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Abstract. Consensus is a basic agreement problem whose solutions are funda-
mental for building fault-tolerant distributed systems. Consensus for real-time
systems is usually designed under strong timing assumptions, which state that
there are upper bounds on both processing and message transmission times.
Since violating these bounds may compromise safety, such systems are usually
implemented based on pessimistic bounds. In this paper the consensus prob-
lem is revisited taking into consideration that the system provides a priority-
based communication network. It is shown that for those systems the message
transmission time bound can be relaxed so that all but the highest priority mes-
sages may be arbitrarily delayed or even lost. The derived consensus protocol
can also cope with process crashes, processes may start executing the proto-
col asynchronously, and consensus is reached within a known bounded time.
These characteristics make the proposed solution very interesting to real-time
systems. The protocol is proved correct and analyzed by simulation. Since there
are a number of priority-based networks, the results presented here have both
theoretical and practical implications.

1. Introduction and Motivation

Consensus is a fundamental problem in distributed systems and, due to its importance, has
been extensively studied for decades. Informally, the problem can be stated as follows. A
set of distributed processes (interconnected by a communication network) have their own
estimated values and have to agree on a single value. Despite this simple formulation, a
solution for this problem is hardly simple and may even not exist for some systems. For
example, it has been shown that in asynchronous systems, where there are no bounds on
processing speeds and communication delays, it is impossible to solve consensus deter-
ministically if processes are subject to faults [Fischer et al. 1985].

For real-time systems, a kind of system that requires that tasks are executed within
a maximum time, solutions for the consensus problem have to be timely. This means
that once a process starts executing a consensus protocol, it has to reach agreement by
a given maximum time. For those systems, consensus protocols are usually based on
the synchronous model of computation. This means that the consensus protocol is de-
signed assuming that there are bounds on both processing speeds and communication
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delays [Lynch 1996]. In other words, in these cases transmitted messages are assumed
to be delivered and processed within a known maximum time. Although such an as-
sumption allows one to design consensus protocols that terminate in bounded time, such
solutions also imply that if some message does not arrive on time during the execution of
the protocol, say, the processes may agree on different values, violating safety. Because
of this, the assumed bounds are usually derived pessimistically, which has performance
implications. For example, consider a given communication network. In order to derive
the message transmission bounds, one may be interested in taking into account possible
message retransmissions due to communication errors. Since errors are rare events, the
derived bounds tend to be too pessimistic for most execution scenarios.

Another relevant point regarding the assumed communication bounds is that usu-
ally a general communication network is considered when designing synchronous consen-
sus protocols. Nonetheless, there are some networks that are priority-based, which means
that higher priority messages are transmitted before lower priority ones. This is the case
for Controller Area Network (CAN) [ISO-11898 1993], some real-time Ethernet buses
[Decotignie 2001]. For those networks, even taking into account possible communication
errors, higher priority messages take less than lower priority messages to be delivered.
In such cases assuming the maximum message transmission time (for the lowest prior-
ity) may degrade the system performance even more. Also, for some real-time networks,
which have low available bandwidth, such performance degradation may be not allowed.

Figure 1 represents scenarios where message retransmissions due to errors take
place. These scenarios illustrate possible message exchanging over an interval of time
during the execution of a given protocol P over a priority-based network, such as CAN.
The vertical dotted line indicates the point in time at which the process cannot wait for
income messages any more in order not to violate the timeliness requirement. In sce-
nario (a), which is a fault-free scenario, the correctness of protocol P is not compromised
because all messages are delivered on time. Thus, the processes can make progress in
their computation before the dotted line. The same is not true for scenario (b), where an
error caused the retransmission of a message, which caused the lowest priority message
to be delayed beyond the assumed transmission delay bound. This scenario evidences the
vulnerability of P regarding assumed communication synchronism (under timing faults).
Indeed, P , which was designed relying on the fact that any message is delivered within a
known interval of time, may fail due to a late message.

timetime(a) (b)

Transmission Retransmission Network arbitrationError

Higher priorities

Lower priorities

DeadlineDeadline

Figure 1. Message transmission over a priority-based network.

