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Abstract. Steiner Problems in undirected or directed graphs are often used to
model multicast routing problems. The directed case being particularly suitable
to situations where most of the trafic has a single source. Sequential Steiner
heuristics are not convenient in that context, since one can not assume that a
central node has complete information about the topology and the state of a
large wide area network. This work presents a distributed version of the Dual
Ascent Heuristic proposed by Wong, known for its remarkable good practical
results, lower and upper bounds, in both undirected and directed Steiner prob-
lems. The distributed Dual Ascent has worst case complexities of O(|V |2) time
and O(|T |.|V |2) messages. Experimental results are also presented, showing
the eficiency of the proposed algorithm.

1. Introduction
Several emerging network applications, like teleconferencing or video on demand, require

the transmission of large amounts of data among a small subset of the nodes. This is called

multicast or selective broadcast, the usual broadcast being the case where the information

must be sent to all nodes in the network. The routing of multicast connections is the prob-

lem of establishing message paths for a multicast session. Such routing problem is often

modelled as a Steiner Problem in Graphs (SPG), as surveyed by [Novak et al. 2001b] and

also by [Oliveira and Pardalos 2005]. The frequent situation where most multicast mes-

sages have a single source and the network is asymmetric, i.e. link characteristics like

latency, capacity, congestion or price depend on the direction, is better modelled as a

Steiner Problem in Directed Graphs (SPDG).

The Steiner Problem in Graphs (SPG) is defined as follows. Given an undirected

graph G = (V,E), positive edge costs c and a set T ⊆ V of terminal nodes, find a

connected subgraph (V ′, E ′) of G with T ⊆ V ′ minimizing
∑

e∈E′ ce. In other words, find

a minimum cost tree containing all terminals, possibly also containing some non-terminal

nodes. The Steiner Problem in Directed Graphs (SPDG) is the case where GD = (V,A)
is a directed graph and there is a special root terminal r ∈ T . The problem is to find

a minimum cost directed tree containing paths from r to every other terminal. Both the

SPG and the SPDG are NP-hard, one must resort to heuristic algorithms if solutions must

be obtained in short time.

Sequential Steiner heuristics are not much suitable for multicast routing, since

one can not assume that a central node has complete information about the topology
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and the state of a large wide area network. The overhead to collect, store and update this

information could be prohibitive. In this context, there is a need for distributed algorithms,

where each node initially only knows about its immediate neighborhood.

Some distributed SPG heuristic algorithms [Chen et al. 1993] utilize pre-

vious distributed algorithms for the Minimum Spanning Tree (MST) problem

[Gallager et al. 1983]. They first build a MST and then execute a prune phase, removing

subtrees that do not contain terminals. This simple algorithm may lead to poor solutions.

There is another drawback: all network nodes are involved in the computation, even when

only a few of them are to be connected. It is desirable for a distributed algorithm over

networks to be locality-sensitive, the computation effort should decrease when the nodes

relevant to the solution are clustered. More sophisticated algorithms in the literature are

distributed versions of the Shortest Path Heuristics (SPH). The Prim-SPH (a.k.a. Cheapest

Insertion Heuristic) grows a single tree, starting with a chosen terminal, called the root. At

each step a least cost path is added, from the existing partially built tree to a terminal not

yet connected. Its distributed versions [Bauer and Varma 1996, Rugelj and Klavzar 1997]

construct, in parallel, shortest paths from each node to each non-root terminal. Those

shortest paths are used by another parallel thread, that starts from the root to build the

Steiner Tree. The time complexity of those algorithms, measured by the maximum

sequence of messages, is O(|T |.|V |). The overall number of exchanged messages is

O(|V |2). [Novak et al. 2001a] proposed improvements on those algorithms leading to a

better practical performance, but could not change the worst case complexities. The above

mentioned distributed Prim-SPH algorithms are locality-sensitive and can be adapted to

the SPDG.

The so-called Kruskal-SPH (although it actually resembles Borüvka’s MST al-

gorithm) grows several subtrees at once, starting at each terminal. At each step some

pairs of subtrees are joined by shortest paths. Its distributed version was proposed by

[Bauer and Varma 1996], with complexities O(|T |.|V |) time and O(|V |2) messages. This

last complexity was improved to O(|V | log |V |) by [Singh and Vellanki 1998]; this also

improves the time complexity when |T | is not O(log |V |). Those algorithms (or even the

sequential Kruskal-SPH) can not be adapted to the SPDG.

