoteServiceDataSource

This bundle has to be package in a jar file with at least this class and a manifest file

that contains metadata needed by the OSGi framework for using the bundle. It describes

the implementation and provides information about dependencies and the Activator class.

The manifest file of the CLMPPingBundle is showed below:

Bundle-Activator: br.unifacs.nuperc.ice.osgi.perfsonar.clmp.ping.CLMPPingBundle
Export-Package: br.unifacs.nuperc.ice.osgi.perfsonar.clmp.ping
Bundle-Classpath: .
Import-Package: org.osgi.framework, br.unifacs.nuperc.flavor.api.data.impl,
br.unifacs.nuperc.flavor.api, javax.swing,org.jdom, org.jdom.input, org.jdom.output,

672 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



javax.xml.rpc, org.apache.axis.client,javax.xml.namespace, javax.xml.parsers,
org.xml.sax, org.apache.axis.message,
org.w3c.dom,br.unifacs.nuperc.ice.osgi.perfsonar.clmp.ping
Bundle-Name: CL-MP Ping Data Bundle
Bundle-Description: A bundle that registers a perfSONAR Command Line Measurement Point
Service Ping Access
Bundle-Version: 1.0.0

The Bundle-Activator item points to the implementation of the Activator which

in this case is the CLMPPingBundle class. The Export-Package defines the packages to

be exported. The Bundle-Classpath defines the classpath of the bundle, and the Import-

Package defines the names of any package that the developer wants to import from the

runtime environment. The other items are just for human consumption and do not affect

the OSGi framework, describing the bundle just for user information.

After implementing this class and packaging it with the described manifest file in

a jar file, this bundle can be installed in any tool that is “FLAVOR ready” providing the

services implemented and exported by this bundle.

5. Validating the FLAVOR Framework

The users of the piPEs-BR environment initially used some utilities to make its visualiza-

tion. It was adopted RRD-Graphs, Gnuplot, PHP and Perl scripts to generate charts of the

data retrieved from the measurement tools. After that, it was used the MonALISA frame-

work, that accessed a centralized measurement database through Web Services to make

the visualization of determined measured data using the MonALISA GUI. However, all

these tools were not integrated. In some cases to make the visualization of different mea-

surement data it was also necessary to execute different visualization applications and it

wasn’t possible to develop customized and flexible visualizations for the users.

In order to solve this problem, the ICE (Internet Computer network Eye) environ-

ment12 has been developed since 2005. It had the goal to integrate several visualizations

into the user’s environment and access the features that the piPEs-BR network monitor-

ing environment provided. It has been developed using Java, JNI, Apache Axis13 SOAP

implementation, a chart library called JFreeChart14 and allows the users to query in an

integrated way the network monitoring services from piPEs-BR.

During the ICE development it was noted the need for a more flexible and reusable

development approach. The code of the application could not be reused inside the applica-

tion in other contexts or in other tools. For that reason the FLAVOR framework has been

designed and used in the development of the newer ICE functionalities in order to validate

the framework and also to provide the components technology to the ICE environment.

5.1. Rebuilding ICE

To demonstrate how ICE was restructured to incorporate the FLAVOR functionalities, the

diagram in Figure 7 shows the steps needed to reach this goal. In step 1 ICE embedded

the OSGi framework implementation called Felix15. In step 2 the FLAVOR framework

12http://wiki.gt-med.ufsc.br/ice/
13http://ws.apache.org/axis/
14http://www.jfree.org/jfreechart/index.php
15http://cwiki.apache.org/FELIX/index.html

SBRC 2007 - Medição e Monitoração em Redes 673



library was put in the ICE classpath to provide a way to use the FLAVOR classes. In step

3 ICE used some available developed classes from FLAVOR like the desktop and plugin

manager that makes easier the user interaction with the environment. Finally, in step 4

ICE installed some FLAVOR bundles for its use.

Figure 7. ICE Rebuilded.

With this new approach, the interaction with ICE was changed and is showed in

Figure 8. First, in Step 1 the ICE environment is initialized where all the variables and

the OSGi framework implementation are started. In Step 2 the user gets some available

bundles and requests the installation of those bundles into ICE. Finally, in Step 3, the user

just interacts with the installed bundles requesting and visualizing the measurement data.

The next time ICE initializes, the OSGi framework looks for the installed bundles and

initializes all of them without the need of any human interaction.

Figure 8. How ICE can be used using FLAVOR Framework.

Now all the action to request and visualize the measurement data are done with

the installed bundles inside the framework. Figure 9 shows the ICE architecture where

it’s possible to install or remove visualization and data bundles to access services or data

from different sources (remote network measurement data sources or local data sources).

With this, the user can assemble the bundles in the ICE environment and use them when

required. This approach defines possibilities to use one data access bundle for many

674 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



data visualization bundles or many data access bundles can be accessed by just one data

visualization bundle which can compose this data inside one visualization screen.

Figure 9. ICE architecture.

5.2. ICE usage scenario
Initially the ICE tool were used to access RNP’s backbone measurement infrastructure

which is shown in Figure 10. This infrastructure has four measurement points (MPs)

deployed at the cities of São Paulo, Rio de Janeiro, Florianópolis and Salvador where

initially the perfSONAR CLMP Measurement Point services and the AMP measurement

tools were deployed. The metrics available by these installed measurement services and

tools were: one-way delay, round-trip delay and traceroute.