In this paper the consensus problem is addressed taking into consideration that the
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system provides a priority-based network. No specific network is assumed. Instead, we
require only that the communication subsystem is able to schedule messages for transmis-
sion based on their priorities. Since several communication networks have this property,
the solution proposed here can be instantiated to actual systems.

The proposed protocol solves the consensus problem within a maximum known
time. This is very important to industry and real-time applications, the ones that usually
make use of the kind of assumed communication model. They have higher reliability con-
straints and are specified in terms of time restrictions (deadlines). The protocol requires
only that some messages (not all) are on time. As a consequence, the proposed protocol is
more resilient to timing communication faults when compared to the protocols that con-
sider the purely synchronous communication model. Good characteristics of the proposed
protocol include its simplicity, its ability to cope with process crashes and its resilience to
some late or omitted messages.

The remainder of the paper is organised as follows. The computation model is
described in the next section. Section 3, after giving a more precise definition of the
consensus problem, describes the proposed solution. Then, in section 4, its proof of
correctness is presented. Performance analysis is discussed in section 5 and related work
is sumarised in section 6. Finally, conclusions and some directions for future work are
presented in section 7.

2. Computational Model

The assumed system consists of a set of distributed nodes linked to each other by means
of a priority-based communication network. The computation in nodes is carried out by
processes. As we are interested only in the set of processes that are involved in consensus
protocol, we refer to the system as the set of these processes. We also assume that these
processes are statically allocated to the nodes and exchange information between each
other only by broadcasting/receiving messages across the network. Processes only fail by
crashing. If a process crashes at time t, it stops sending messages indefinitely from t.

The assumed synchronism on communication is defined in relation to the priorities
of the transmitted messages. A more precise description of the synchronism assumption
makes use of some definitions. Firstly, let δ be the worst-case transmission time of the
highest priority message in the system. The value of δ is a function of several factors such
as electric propagation delay, buffer manipulation etc. Also, it must include the necessary
time to retransmit messages due to transmission errors. Ways for deriving the value of
δ can be found elsewhere. For example, for CAN, a priority-based network, the reader
can refer to other sources [ISO-11898 1993] [Davis et al. 2007]. For the purposes of this
paper, it is enough to see δ as an input value which expresses the communication delay in
the system regarding the highest priority message.

If only one message is being transmitted at a time (sequential transmission), it is
assumed that δ is the maximum transmission delay for any transmitted messages in the
system. Indeed, such a message would be the highest priority one in this scenario. In
other words, in this special case, the communication would be synchronous. However,
general concurrent transmission of messages may be carried out. Any two messages m
and m′ are concurrently transmitted if m �= m′ and their sender processes broadcast them
within δ apart from each other.
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From the definition above, δ actually represents a bound on the transmission of
those messages whose priorities are higher than the priority of any other message concur-
rently transmitted. There may be a chain of concurrent transmitted messages. In this case,
δ is assumed to hold only for the highest priority message from the chain. Hence, if (a) no
other message is concurrently transmitted with some message m or (b) m is the highest
priority concurrently transmitted message, then m is assumed to be delivered at all correct
processes within δ unless a transmission error takes place. If either (a) or (b) is not true,
no assumption is made regarding the transmission time of m. Thus we can assume that
there is a known maximum transmission delay, δ, for any transmitted message provided:
that it has the highest priority among all messages that are concurrently transmitted with
it; and that it does not suffer transmission errors.

Note that transmission errors, due to possible temporally electromagnetic inter-
ferences, say, may prevent some messages from being delivered at some processes. We
assume that no more than f such errors take place during the execution of the consensus
protocol. Also, when a transmission error takes place, the communication subsystem may
retransmit the message. Hence, not only may messages be omitted at some destinations
but also there may be scenarios where some messages are received at some processes
more than once. Both cases may lead to possible inconsistences. For example, a process
that does not receive a given message delivered elsewhere may choose its decision value
differently, violating system safety. As will be seen, the protocol is resilient to such in-
consistent omissions and duplications. Furthermore, we do not assume partitioning in the
network nor consider messages to be arbitrarily created by the network.

It is important to emphasize that the synchronism assumed here is much less strict
than assuming a completely synchronous communication. In fact, instead of relying on
the existence of a known bound on message transmission delays for any transmitted mes-
sage, it just states that this bound holds for some messages. Even though, the assumed
bound (for the highest priority message) may be violated (at most f times) in the presence
of communication errors.

Each node in the system is assumed to be equipped with a local clock, which can
be accessed by the processes. Also, it is assumed that the drift rates of these clocks are
bounded by a known constant, denoted ρ. This assumption is in line with the characteris-
tics of most hardware nowadays, where clock drift rates are very small. Typical values of
ρ have shown to be in the order of 10−6. Similar assumptions on local clocks are common
[Kopetz 1998] [Ostrovsky and Patt-Shamir 1999].

We also assume that a processing speed bound exists and is known. This bound
can be derived in real-time systems using scheduling analysis [Burns and Wellings 2001].
For the purposes of this paper it is sufficient to define α as the worst-case response time
spent on the internal computation of correct (i.e. non-crashed) processes that execute
the consensus protocol. The meaning of α will be clearer later on, when the protocol is
described.

3. The Consensus Protocol

Before presenting the proposed protocol, a more precise definition of the problem is given.
The consensus problem is usually specified in terms of the three properties, termination,
validity and agreement. In this paper we are interested in a specification that ensures a
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procedure consensus(v)
(1) send (v) at priority 0 to itself
(2) Let m = (esth) be the highest priority received message
(3) esti ← esth

(4) r ← max(1, �pr(m)
n

�)
(5) while r ≤ f + 1 do
(6) SetTimer(Δ)
(7) broadcast (esti) at priority n(r − 1) + i
(8) wait until [Timer()∨ (∀pj ∈ Π : received m from pj s.t. pr(m) > n(r − 1))]
(9) Let m = (esth) be the highest priority received message
(10) esti ← esth

(11) r ← max(r + 1, �pr(m)
n

�)
(12) endwhile
(13) return(esti)

Figure 2. The proposed consensus protocol.

bounded termination time, which we call the timed consensus problem:

• Bounded termination: Every correct process decides some value within a bounded
known time.

• Validity: If a process decides v, then v was proposed by some process.
• Agreement: No two processes decide different values.

Now, let Π = {p1, p2, . . . , pn} be the set of processes that want to agree on a
common value with each other complying with the above definition. In order to perform
the consensus protocol, any process pi ∈ Π calls the primitive consensus(v), where v is
its proposed value. This primitive is given in figure 2, which is described in detail later.

The proposed protocol tolerates n − 1 process crashes and up to f ≥ 0 message
omissions. Also, it is tolerant to any number of inconsistent message duplication, as long
as the assumed bound δ on communication delays holds. Consensus is achieved after
executing f + 1 communication steps (rounds), during which correct processes exchange
their estimated values. All messages are sent with distinct priorities.

3.1. Protocol Overview

The protocol is divided into three parts, defined by lines 1-4, 5-12 and 13, respectively.
Part 3 is simply the finishing of the protocol, where the consensus value is returned. The
general idea behind the other parts is to make the processes accept the values carried
by the highest priority messages they receive. To do so, processes perform actions to
send messages with their estimated values. Then the highest priority incoming message
is selected to update the estimated value of the receiving processes. Thus, a process that
broadcasts the highest priority message may ‘impose’ its estimated value on all correct
processes in cases where such a message is not inconsistently omitted. By inconsistent
omission we mean that a message may be received by only a subset of the processes.

The purpose of lines 1-4 is to select the initial estimated values of processes upon
starting. These values are set either to their proposed values or to the values carried by
the highest priority message they receive by the moment they start executing the protocol
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(processes are not required to start the protocol synchronously). In order to do so, pro-
cesses send (locally) their proposed values to themselves. These messages are represented
as if they had been transmitted at the lowest priority level (line 1). This operation is inter-
nal and so does not use communication resources. If there is no other received message,
the selected estimated values will be their proposed values (lines 2-3). Otherwise, they
accept the value carried out by the highest priority received message.

As can be seen in line 4, before moving on, processes update their round number.
If some message from some round r′ is received by the time a process pi starts executing
the protocol, pi moves to round r = r′ skipping all rounds 1, . . . , r′ − 1. Note that �pr(m)

n
�

gives the round in which m was broadcast. This avoids the need for transmitting round
numbers, which saves network bandwidth.

The idea of updating r in line 4 is to prevent pi from executing unnecessary rounds.
As messages are selected by their priorities and their priorities increase proportionally to
round numbers, messages from rounds inferior to r′ are irrelevant.

Lines 5-12 are the main part of the protocol, which consists of f + 1 rounds.
Regarding each round r, each process pi may either broadcast its message in r or skip r. It
broadcasts a message in r if no message broadcast in some round r′ > r has been received
by the time pi starts r. Otherwise, pi skips r without broadcasting any message in r.

A message broadcast by pi in some round r is transmitted with priority n(r−1)+ i
to all processes in Π (including itself). This priority function gives higher priorities to
messages broadcast in higher rounds and ensures that: different processes do not broad-
cast messages with the same priorities; and processes that are ahead in their processing
have more chances to get their messages through. Thus, this strategy allows processes
that finish earlier to ‘impose’ their decision values on the others.

After broadcasting its message in r, pi waits for incoming messages from all other
processes that are processing rounds greater than or equal to r. Some of these messages
may not arrive by the expected time. Others may be from processes that are still in earlier
rounds or from those already crashed. To avoid waiting too long, pi waits a maximum
time, Δ. The function SetTimer(Δ) (line 6) sets this timeout. When the timeout expires
the function Timer() returns true. The value set to Δ must be big enough to avoid unsafe
executions of the protocol and small enough to maximise its performance. A discussion
on criteria to choose adequate values for Δ will be presented in section 3.2.

Upon receiving all the expected messages (from the other processes) or upon the
expiration of the timeout, pi selects the highest priority received message. Let r′ and
esth be, respectively, the round the selected message was broadcast and the estimated
value it contains. Then, pi makes its estimated value equal to esth and moves forward. If
r′ = f + 1, pi returns its estimated value. Otherwise, it goes to the next round.

Line 11 has a similar meaning to line 4. If pi, which finishes round r, receives by
then a message broadcast in some round r′ > r+1, pi skips all rounds r+1, r+2, . . . , r′−1.
Otherwise, pi moves to round r + 1. Due to faults, however, there may be some round
r where the timeout expires before pi receives any message. In this case, to avoid being
blocked in the same round, pi updates its round number to r + 1.

Given that the assumption on communication delay δ holds, the timeout is set
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Figure 3. Illustration of the protocol.

appropriately and if there is no inconsistent omission concerning the process which sends
the highest priority message in a given round, say pi, all correct processes will timely
receive the message sent by pi. Then, these processes will update their estimated values
to pi’s estimate within a bounded time after starting the protocol (by assumption, within α
time units). However, the message sent by pi may suffer inconsistent omission. This may
lead to situations in which only a subset of Π receive pi’s message. As up to f messages
may be inconsistently omitted, f + 1 rounds suffices to solve consensus.

As an illustration of the protocol, consider figure 3, where a scenario with three
processes Π = {p1, p2, p3} which executes the protocol for f = 2. Suppose that their pro-
posed values are a, b and c, respectively. The selection of the highest priority message in
each round by each process is indicated by the circles. Rounds are delineated by vertical
dotted segments on the time line. As can be seen, the message sent by p3 is inconsistently
omitted at p2 in the first broadcast. Because of this, the highest priority message p2 re-
ceives in the first round is its own message while p1 receives p3’s message. Hence, in the
second round the estimated values of processes p1 and p2 are c and b, respectively. At
the end of the second round, though, they agree on a common estimated value and in the
third round they can decide on it. This is the value sent in the highest priority message
in the last two rounds. Note that inconsistent message duplication does not compromise
the protocol behaviour. Indeed, provided that the last retransmission (at network level) of
such a inconsistently duplicated message gets through within δ from the time the message
was first broadcast, all correct processes will receive it by the end of the round.

The protocol also is able to cope with non-synchronous rounds. For illustration,
modify the given example so that p1 starts the execution of the protocol after p2 and p3

finish theirs. After part 1, the highest priority message received at p1 is the last message
sent by p2, which contains the consensus value already. This message is selected by p1,
which updates its round number and its estimated value accordingly. Then, p1 moves on
to execute round f + 1, where it broadcasts b as its estimated value. At the end of this
round, p1 selects its own message and returns the decision value.

3.2. Determining the Round Duration

If the maximum round duration, determined by the value of Δ, is too short, processes
may not have enough time to receive any broadcast message during the execution of the
protocol. In this case all correct processes may individually decide on their own proposed
values, which violates agreement. On the other hand, if the value of Δ is too big, the
system may suffer performance degradation. Thus, Δ must be chosen so that correctness
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Figure 4. Illustration of agreement despite asynchronous execution.

is guaranteed without compromising performance. To do so, one has to account for the
time necessary to deliver highest priority messages (δ), local processing time (α) and local
clock drift rate (ρ).

Before deriving the value of Δ, some notation is needed. Let Vi(r) denote the view
(i.e. the estimated value) of a correct process pi at the end of round r if 1 ≤ r ≤ f + 1
and let Vi(0) be the first estimated value set by pi (in line 3) of the protocol. If r ≥ 1 is a
skipped round, Vi(r) = Vi(r − 1).

One of the properties of the protocol is that if Δ is set adequately, then the set
of correct processes can reach a common view on some estimated value. They reach a
common view in some round r if each correct process has the same estimated value by the
end of r. The round r in which pi has a common view is called the common view round
and its estimated value Vi(r), the common view value.

The following lemma states the conditions under which processes reach a common
view.
Lemma 3.1. Let Π be a group of n > 0 processes that perform the consensus protocol
described in figure 2. If r is a round of the protocol in which the highest priority message
does not suffer omission and Δ ≥ (nδ + 2α)(1 + ρ), the set of correct process reaches a
common view in r.

Proof. If there is only one correct process that finishes r, then the proof is straightfor-
ward. Assume that there are at least two correct processes and let t and t′ be the time
they broadcast their estimated values in r, respectively. Also, without loss of generality,
consider that no other process starts r before t or after t′. There are two cases to be consid-
ered: (a) t′ − t ≤ (n− 1)δ +α and (b) t′ − t > (n− 1)δ +α. These cases are represented
in figure 4 (a) and (b), respectively.

Case (a). Let pk be the process that broadcasts m, the highest priority message
broadcast in r. As the interval between the first and the last broadcast is at most (n −
1)δ + α, t′ is the latest time that pk can broadcast its message. From the assumed model,
and from the definition of r, m arrives at all correct processes within δ. As processes do
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not spend more than α time units on local computation, at most at t′ + δ + α all correct
processes that do not finish r before t′+δ+α must have received m and set their estimated
value to a common value at the end of r. Recall that processes do not receive a message
different from those that are transmitted.

From the definition of t, no process finishes r before t + nδ + 2α ≥ t′ + δ + α
if it does not receive the messages from all other processes by then. This means that all
correct processes receive m and set their estimated values at the end of round r to the
value carried by m. Note that this follows even if pk had broadcast m earlier. Therefore, a
common view is reached, as required.

Case (b). Assume by contradiction that no common view is reached in r. This
means that there are at least two processes that finish r with different estimated values.
Thus, by the definition of r, there is some process that finishes r before receiving the same
set of messages as other correct processes. More specifically, such a process misses, by
the end of r, the highest priority message, m say, received by some other process, see
figure 4 (b). Let v and v′ be the estimated values of the processes that end up round r
having and not having received m, respectively. In the figure, the estimated values are
indicated by the respective letters above the circles.

Note that by the protocol, correct processes that do not receive m by the end of r
wait at least nδ + 2α for m. Also, from the definition of t no correct process that misses
m by the end of r finishes r before t + nδ + 2α. Hence, if a process does not receive m
before finishing r, then the processes that start r at t must also have missed it. Without
loss of generality assume that pi is one process that misses m in r (as illustrated in the
figure). Thus, pi must also have finished r with a different estimated value, v′.

From the definition of m and from the assumed model, m must have been broad-
cast not before t + (n− 1)δ + α by some process pk. Thus, assume that m was broadcast
at the latest possible time, t′. Also, it is clear that the highest priority message received by
pi, m′ say, must have arrived at pk after t+(n−1)δ. Otherwise, pk would have updated its
estimated value to v′ before broadcasting m. Such a scenario is illustrated in figure 4 (b),
where both m′ and its selections are represented by a dashed arrow and a dashed circle,
respectively.

Let pl be the process that broadcasts m′ (see the figure for illustration). Similarly,
the message from pi could not have reached pl nor pk before they broadcast m′ and m,
respectively. If this was the case, both pl and pk would have set their estimated value
(before they broadcast their messages) to the value carried by the message from pi. Thus,
a higher priority message must have been transmitted concurrently with the message from
pi. Let pm be the process that broadcasts such a message. Recall that no other process
broadcasts messages in r before pi.

For the same reasons as with the message from pi, the message from pm could
not have reached either pk or pl before they broadcast their messages in r. Thus, another
process must have broadcast its message concurrently with a higher priority message from
pm. In order to keep on constructing this chain of concurrently transmitted messages in
the interval [t, t + (n − 2)δ], more than (n − 2) messages are necessary. Including m and
m′, this would mean that there have been more than n messages broadcast in r. This is
a contradiction since there are at most n correct processes and by the protocol processes
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broadcast at most one message per round. This is indicated in the figure, where it can be
seen that the message from pl must have arrived before t′ − α. Therefore, the common
view in r follows.

Note that in lemma 3.1 there is no assumption about the time processes start their
rounds. If one assumes a certain synchronism between round execution, a much lower
value of Δ is needed.

4. Proof of Correctness

In order to prove the correctness of the proposed protocol, one has to show that it satisfies
bounded termination, validity, and agreement properties. These properties are shown by
the following lemmas.
Lemma 4.1 (Bounded termination). Each correct process in Π decides some value within
a known maximum period of time.

Proof. By the protocol, it is clear that no correct process can be indefinitely blocked
because: (a) for each time a process awaits messages in some round, the waiting time is
bounded by Δ time units; (b) the update of the round number in line 11 guarantees that
no round is executed more than once; and (c) there are f + 1 (skipped and not skipped)
rounds for each process. Therefore, each correct process terminates the execution of the
protocol at most within Δ(f + 1) units of time from the time it starts.

Lemma 4.2 (Validity). If a process in Π decides v, then v was proposed by some process
in Π.

Proof. By the algorithm and because of the fact that processes may fail only by crashing,
a process pi can only update esti to either its proposed value (line 3) or to some value
carried by some message received during the execution of the protocol (lines 3 or 11).
As by assumption messages are neither arbitrarily created nor corrupted, esti is either
proposed by pi or by some other process in Π. Therefore, any decided value must have
been proposed by some process in Π.

Lemma 4.3 (Agreement). No two processes in Π decide on a different value.

Proof. By the protocol, any process that decides some value reaches round f + 1 without
crashing and returns its estimated value. Thus, there is a need to show that the estimated
values of the correct processes at the end of round f + 1 are the same. Consider a round
r in which no message is inconsistently omitted. This round exists because (a) there are
f +1 rounds; (b) in all of them at least one message is broadcast; and (c) there are at most
f messages that can be inconsistently omitted at some processes.

If r = f + 1, there is nothing to prove. Assume that 1 ≤ r < f + 1. The proof is
by induction on the round number. The base case is round r + 1. Let v be the common
view value in r (by lemma 3.1 such a property holds in r). Every process that broadcasts
a message in r + 1 has set up its estimated value in r, which by assumption is v. Thus,
v is the only value broadcast in r + 1. Since no received messages could be arbitrarily
created or corrupted, all messages broadcast in r + 1 contain v. Thus, any correct process
that receives in r + 1 messages broadcast in r + 1 will update its estimated value to v.
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Also, note that processes that do not receive any message broadcast in r + 1 will keep v
as their estimated value. This is because the highest priority message such processes have
received contains v since such a message belongs to r. This makes r + 1 a common view
round. Using similar arguments as for the base case, it can be shown that the lemma holds
for r′ = r + 1, . . . , f + 1.

As a consequence of the presented lemmas, it follows that:
Theorem 4.1. The protocol described in figure 2 solves the timed consensus problem in
the assumed model of computation for a set of n processes despite fault scenarios, which
involves inconsistent message duplication, up to f inconsistent message omission and up
to n − 1 process crashes.

5. Performance Analysis

It is not difficult to see the behaviour of the protocol in the worst case. Each process
executes f + 1 rounds, each of which lasts Δ time units. Similarly, the protocol spends
n(f + 1) messages in scenarios where no process crashes and there is no skipped rounds.
Also, as no two processes can broadcast messages with the same priorities and messages
broadcast in different rounds by the same process have different priorities, n(f + 1) pri-
ority levels are needed. For example, for a group of n = 4 processes and f = 2, three
rounds are necessary, which gives 12 priority levels.

Despite this worst-case behaviour, it is important to emphasise that a process may
skip all but the last round. Thus, although every round is executed by some process, from
the point of view of an individual process, it may spend from 1 to f + 1 rounds reducing
the number of rounds and messages on average. The greater the value of f , the bigger
this reduction is likely to be.
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Figure 5. Average behaviour of the protocol.

In order to illustrate the protocol behaviour for average cases, some simulations
were carried out. Figures 5(a) and 5(b) illustrate the obtained results. The simulation took
into account 1,000 runs of the protocol. Groups of n = 3, 4, 5 processes were set up to
perform the consensus protocol within a time window of 100 time units. Their starting
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times were randomly generated following a normal distribution with mean and standard
deviation equal to 20 and 10, respectively. One of these processes was randomly chosen
to crash during the execution of the protocol and f = 1, 2 inconsistent omission scenarios
were taken into account. Both the crash time and the communication fault time were also
randomly chosen. If the crash time happened to be after the finishing time of the process,
no process was considered to be crashed. The values of δ = 3 time units, α = 0 time
units and ρ = 0 determined the synchronism of the execution system. These values of α
and ρ do not have major implications on the behaviour of the protocol and were chosen
so for the sake of simplicity.

The first graph shows the average cost in terms of the number of rounds per pro-
cess (not skipped) and messages necessary for the execution of the protocol. As can be
seen from the figure, the number of rounds per process was kept almost constant (on aver-
age) for the different consensus group size and varies with the values of f . For example,
taking the configurations for f = 1, correct processes participated of 1.7-1.8 rounds, com-
pared to 2 rounds in the worst case. Similarly, for f = 2, 2.75-2.77 rounds per processes
were executed while 3 rounds were expected in the worst-case.