The Average Distance Heuristic (ADH) also starts with subtrees composed by

each terminal. At each step a pair of subtrees is joined by a path passing by the non-

terminal node with minimum average distance to each subtree. The distributed version by

[Gatani et al. 2005] takes O(|T |.|V |) time and O(|E|+ |T |.|V |) messages. The ADH can

not be adapted to the SPDG.

Those distributed algorithms (Prim-SPH, Kruskal-SPH and ADH) assume that

each node already knows its shortest distance to all other nodes. If this is not the case, the

distributed computation of such distances would add a message complexity of O(|E|.|V |),
a bit complexity of O(|E|.|V |. log |V |) and a time complexity of O(|V |) [Segall 1983].

The SPG and SPDG algorithm proposed in this article is a distributed version of

the sequential dual ascent algorithm proposed by [Wong 1984]. This algorithm has the

following advantages over other heuristics.

• Extensive computational experiments over the main classes of SPG bench-

mark instances from the literature have shown that Dual Ascent usually
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yields better solutions [Voss 1992, de ARAGÃO et al. 2001, Werneck 2001,

Polzin and Vahdati 2001, de ARAGÃO and Werneck 2002] than Prim-SPH.

Kruskal-SPH and ADH are a little worse than Prim-SPH.

• The Dual Ascent is an example of what was latter called a primal-dual algorithm
[Goemans and Williamson 1996], it can be interpreted as working in the dual of

a linear program formulation. In practice, this means that Dual Ascent not only

returns a solution, it also returns a guarantee of the quality of this solution. For

example, it may yield a solution of value 1000 together with a lower bound of

980 on the cost of any other solution. This means that this particular solution is

guaranteed to be within 2% away from the optimal. The quality of Dual Ascent

lower bounds is remarkable, they are usually less than 3% bellow the optimal. For

this reason, Dual Ascent is a key part of the best exact algorithms for the SPG

[Polzin and Vahdati 2001, de ARAGÃO et al. 2001].

Tight lower bounds can be very useful. If the user is not satisfied with the guaran-

tee obtained, he may want to run the Dual Ascent again (this distributed algorithm

is not deterministic), or any other heuristic, trying to get better solutions. More-

over, the lower bounds can be used to remove arcs from the instance, by proving

that they do not belong to an optimal solution. It is typical to remove more than

half of the arcs. A second run of Dual Ascent (or of any good heuristic) on that

reduced instance is quite likely to improve the solution.

• It does not require that nodes know the value of least cost paths to ev-

ery other node. Some authors [Bauer and Varma 1996, Novak et al. 2001a,

Gatani et al. 2005] argue that network layer protocols like RIP and OSPF already

keep routing tables with that information, it could be used by their Steiner algo-

rithms. Such reasoning is not completely satisfactory since it relies on particular

technologies that may be supplanted in the future. Moreover, using network layer

information limits what can be accomplished by the multicast protocol. RIP rout-

ing tables actually provides hop distances, i.e. least cost paths assuming that all

links have unitary costs. OSPF routing tables use the link costs provided by local

administrators (usually as a function of parameters like latency time or available

bandwidth). RIP or OSPF costs are not necessarily the more appropriated for

building multicast trees. This application may prefer using its own link costs,

reflecting factors like contractual prices or forecasted link behavior after the mul-

ticast begins. Of course, one can always run a shortest distance algorithm with

respect to the desired costs before computing the tree. However, this would add

the above mentioned complexities [Segall 1983] to the overall method and it is not

locality-sensitive.

The proposed distributed Dual Ascent has worst case complexities of O(|V |2)
global time, O(|T |.|V |2) messages and O(|V |) local time complexity. One alternative to

perform the Dual Ascent would be electing a leader node to locally solve the problem

and then broadcast the solution. It would take O(|V |.|E|) messages and O(|V |) time to

concentrate all the relevant information about G in the leader, the local time complexity

of the sequential Dual Ascent algorithm is O(|E|2). Considering such complexities and

the memory demand at the leader node, the fully distributed approach is an appealing

alternative for multicast routing.