With those metrics available, ICE had access to them by requesting and providing

visualizations to the services and tools in static frames to do the requesting of measure-

ment data and some charts to view the measurement data. After the development of

FLAVOR, some bundles were developed and installed in ICE to handle those available

metrics. These bundles provided flexibility in the development of new visualizations, as

we could develop many views using the same installed data access bundle and other ser-

vices that needed the access of the measured data could also install and use the developed

data access bundles.

Figure 11 shows the use of FLAVOR by showing in the left side the window of the

Tabular View Ping Plugin which is a visualization plugin that can make the visualization

of the measurement data in a table view. The window on the right side is the Plugin

Manager which is a class of the FLAVOR framework and controls the installed plugins

in the ICE environment by providing the needed interaction with the OSGi framework

functionalities. This Plugin manager is showing the installed bundles: Tabular View Ping

Plugin, a visualization bundle and the Ping Plugin which is a data access bundle.

The integration with FLAVOR and the restructuring of ICE provided the flexibil-

ity needed to implement bundles that could be reused by any application and showed easy

ways to develop other new functionalities inside this approach of reusing the developed

code from bundles already implemented. The developed code from ICE has been restruc-

tured to follow this new approach and specification and other tools and applications could

do the same to benefit from the FLAVOR framework functionalities.

SBRC 2007 - Medição e Monitoração em Redes 675



Figure 10. ICE scenario user case.

6. Conclusion and Future Work

This paper has explored the development of a framework that uses OSGi and some Java

Interfaces to provide basic functionalities in the development of flexible and reusable

network monitoring bundles. With the use of FLAVOR, the network monitoring tool

developers can use the components approach to provide flexibility, adaptability, reuse

among other benefits it provides.

The application users (i.e., the users interested in data, analysis and visualization

of the network measurement data) could benefit from it in the moment that the user can

choose their favorite components to use inside their application. The developed bundles

can be assembled and composed into their applications using the benefits of the OSGi

to deploy components dynamically and, consequently, configuring their systems dynami-

cally.

Future efforts will concentrate on the spread of the development of network mon-

itoring bundles, providing reusable components to the entire network monitoring com-

munity. There is also an intention of using this approach in other multi-domain network

environments and in other application domains like network management. This could

benefit many other users and prove the benefits of its use.

With this dissemination of bundle development and with our experience building

the FLAVOR framework and the ICE network visualization environment, network moni-

toring tools development will need a network monitoring bundle repository that provides

advanced features to this development such as publish and search of bundles. This com-

mon place to find the necessary bundles without having too much effort to search for

676 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



Figure 11. An Example using the CLMP Tabular View Ping Plugin and the Plugin
Manager.

them can minimize the time to publish and to discover, making life easier to the network

monitoring tool development teams.

Acknowledgments

The authors would like to thank The Brazilian National Research and Education Network

(RNP), The Bahia’s State Research Foundation (FAPESB) and The Brazilian National

Council for Scientific and Technological Development (CNPq) for all its support during

the development of this work.

References

Boote, J. W., Boyd, E. L., Durand, J., Hanemann, A., Kudarimoti, L., Lapacz, R., Simar,

N., and Trocha, S. (2005). Towards multi-domain monitoring for the european research

networks. TERENA Networking Conference.

Crnkovic, I. (2001). Component-based software engineering - new challenges in software

development. Software Focus.

D’Souza, D. F. and Wills, A. C. (1999). Objects, Components,and Frameworks with UML
- The Catalysis Approach. Addison Wesley.

Gray, D. N., Hotchkiss, J., LaForge, S., Shalit, A., and Weinberg, T. (1998). Modern

languages and microsoft’s component object model. Commun. ACM, 41(5):55–65.

Hall, R. S. and Cervantes, H. (2004). Challenges in building service-oriented applications

for osgi. IEEE Communications Magazine, 42(5):6.

Hanemann, A., Boote, J., Boyd, E., Durand, J., Kudarimoti, L., Lapacz, R., Swany, M.,

Trocha, S., and Zurawski, J. (2005). Perfsonar: A service oriented architecture for

multi-domain network monitoring. In Proceedings of the Third International Confer-
ence on Service Oriented Computing (ICSOC 2005), pages 241–254. ACM Sigsoft and

Sigweb.

SBRC 2007 - Medição e Monitoração em Redes 677



Internet2 (2003). E2EpiPEs: End-to-End Performance Initiative Performance Envi-

ronment System Architecture. http://e2epi.internet2.edu/E2EpiPEs/
e2epipe11.pdf.

Legrand, I. C., Newman, H. B., Voicu, R., Cirstoiu, C., Grigoras, C., Toarta, M., and

Dobre, C. (2004). Monalisa: An agent based, dynamic service system to monitor,

control and optimize grid based applications. Computing in High Energy and Nuclear
Physics (CHEP) conference.

Marples, D. and Kriens, P. (2001). The open services gateway initiative: An introductory

overview. IEEE Communications Magazine, 39(12):5.

Sampaio, L., Koga, I., Monteiro, H., Koga, I., Rhoden, G., Vetter, F., Nunes, G., Melo,

E., and Monteiro, J. A. S. (2006). pipes-br: Uma arquitetura para a medição de desem-

penho em redes ip. In XXIV Simpósio Brasileiro de Redes de Computadores, Curitiba,

PR. Anais do SBRC 2006.

Siegel, J. (1998). Omg overview: Corba and the oma in enterprise computing. Commun.
ACM, 41(10):37–43.

Szyperski, C., Gruntz, D., and Murer, S. (2002). Component Software: Beyond Object-
Oriented Programming. Addison Wesley.

678 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos


