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Abstract. Degree Three Chordal Rings and N2R Topologies are useful for
physial and optical network topologies due to the combination of short dis-
tances, regularity and low degrees. In this paper we show how distances in
terms of average distances and diameters can be significantly decreased by us-
ing chords of different lengths. These topologies are slightly less symmetric than
the traditional ones, but the distances are virtually the same no matter which
node in a given topology they are measured from.

1. Introduction

The increasing use of computers and computer networks, in particular the Internet,
has made societies all over the world highly depending on IT infrastructures. This
dependency is supported by the fact that many different kinds of communication are
converging towards a common IP-based platform[Madsen et al. 2002]; one general-
purpose network can now be used for what previously required multiple dedicated net-
works such as those used for data, television and telephony. Furthermore, new ap-
plications are being designed to run in LAN as well as WAN environments, many
which can by themself be categorized as critical with respect to QoS parameters and
availability[Pedersen et al. 2005a][Lynch 2000]. Examples of emerging critical applica-
tions can be found within areas such as telemedicine and surveillance. The demands
for availability and QoS are merely supported by todays best-effort IT/Broadband in-
frastructures, where software or hardware failures (including cable cuts) for most private
customers will cause losses of connectivity.

In order to be able to design reliable Next Generation Networks, it is crucial to
ensure sufficient levels of redundancy on the physical and optical levels. These levels
are particularly important because they limit what guarantees can be provided by the
higher layers: without the physical connectivity nothing can be done. It is especially
interesting to look at the optical networks which are currently being deployed many places
worldwide; these are often deployed over wide areas (such as backbone, distribution and
access networks), and due to the high civil engineering costs they are extremely expensive
to change once in the ground. Therefore the topologies must be carefully chosen.

Currently ring topologies are widely used because they offer full redundancy while
still being simple to manage and implement both logically and physically. However,
they are able to handle only a single failure, and large rings suffer from large distances
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resulting in large resource consumption especially when a failure occurs. Therefore,
more robust topologies have recently got some attention. Symmetric or nearly symmet-
ric networks[Dekker and Colbert 2004] of degree 3 seem to be particularly interesting
because they offer up to three disjoint paths between any pair of nodes while still hav-
ing a low degree, facilitating implementation and keeping costs down[Pedersen 2005].
Furthermore, the symmetry makes routing and restoration simple. Examples of
such topologies are Degree Three Chordal Rings[Bujnowski et al. 2004], Honeycomb
networks[Stojmenovic 1997] and N2R structures[Madsen et al. 2003][Pedersen 2005].
A more comprehensive study of a larger number of topologies can be found in
[Kotsis 1992], which also defines a large number of useful metrics. The N2R struc-
tures have been introduced as a generalization of, and alternative to, Double Rings,
to which they are superior in terms of average distance, diameter and several other
parameters[Pedersen et al. 2004][Pedersen et al. 2005b][Frucht et al. 1971]. We recently
described a generalization of the N2R structures[Pedersen et al. 2006], where it was
shown how to significantly reduce the distances by introducing two chord lengths instead
of just one.

In this paper we extend the results of [Pedersen et al. 2006] by exploring the po-
tentials of using three different chord lengths. While the way of constructing the modified
N2R is a rather straight-forward generalization of [Pedersen et al. 2006], the construc-
tion of modified Degree Three Chordal Rings is truly novel. To the best of our knowledge
these topologies have not been studied before. The modified N2R and Chordal Rings
proposed can hold a virtually unlimited number of different chords, but in this paper we
have calculated the results with only one, two and three chord lengths. The results are
promising for both N2R and Chordal Rings, but the most significant improvements can
be found for the Chordal Rings.

The paper is organised as follows. Section 2 provides the basic terminology, no-
tation and methods, and introduces the parameters used throughout the paper. Section
3 defines N2R with one as well as more chord lengths, and results related to N2R are
presented. Similarly, Section 4 defines Chordal Rings and related results. Section 4 also
compares the impact of using more chord lengths in N2R and Chordal Rings. Section 5
concludes the paper and points towards potential future research directions.