The remainder of this paper is organized as follows. Section 2 introduces the
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sequential Wong’s Dual Ascent Algorithm. The distributed algorithm is presented and

analyzed in Section 3. Section 4 presents experimental results, comparing the practical

performance of our algorithm with Prim-SPH in terms of solution quality, time and ex-

changed messages.

2. Sequential Wong’s Dual Ascent Algorithm
Wong’s Dual Ascent is an algorithm for the SPDG. However, a simple transformation

allows its effective use on the SPG too. In this case, define GD = (V, A) to be the

directed graph obtained by replacing each edge in E by two opposite arcs and choosing

any terminal r to be the root. One now seeks in GD for a minimum cost arborescence (a

directed tree) having paths from r to every other terminal. Such arborescence corresponds

to an optimal solution of the SPG in the original graph.

In Dual Ascent, each arc a has its non-negative reduced cost c̄a, a value that is

initialized with the original arc cost. Reduced costs may be only decreased. Arcs with

zero reduced cost are called saturated. Those arcs induce the saturation graph GS =
(V,Ar(c̄)), where Ar(c̄) = {a ∈ A : c̄a = 0}. As all original cost are positive, this

graph starts with no arcs. All operations in the algorithm are defined over the current

saturation graph. Let R be the set of nodes of a strongly connected component of GS ,

i.e. a maximal set containing a directed cycle passing by any pair of nodes in it. This

set is a root component if (i) R contains a terminal, (ii) R does not contains r, and (iii)

there is no terminal t /∈ R reaching R by a path in GS . Given a root component R, define

W (R) ⊇ R as the set of nodes reaching R by paths in GS and let δ−(W ) be the directed

cut consisting of the arcs entering W . The algorithm follows:

Wong’s Dual Ascent
c̄a ← ca, for all a ∈ A; LB ← 0;

While (exists root components in GS) {
Choose a root component R;

W ← W (R);
Δ ← mina∈δ−(W ) c̄a;

c̄a ← c̄a − Δ, for all a ∈ δ−(W );
LB ← LB + Δ;

}
Output: c̄ and LB

At first, each terminal other than the root corresponds to a root component. In each

round, a root component R is chosen and the reduced costs of all arcs incident to W (R)
are decreased by Δ, the smallest such reduced cost. The partial lower bound is increased

by the same amount. At least one arc is saturated in each round. Some saturations reduce

the number of root components, until there are no root components anymore. At this

point, GS contains at least one directed path from r to every other terminal. Therefore it

contains at least one SPDG solution. But GS also contains several redundant arcs. Wong

proposed the following additional cleaning steps to obtain good solutions:

1. Let Q be the set of nodes that can be reached from the root. Compute a minimum

cost spanning arborescence on the subgraph of GS induced by Q.
2. Remove from this arborescence all leaves that are not terminals. Repeat this prun-

ing step until all leaves are terminals.
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Other authors [Polzin and Vahdati 2001, de ARAGÃO et al. 2001] found that running

Prim-SPH over the sparse graph GS is very fast and yields solutions that are even better

than those provided by the MST-and-prune cleaning method proposed by Wong. Any-

way, the final output obtained after the cleaning is a solution, together with the lower

bound LB, which gives a guarantee of the quality of this solution. The overall complex-

ity is dominated by the Dual Ascent step, O(|E|2). The reduced costs provided by the

Dual Ascent step may still be very useful. Let UB be the cost of a solution. It can be

shown that all arcs a such that LB + c̄a ≥ UB can not belong to any solution with cost

smaller than UB. This means that all such arcs should be eliminated from any attempt of

searching for improving solutions.

Extensive experiments have shown that the guarantees provided by Dual Ascent

are very good in practice [Voss 1992, de ARAGÃO et al. 2001, Polzin and Vahdati 2001,

Werneck 2001, de ARAGÃO and Werneck 2002]. However, this is not an approximative

algorithm, since this guarantee is not limited by any constant factor. In fact, no algorithm

approximating the SPDG by a constant factor is possible unless P = NP .

3. The Distributed algorithm

We propose an asynchronous distributed version of the previously described algorithm. Its

output is the lower bound and the arc reduced costs, which also gives the saturation graph.

The cleaning steps to actually compute a solution from this graph can be performed by

already known distributed algorithms. We assume that each node knows the cost of each

arc incident to that node. During the execution, all data about the state of an arc is kept

by its adjacent nodes. Each node performs the same local algorithm, which consists of

sending messages over adjoining links, waiting for incoming messages, and processing.

Messages can be transmitted independently and arrive after an unpredictable but finite

delay, without error and in sequence. We view the nodes in the graph as being initially

asleep. All non-root terminals wake up spontaneously, other nodes awake upon receiving

messages from awakened neighbors. We assume that the nodes of the graph have distinct

identities that can be totally ordered.

The agents in this distributed algorithm are associated to the fragments, defined

as a set W (t) formed by all nodes reaching a non-root terminal t. The terminal t iden-

tifying a fragment W (t) is also known as its leader. Note that if t belongs to a strongly

connected component R, W (t) = W (R). Strongly connected components are disjoint

by definition, but sets W (R) are not. Therefore, a node can work to several fragments,

perhaps belonging to different connected components.

By definition, all nodes in a fragment are connected to its leader by saturated arcs.

Among such arcs, the algorithm keeps in each fragment a tree used for intra-fragment

message exchange, convergecast messages from nodes in the fragment to the leader and

broadcast messages from leader to nodes. A fragment growing round consists of finding

the minimum reduced cost of an incident arc and subtracting this value from the reduced

cost of all incident arcs. The first operation is performed using a convergecast, the result is

then broadcasted. The decreasing of reduced costs causes some new arcs to be saturated,

the corresponding nodes must be included in the fragment and the fragment tree updated.

The fragment leader keeps the partial lower bound due to the fragment growing rounds.

As fragments grow, their nodes may start to overlap. Having common incident arcs cre-
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ates a mutual exclusion problem, that causes some fragments to suspend their operations

temporarily. A fragment should stop its execution when it is reached from the root. When

the root reaches all terminals, it initiates a broadcast to terminate the algorithm.

3.1. Growing Fragments

At first, a fragment composed by just a terminal t selects the incident arc with the min-

imum reduced cost, at this point the original cost. The fragment partial lower bound is

increased from zero to this value, which is subtracted from the reduced cost of each inci-

dent arc. Messages Include(t) are transmitted on the saturated arcs. The node sending the

Include(t) messages, marks those arcs as To leaf(t). Those arcs define a directed tree from

the leader to all other nodes in the fragment, for broadcast operations. Upon receiving this

message, a node includes itself in the fragment and marks the outgoing arc to the node

that sent the message as To leader(t). The arcs marked as To leader(t) define a directed

tree pointing to the leader, used in convergecast operations. This node also sends Check(t)
messages to all its other neighbors, communicating that it now belongs to t and asking if

they are also part of t. Those messages must be answered, Ack(t,y) if the neighbor also

belongs to t and Ack(t,n) if it does not.

The next step is calculating the minimum reduced cost of all arcs incident to

the fragment. A leaf node in the fragment sends by its To leader(t) arc a message

Conv(t,Smallest,Δ) with the minimum reduced cost of an arc incident to it, Δ, and

not belonging to the fragment. The internal nodes in the fragment, upon receiving its

Conv(t,Smallest,Δ) messages, compare those costs with the minimum reduced cost of an

arc incident to it and not belonging to the fragment. The smallest such value is sent by its

To leader(t) arc using another Conv(t,Smallest,Δ) message. When the fragment leader

finally knows the fragment minimum reduced cost, it updates the fragment lower bound

and starts broadcasting this value back to all fragment nodes, using Broad(t,Smallest,Δ)
messages. Upon receiving such messages, a node decreases the cost of its incident arcs,

which may trigger Include(t) messages on the newly saturated arcs, therefore growing the

fragment. The newly added nodes first checks its neighborhood before starting another

round of convergecast. Leaf nodes that did not include any new node start a new round of

convergecast immediately. See Figure 1, for an example.
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Figure 1. Growing Fragments
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When several nodes are included in a fragment in the same growing round, it is

possible that a newly added node i receives a Ack(t,n) from a node j that will still receive

a Include(t) in that round. This means that i will consider arc (j, i) as incident to the

fragment, it is possible that its reduced cost reaches the leader as the smallest. When a

Broad(t,Smallest,Δ) with this value reaches i, this node will be already informed (by a

Check(t) message) that j is actually part of the fragment. Arc (j, i) will be saturated but

no Include(t) message will be sent by it. Therefore, it is possible to have degenerated
growing rounds, i.e. rounds where only arcs internal to the fragment are saturated and

no new node is included. However, it is not possible to have two degenerated growing

rounds in sequence.

Another situation happens when nodes i and j send Include(t) messages to the

same node k. Suppose that the message from i arrives first. The second Include(t) mes-

sage should be answered by a AlreadyIncluded(t) message. Node j then knows that (j, k)
should not be marked as To leaf(t).

Finally, it is also possible that a newly included node also includes other nodes in

the same growing round. Suppose that node i is included. It sends Check(t) messages and

waits for the corresponding Ack(t) messages. Then it gets the minimum reduced cost of

an incident arc not belonging t. If this value is positive, i knows that it is a fragment leaf

and sends a Conv(t,Smallest,Δ) message as usual. However, since other fragments are

also decreasing reduced costs, it is possible that this value is zero, i.e. there are saturated

arcs (i, j) such that j does not belongs to t. In this case, i sends Include(t) messages to

nodes j, that will continue the growing round.

3.2. Suspending and Stoping Fragments

Fragments with common incidents arc can not grow at the same time, since the reduced

cost of those arcs would be changed concurrently. Here we have a classical mutual ex-

clusion problem, where the shared resources are the common incident arcs. In order to

solve this conflict, only the fragment with the largest identification will go on growing,

while the other is suspended. It remains suspended until the fragment in conflict finishes

its execution or is suspended by another fragment. When a node that already belongs to

some fragments receives an include message from another fragment, there is a potential

conflict. In order to simplify the algorithm, without sacrificing its correctness and com-

plexities, this condition is enough to suspend all but one of the fragments. At a given

moment, each node is associated to at most one active fragment.

Two cases should be considered. When a node receives Include(t1) from a

fragment with identification smaller than its current active fragment t2, it answers

Conv(t1,Suspend) immediately. On the other case, when the identification of t1 is greater

than t2, the node must wait t2 finish its current growing round, before suspending t2 and

continue the growing of t1.

The leader of a suspended fragment t2 sends Broad(t2,Suspend) messages, indicat-

ing to all its nodes that it was suspended. When a conflict node receives such a message

indicating that its current active fragment t2 was suspended, it tries to reactivate other

fragments, like t1, that were suspended by it. This is done by sending to their leaders a

Conv(t1,Reactivate) message. In case other conflicts do not exist, the leader of t1 will send

Broad(t,Reactivate) messages to re-initiate its growing. The overall situation is illustrated
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in Figure 2. Fragments t1 and t2 have a common node j, t1 is suspended. Then t2 grows

and conflicts with t3 at node k, t2 is suspended and re-activates t1. When a fragment

finishes, as will be described, similar reactivation messages may be also sent.
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t 3

t 3t 2t 1
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t 1 t 2
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(reactivate)

j k

(a)
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j k

(c)

broad
(suspend)

Figure 2. Suspending and Reactivating Fragments

A fragment may stop growing definitively because it can be reached from the

root node by saturated arcs. When the root node receives a Include(t), it sends back a

Conv(t,End,root). The fragment leader then sends a Broad(t,End,root,lb) with its partial

lower bound and stops. The root node accumulates those values to obtain the global lower

bound. When a fragment is stopped it also tries to reactivate other suspended fragments

in conflict with it, as occurs when a fragment is suspended.

When the root reaches all terminals, it initiates a broadcast to terminate the algo-

rithm.

3.3. Algorithm Analysis

3.3.1. Correctness

Lemma 1 The algorithm is deadlock-free.

Proof: A fragment executes until it is suspended or stopped. Considering suspended frag-

ments, by the description in Subsection 3.2, it follows immediately that mutual exclusion

is guaranteed in the access to incident arcs of a shared node and that in such conflict the

one with the largest identification goes on executing. For this reason at least one fragment

will succeed in executing avoiding a wait cycle of suspended fragments and consequently

the deadlock.