The number of exchanged messages increases proportionally with both n and f .
For n = 5 and f = 2, for instance, 11.2 messages were broadcast. Note that in the worst
case a total of (f + 1)n = 15 messages (in scenarios with no crashes) or (f + 1)n− (f +
1) = 10 messages (with crashes before the execution of the protocol) are expected.

The average termination time per process is shown in figure 5(b). This time was
measured as the difference between the finishing and the starting time of each correct
processes. For comparison purpose, the graph also plots the expected behaviour in the
worst case. Simulated and worst-case data are close because most of the time we are
forcing crashes and omissions during the execution of the protocol, making each process
wait Δ in each round. For the sake of illustration, consider a scenario for n = 4 and
f = 2 where one process finishes the protocol before any other one starts its execution.
In this case, the first process will take (f + 1)Δ = 36 time units to choose a value and
all the other processes will skip all but the last round. Hence, the skipping processes may
take Δ = 12 time units each to finish executing the protocol, leading the average finishing
time to 18, which is half of the worst-case value. During simulation we did not take such
good scenarios into consideration.

6. Related Work

Although very simply stated, the consensus problem has been shown to be impossible
to solve deterministically in asynchronous systems subject to faults [Fischer et al. 1985].
This result has motivated extensive research (too extensive to be summarised here) in the
field of partial synchronous distributed models. In general, in such models, it is considered
that time bounds hold during a period of time when the processes are allowed to choose
a common value. While waiting for such a time period, processes are not allowed to
make progress. For systems where timeliness is considered, consensus is usually solved
taking into account complete synchronism [Lynch 1996]. The solution presented here
relaxes some synchronism restrictions present on classical synchronous protocols so that
the system is made resilient to crash/omission/timing faults of some processes/messages
and processes are not required to start the protocol synchronously.
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For the best of our knowledge, message priorities have not been considered as
a model parameter to tune a consensus protocol. Some work has solved the atomic
broadcast problem considering priorities on system services [Wang et al. 2002]. Other
researchers have considered the priority of messages as a criterion to atomically order
them [Nakamura and Takizawa 1992]. Since atomic broadcast is one of the problems that
can be reduced to consensus and vice versa [Hadziacos and Toueg 1993], these results are
related to the one presented here.

In the context of the atomic broadcast problem, solutions have been given to CAN.
Some approaches are based on hardware modifications [Proenza and Miro-Julia 2000]
[Kaiser and Livani 1999] while others [Rufino et al. 1998] [Pinho and Vasques 2001] use
the standard hardware. Also, a consensus solution for CAN has been presented recently
by ourselves [Lima and Burns 2003]. However, none of these protocols take message pri-
orities into consideration. The protocol described here had the first ideas discussed as
a work-in-progress paper [Lima and Burns 2001]. In this preliminary version, however,
processes have to start the protocol synchronously.

7. Conclusion
A simple but effective solution for the timed consensus problem has been presented. The
protocol, which requires a communication network able to transmit messages according
to their priorities, is attractive for supporting fault-tolerant real-time systems. Indeed, by
making use of the message transmission priority ordering, the proposed solution works
adequately even when the communication network only offers a very weak level of timing
synchrony.

The main advantages of the proposed solution for the timed consensus problem
against the standard synchronous protocols that are available are: its level of fault re-
silience; and the fact that protocol safety is guaranteed regardless of when processes start
proposing their values (i.e. synchronised execution of the protocol is not needed).

Extensions of the protocol are possible and may be part of future work. For exam-
ple, the proposed solution is based on the assumption that during execution of the protocol
there is at least one message that is timely delivered at all destinations. This can represent
extreme situations, although in normal execution more messages may be timely deliv-
ered. Instead of simply getting the estimated values of highest priority messages it would
be interesting to have a more adaptable protocol where in normal execution a larger set
of messages are considered. Another point to be considered is to make the protocol work
when multiple consensus groups are concurrently executed. Also, it would be interesting
to find out the minimum number of priority levels needed to achieve consensus. We be-
lieve that the results presented here and the new issues it opens up have both practical and
theoretical implications in the field.
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