2. Preliminaries and Methods

A network structure or topology S is a set of nodes and a set of lines, where each line
interconnects two nodes. Lines are bidirectional, so if a pair of nodes (u, v) is connected,
so is (v, u). A structure can be considered a model of a network, abstracting from specific
physical conditions such as node equipment, medias and wiring. The definition of a struc-
ture is similar to that of a simple graph in graph theory. A path between two distinct nodes
u and v is a sequence of nodes and lines: (u = u0), e1, u1, e2, u2, . . . , un−1, en, (un = v),
so that every line ei connects the nodes ui−1 and ui. The length of a path corresponds to
the number of lines it contains, so in the case above the path is of length n. The distance
between a pair of nodes (u, v) corresponds to the length of the shortest path between them
and is written d(u, v). This paper considers only connected structures, i.e. between ev-
ery pair of nodes there exists a path. The size of a structure/network corresponds to the
number of nodes it contains.
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The topologies of the paper are compared by calculating average distance and di-
ameter for all topologies with up to 2000 nodes. The parameters reflect important factors
such as delay and load on switches/routers. The definitions are given as:

• Average distance: The average of d(u, v) taken over all pairs of distinct nodes.
• Diameter: The maximum of d(u, v) taken over all pairs of distinct nodes.

All results obtained in the paper are obtained by calculating average distances
and diameters of the different graphs, using standard shortest-path algorithms. A main
challenge has been to select (for each class of topology) only one topology given the
number of nodes. This is especially difficult when three chord lengths are introduced,
because there exist many different graphs with different combinations of chord lengths.
Since the graphs are of limited size (2000 nodes), and due to the high degree of symmetry,
it has been possible to calculate both average distance and diameter for all possible graphs.
So, given the number of nodes it was for each type of topology possible to choose the one
with lowest diameter and average distance (in case it was not possible to minimize both
parameters the one with lowest diameter was chosen).

3. N2R

First the definition of the traditional N2R structure, with one chord length, is given. Let
p and q be positive integers, so that p is even, p ≥ 3, q < p

2
and gcd(p, q) = 1. These

values of p and q define a N2R(p; q) structure S as follows: S consists of two rings, an
outer ring and an inner ring, each containing p nodes. The nodes of the outer ring are
named o0, o1, . . . , on−1 and the nodes of the inner ring are named i0, i1, . . . , in−1. Thus, S
contains 2p nodes. For each i such that 0 ≤ i ≤ n− 1 there exists a line between each of
the following pairs of nodes:

• (oi, oi+1(mod p)) (lines of the outer ring)
• (ii, ii+q(mod p)) (lines of the inner ring)
• (oi, ii) (lines connecting the two rings)

The classical Double Ring with 2p nodes obviously corresponds to N2R(p; 1). It is simi-
lar to the definition of the Generalized Petersen Graph[Frucht et al. 1971], except for the
restriction of gcd(p, q) = 1. For an example of a traditional N2R structure see Figure 1.

Figure 1. N2R(15;4).

For the generalization with two chord lengths, the parameters q1 and q2 are used
instead of q. It is assumed that gcd(p, q1) = gcd(p, q2) = 2. This will ensure that there
are two inner rings, possibly with different jump lengths, which is an essential property
of the N2R topologies (N2R means Network of 2 Rings). We now write N2R(p; q1/q2).
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The definition is similar to the traditional N2R as given above, except for the definition
of lines in the inner ring where a line exists between each of the following pairs of nodes:

• For i even, (ii, ii+q1(mod p))
• For i odd, (ii, ii+q2(mod p))

The definition is based on the fact that both q1 and q2 must be even numbers.
Note also that this implies that the two inner rings each contain p

2
nodes. Introducing

more chord lengths is rather straightforward; for x chord lengths, we simply assume that
gcd(p, q1) = gcd(p, q2) = . . . = gcd(p, qx) = x, and change the lines of the inner ring so
that there exists a line between each of the following pairs of nodes:

• For i ≡ 0(mod x), (ii, ii+q1(mod p))
• For i ≡ 1(mod x), (ii, ii+q2(mod p))
• · · ·

• For i ≡ x− 1(mod x), (ii, ii+qx(mod p))

With x chord lengths, we denote the topology N2R(p; q1; q2; . . . ; qx). Figure 2
provides an example of how the definition works. In the example there are really three
classes of chords, but two of them are of equal length.

Figure 2. N2R(15;6;3;3).

3.1. Results

Figures 3-4 show the average distances and diameters of N2R with one, two and three
different chord lengths. While for large topologies three different chord lengths reduce
the distances, the differences between using two or three chord lengths are not huge. For
example, for topologies with 1992 nodes, the average distances are 16.39, 9.87 and 9.15
for one, two and three chord lengths respectively. The pattern is the same for diameters;
these are 26, 14 and 13 respectively. The distances vary only insignificantly depending
on from which node it is measured.

4. Degree Three Chordal Rings

Again, first the definition of Chordal Rings with only one chord length is given. Let w be
an even integer such that w ≥ 6, and let s be an odd integer, such that 3 ≤ s ≤ w

2
. w

and s then define CR(w; s) with w nodes labeled u0, . . . , uw−1. For 0 ≤ i ≤ w − 1 there
exists a line between each of the following pairs of nodes:

• (ui, ui+1(mod w))
• (ui, ui+s(mod w)), for i even.
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Figure 3. Average distances in N2R with 1, 2 and 3 different chord lengths.
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Figure 4. Diameters in N2R with 1, 2 and 3 different chord lengths.

An example of a Chordal Ring with one chord length is shown in Figure 5.

More chord lengths can be introduced in different ways, and is different and less
straight-forward than for the N2R topologies because each node is connected to only one
chord. We propose to introduce different chord lengths in a way that preserve high levels
of regularity and symmetry.

As a first step, neighbour pairs of nodes are divided into a number of groups
corresponding to the number of different chord lengths. For example, in case of 3 chord
lengths assume that the nodes are numbered 1, 2, . . . , w as given above. We require w
to be divisible by two times the number of chord lengths, i.e. in this case divisible by 6.
Then we let node 1 and 2 belong to group 1, node 3 and 4 belong to group 2, node 5 and
6 belong to group 3, node 7 and 8 belong to group 1 etc. An example of such a division is
given in Figure 6.

Each pair now consists of one even numbered and one odd numbered node. The
chords are then introduced, with each group of pairs being assigned a chord length. For
group j a chord of uneven length sj is assigned, so that for i even, node ui belonging to
group j is connected to the node ui+sj(mod w), where it is a condition that this node also
belongs to group j (note that this node is odd numbered). This puts some constraints
on the chord lengths, but it can be verified that the set of chord lengths expressed by
k·2·(number of groups)+1, where k is a positive integer, forms the set of possible chord
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Figure 5. CR(30;7).

lengths that may not exceed one fourth of the number of nodes in each group (i.e. it may
not exceed w

4·(number of chord lengths)
. (more values of k could be allowed, but the current

definition allows all possible connections of pairs). A Chordal Ring with x different chord
lengths s1, . . . , sx is written CR(w; s1; . . . ; sx).

In Figure 6 the chords, of length 7 corresponding to k = 1, are shown for one
group of pairs. In Figure 7 the chords for the two other groups of pairs are shown. These
are chosen to be 7 (again k = 1) and 13 (k = 2) respectively.

Figure 6. Dividing the nodes of the Chordal Ring into 3 groups, which will have
different chord lengths. The chords of one group of nodes are shown.

Figure 7. A Chordal Ring with 3 classes of chords, CR(30;7;7;13).

4.1. Results

Figures 8-9 show the average distances and diameters of Chordal Rings with one, two
and three different chord lengths. It shows that the distances are significantly reduced by
introducing more chord lengths, and the distances are shorter with three chord lengths
than with two. This is especially so for large topologies. As for N2R the difference
between having one or two chord lengths is bigger than the difference between having
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two or three. However, the impact of having three chord lengths seems more significant
than for N2R. For an example, consider again the topologies with 1992 nodes. The
average distances here are 24.31, 11.68 and 9.29 for one, two and three chord lengths
respectively, and the diameters 38, 18 and 13. As for N2R it turns out that the distances
vary only insignificantly depending on from which node it is measured.
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Figure 8. Average distances in Chordal Rings with 1, 2 and 3 different chord
lengths.
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Figure 9. Diameters in Chordal Rings with 1, 2 and 3 different chord lengths.