Theorem 1 The algorithm guarantees that the root reaches all terminals in a finite time.

Proof: By the description of Subsection 3.1, for each two waves of broadcast, at

least one node is included in a fragment. The fragment executes, until it is reached by the

root or until it is suspended. In the second case, let us suppose that a fragment, ti, suspends
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its processing because it shares a node with another active fragment tj such that tj > ti.
Let us still suppose that ti remains suspended permanently. By Lemma 1, tj will succeed

in executing. By description of Subsection 3.2, it will execute until being suspended or

stopped, and in both cases, it will try to reactivate other possibly remaining suspended

components, including ti. At least one of them, the one with the largest identification,

will succeed. This procedure will be repeated successively, allowing for all suspended

components to continue its execution. Then, ti will be reactivated in a finite time and will

continue the execution until being reached by the root. So, a contradiction exists with the

possibility of a fragment is never reached by the root.

3.3.2. Communication and Time Costs

We want an upper bound on the number of messages exchanged during the execution

of the algorithm. The worst case would occur in a complete graph where the terminals

(including the root) are connected by high cost arcs, in such a way they will only be

saturated when all non-terminal nodes are already included in all fragments. When a

node is included in a fragment, it checks all its |V | neighbors, this will be done |V | − |T |
times for each of the |T | − 1 fragments. Therefore, there can be up to O(|T |.|V |2) Check
and Ack messages. We now show that no other message exceeds that bound.

Each growing round demands O(|V |) Conv, Broad and Include messages. As

there can be up to O(|V |) growing rounds by fragment, O(|T |.|V |2) is a valid upper

bound on the number of such messages.

Considering the suspending and reactivation procedures, the worst situation oc-

curs when we have |T | fragments whose leaders, are t1, t2, . . . , t|T |, such that t1 conflicts

with t2 at a node, t2 conflicts with t3 at another node and so on. Assume those leaders

are ordered in increasingly identification order. Then, t1 is suspended while t2 goes on

executing. When t3 suspends t2, t1 is reactivated. Then t4 suspends t3, t2 is reactivated

and t1 is suspended again. The total of re-activations is O(|T |2). For each reactivation, a

broadcast on the tree is executed, that will never require more than O(|V |) messages.

The time complexity considers messages that happen sequentially, occurring in

all executions of the algorithm. Intuitively, as more active fragments execute, more arcs

are saturated in parallel. Although it appears that the algorithm allows an amount of

parallelism limited to the number of terminals, there are particular situations where there

is almost no parallelism. As in the previous section, the worst case would occur in a

complete graph where the terminals (including the root) are connected by high cost arcs,

in such a way they will only be saturated when all non-terminal nodes are already included

in all fragments.

Let us suppose that we have a fragment where one arc is saturated at each broad-

cast, and that when it stops, the resulting tree has two subtrees, one that is a unique long

chain of saturated arcs and the other containing the root. For each new node included in

this fragment, the causal chain of message receiving and sending is increased permanently

by two, corresponding to the receiving and the sending of Broad and Conv messages in the

next growing rounds. At the moment a new node is included a causal chain two long, cor-

responding to the sending of Check and the receiving of Ack messages, is also formed, but
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this chain occurs only in the round the node is included. So the resulting causal chain con-

sidering broadcasts, convergecasts and the checks is O(V 2). Remark that the same may

occur for only one more fragment. After this, a connected component is formed allowing

for all other fragments, in a broadcast wave that includes any node of such component,

the incorporation of all other nodes of the component in a linear time. Summarizing, for

only two fragments the causal chain is O(V 2), the others will be reached by the root in

O(V ) time. So, the complexity is O(V 2).

4. Experimental Results
Our distributed algorithm was implemented in C and MPICH2-1.0.3 and executed on a

cluster with 15 Athlon 1.8 GHz 256 processors. Half of the tests were performed over

the SPG benchmark instances from the SteinLib [Koch et al. 2000]. Instances from B

series are random graphs with different densities and random edge costs between 1 and

10. Instances from I080 series are also random graphs with different densities, but edges

costs were chosen to make them harder to solve. Instances from P4Z series have complete

graphs. All instances available at Steinlib are undirected. Since the proposed algorithm

was designed for the more general case of digraphs, we created SPDG instances from

the above mentioned SPG instances to perform the remaining tests. Each edge in the

original graph is replaced by a pair of opposite arcs. Their costs are the original costs

multiplied by a random factor uniformly distributed in the range [0.5,1.5] and rounded.

Therefore, the cost of arc (i, j) is likely to be different from the cost of (j, i). Results

in Table 1 refer to those directed instances. We also implemented the distributed version

of the Prim-SPH found in [Novak et al. 2001a] (adapted to digraphs), including a shortest

distance algorithm. This Prim-SPH was applied as a stand-alone algorithm and also, as the

cleaning step, to the reduced graphs produced by our distributed dual-ascent algorithm.

Columns in Table 1 have the following meaning: |V |, |A|, and |T | give the instance

size; Opt is the value of the optimal solution (calculated with the branch-and-bound code

from [de ARAGÃO et al. 2001]); SPHc is the value of the solution obtained by running

Prim-SPH as a stand-alone algorithm; LB is the lower bound given by Dual Ascent; next

column gives the proportion of the arcs that are saturated; DA+SPHr is the value of

the solution obtained after the cleaning step, by running the Prim-SPH over the graph

containing only the saturated arcs. Remark that the results given for the Dual Ascent are

averages of 5 runs. The sequential Dual Ascent may yield different results depending

on the order in which the root components are chosen. In its distributed version those

choices depend on non-deterministic factors, therefore each run actually produces slightly

different results. The mean standard deviation of the 5 solution values obtained for each

instance was 0.6%.

We use competitiveness, the ratio of the heuristic cost and the optimal cost, to

compare the quality of the solutions provided by Dual Ascent and Prim-SPH. Charts

in figures 3 and 4 show the cumulative percentage of cases whose competitiveness is

less than or equal a given value, for undirected and directed instances. It is clear that

DA + SPHr gives better solutions than SPHc. We also charted the improved results of

executing both DA + SPHr and SPHc and taking the best solution. However, there is a

more interesting approach to obtain similar results. Using the lower bounds provided by

DA, we can evaluate the solution obtained with DA + SPHr and execute SPHc only if it

exceeds a given limit. We applied this idea, executing SPHc only if (DA + SPHr) / LB
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Instance SPHc Dual Ascent DA+SPHr
Name |V | |A| |T | Opt Solution LB (|Ar|/|A|)% Solution