With the calculations in place it is interesting to compare the impact of having
three different chord lengths in N2R and Chordal Rings. Figures 10-11 compare the
average distances with one and three chord lengths respectively. It is seen that with only
one chord length N2R has significantly shorter distances than Chordal Rings, particularly
for large topologies. With three chord lengths they are nearly indistinguishable. Using
topologies with 1998 nodes as an example, Chordal Rings and N2R with one chord length
have average distances 24.51 and 16.35 respectively, while the numbers are 9.31 and 9.07
for three different chord lengths.

Similar results are obtained for the diameters, and shown in Figures 12-13. Taking
1998 nodes as an example again, the diameters of Chordal Rings and N2R are for one
chord length 39 and 24 respectively, and for three chord lengths 13 and 13 respectively.
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Figure 10. Average distances in Chordal Rings and N2R with one chord length.
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Figure 11. Average distances in Chordal Rings and N2R with three chord lengths.
The second plot shows the results for 1900-2000 nodes for increased readability.
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Figure 12. Diameters in Chordal Rings and N2R with only one chord length.
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Figure 13. Diameters in Chordal Rings and N2R with three chord lengths.
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5. Conclusion and Further Work

Simple 3-regular topologies er interesting for the design of reliable networks, both for op-
tical and physical layers. In line with this, previous research has analysed N2R networks
and Degree Three Chordal Rings and found them to have a number of good properties, in-
cluding low distances. A recent contribution by the authors showed that using two chord
lengths instead of one in N2R could reduce the distances significantly, especially for large
networks.

In this paper we take this generalization one step further, and show how distances
in N2R can be reduced even more by using three different chord lengths. All possible
topologies with up to 2000 nodes were evaluated in terms of average distance and diam-
eter. For topologies with 1992 nodes, the average distances are 16.39, 9.87 and 9.15 for
one, two and three chord lengths respectively. The diameters are 26, 14 and 13 respec-
tively.

Furthermore we propose a construction of Degree Three Chordal Rings with dif-
ferent chord lengths, and evaluate the impact on distances of using two or three differ-
ent chord lengths. This is also done for all possible topologies with up to 2000 nodes.
This construction leads to significant reduction of average distance and diameters in these
graphs. Actually the impact of using three different chord lengths is more significant for
the Chordal Rings than for the N2R: For topologies with 192 nodes the average distances
are here 24.31, 11.68 and 9.29 for one, two and three chord lengths respectively, and the
diameters 38, 18 and 13.

The results are interesting because they show how it is possible to build graphs
with shorter average distance and diameter, making it potentially possible to design net-
works with shorter delays and less load on switching/routing equipment. They could be
used at the optical levels in fiber networks, or at the physical level of any wired network
technology if appropriate ways of deployment can be found. The gain is almost for “free”
since the topologies have the same properties with respect to numbers of nodes, connec-
tivity and degree. The main drawback is that the networks are slightly more complicated
and less symmetric. Concerning the symmetry we found out that the distance character-
istics only vary insignificantly when measured from the different nodes in both Chordal
Rings and N2R.

In order to take advantage of these potentials it is necessary to work further on
how to apply the topologies in real-world networks on optical or physical levels. The fact
that both topologies are based on rings should be taken advantage of.

The proposed constructions of both Chordal Rings and N2R are also useful for
even more different chord lengths, which could reduce the distances further for very large
topologies. This raises the challenge of how to select these chord lengths. For up to
three chord lengths, and 2000 nodes, the results of this paper could be obtained by simply
calculating the distances in all possible graphs. For more complex calculations a more
analytical approach for selecting the chord lengths will be needed.

Another direction of further research could be to revise the definitions of Chordal
Rings and N2R with different chord lengths. For N2R we believe that lower distances
could be obtained by not requiring the inner rings to be connected rings, and for Chordal
Rings it could be interesting to define the different chord lengths in other ways.
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