b01d 50 126 9 77 82 77.0 13.9 77.0
b02d 50 126 13 101 107 100.4 13.4 104.0
b03d 50 126 25 170 176 165.4 10.3 173.4
b04d 50 200 9 58 61 57.4 13.5 59.6
b05d 50 200 13 61 64 60.6 13.6 65.4
b06d 50 200 25 128 134 126.8 13.2 129.6
b07d 75 188 13 122 122 121.6 13.6 125.0
b08d 75 188 19 115 126 114.8 13.7 116.0
b09d 75 188 38 240 244 239.2 13.4 242.4
b10d 75 300 13 90 91 89.0 13.5 92.6
b11d 75 300 19 103 104 100.8 13.1 105.2
b12d 75 300 38 168 171 161.0 11.5 174.0
b13d 100 250 17 176 202 163.8 13.3 179.4
b14d 100 250 25 250 261 234.0 13.4 250.4
b15d 100 250 50 342 356 341.0 13.4 345.6
b16d 100 400 17 133 133 131.6 13.4 141.6
b17d 100 400 25 139 142 137.0 13.3 145.2
b18d 100 400 50 258 271 258.0 13.8 259.8
i080-001d 80 240 6 1751 1815 1729.4 16.3 1780.8
i080-011d 80 700 6 1220 1296 1220.0 17.4 1227.6
i080-021d 80 6320 6 741 847 673.0 5.8 768.4
i080-031d 80 320 6 1514 1706 1455.0 16.5 1552.8
i080-041d 80 1264 6 946 1026 900.0 5.9 983.0
i080-101d 80 240 8 2322 2706 2322.0 10.5 2322.0
i080-111d 80 700 8 1580 1600 1499.2 13.2 1580.2
i080-121d 80 6320 8 977 1097 910.0 5.3 1050.0
i080-131d 80 320 8 1875 2061 1844.0 17.9 2016.0
i080-141d 80 1264 8 1404 1596 1265.6 10.1 1404.0
i080-201d 80 240 16 4321 4502 4228.4 22.7 4322.8
i080-211d 80 700 16 2951 3174 2808.6 12.8 3141.0
i080-221d 80 6320 16 1985 2293 1799.0 5.1 2082.0
i080-231d 80 320 16 4156 4623 4036.0 14.0 4415.2
i080-241d 80 1264 16 2492 2617 2351.2 8.7 2746.8
i080-301d 80 240 20 5714 6365 5390.8 24.8 5916.0
i080-311d 80 700 20 3471 3813 3266.6 12.9 4065.0
i080-321d 80 6320 20 2453 3137 2374.0 4.1 2755.4
i080-331d 80 320 20 4506 4911 4258.6 19.3 4877.0
i080-341d 80 1264 20 3132 3361 3025.0 15.4 3412.0
P401d 100 9900 5 145 165 145.0 0.4 145.0
P402d 100 9900 5 102 102 102.0 0.2 102.0
P403d 100 9900 5 169 186 166.0 0.5 180.0
P404d 100 9900 10 270 279 214.8 0.3 285.0
P405d 100 9900 10 248 250 243.2 0.5 248.0
P406d 100 9900 10 281 303 226.8 0.3 296.0
P407d 100 9900 20 546 590 523.0 0.4 575.0
P408d 100 9900 20 502 520 480.2 0.3 502.0

Table 1. Results for directed instances.

exceeded 1.05, this happened in 49% of the cases. Those results are also charted, in fact,

the last two curves are undistinguishable.

We also compare the practical performance of Dual Ascent and Prim-SPH perfor-

mance with respect to time, given as the size of the largest message sequence, and to the

total number of exchanged messages. Those measurements, for each directed instance,

grouped by series, are shown in figures 5 to 10. For the sake of space, we omit similar

measurements on undirected instances. It can be seen that Dual Ascent is indeed more

costly than Prim-SPH on most instances, taking more time and exchanging more mes-

sages. However, it was never much more costly than Prim-SPH, their performance differ-

ences were always within a small factor of 4. Moreover, Dual Ascent performed better on

larger I080 instances and much better on P4Z instances. This happens because the cost of

running Prim-SPH in those instances is dominated by the calculation of shortest distances

among all nodes of large graphs. Dual Ascent, being locality-sensitive, only explores part

of those graphs. Remark that Dual Ascent also runs Prim-SPH in its cleaning step, but

this run is performed over a smaller graph.

The practical performance of Dual Ascent is quite better than its worst-case com-

plexities. Anyway, the experiments confirmed the analytical prediction made in Section

3 that Ack and Check messages would dominate the Dual Ascent message complexity in

dense graphs. Those messages represented 94.7% of the traffic on P4Z instances.
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Figure 3. Solution quality – undi-
rected instances.
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Figure 6. Messages – directed B
instances.
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Figure 7. Times – directed I080 in-
stances.
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I080 instances.
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Figure 10. Messages – directed
P4Z instances.

5. Conclusion
We presented a distributed version of Wong’s DA algorithm for the Steiner problem in graphs,

which can be directly applied in multicast routing. The experimental evaluation of this algorithm,

comparing its results with Prim-SPH over a set of instances from the SteinLib, led to the following

conclusions: the distributed DA algorithm (together with the Prim-SPH over a restricted graph)

indeed provides better solutions on average and also provides tight lower bounds giving strong

guarantees of the quality of those solutions; in spite of having larger worst-case complexities,

the practical performance of distributed DA in terms of time and number of messages showed

to be quite competitive with those of Prim-SPH; as distributed DA does not require executing a

distributed shortest distance algorithm in advance, it even showed a better overall performance on

instances having denser graphs.

To summarize, we believe that distributed DA can be considered as a practical alternative

to the Steiner problem in graphs, specially in the context of multicast routing.
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