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Abstract. We present Curupira, a special-purpose block cipher tailored for
platforms where power consumption and processing time are very constrained
resources, like sensor and mobile networks or systems heavily dependent on
tokens or smart cards. Curupira is an instance of the Wide Trail family of algo-
rithms which includes the AES cipher, and displays both involutional structure,
in the sense that the encryption and decryption modes differ only in the key
schedule, and cyclic key schedule, whereby the round subkeys can be computed
in-place in any order.

1. Introduction

Battery-powered sensor networks impose several constraints on the cryptographic algo-

rithms that can be effectively deployed for such systems. Processing speed is typically

low compared to general processors to save batteries; complex all-purpose algorithms

will not only take longer to run but also consume more energy. On the other hand, mes-

sages exchanged between sensors and central servers or among the sensors themselves

are usually small, a typical packet being 30 bytes in length. Ad-hoc networks involving

mobile equipment (and often tokens and smart cards as well) also impose restrictions on

code size and bandwidth occupation.

The TinySec [Karlof et al. 2004] link layer architecture was designed to provide

security for sensor networks and is gaining wide acceptance in this role. TinySec relies

on a block cipher to achieve its goals regarding access control, message integrity, and

confidentiality adopting the Skipjack [NSA 1998] cipher by default. Several alternatives

have been analyzed by [Law et al. 2006], confirming that Skipjack is the most energy-

efficient of all surveyed ciphers and recommending that MISTY1 [Matsui 1997] or the

Advanced Encryption Standard (AES) [NIST 2001] might used in scenarios with higher

security requirements. However, Skipjack uses relatively small (80-bit) keys and has a

very low margin of security [Biham et al. 1999]; MISTY1 is encumbered by patents, and

the AES has larger code, memory, and energy consumption requirements.

In this paper we address these issues by presenting the special-purpose block ci-

pher Curupira. It operates on a 96-bit data block and accepts keys of size 96, 144, or

192 bits, with a variable number of rounds. The cipher design follows the Wide Trail

strategy [Daemen 1995]. The most well-known member of the Wide Trail family of ci-

phers is the AES itself. Curupira offers a variety of implementation trade-offs according

to the resources available on the target platform. In face of the constrained environment

to which it is targeted, Curupira was designed to exhibit involutional structure and cyclic
key schedule.
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Involutional structure is found in many cipher designs. All classical Feistel net-

works [Feistel 1973] have this property, as do some more general block ciphers like

Skipjack and MISTY1 (but not the AES). Involutional ciphers similar to Curupira

were described and analyzed in [Barreto and Rijmen 2000a, Barreto and Rijmen 2000b,

Daemen et al. 2000, Youssef et al. 1996, Youssef et al. 1997]. The importance of involu-

tional structure resides in the equivalent security of both encryption and decryption and in

the advantages for implementation (the latter being critical in the case of TinySec, due to

its adoption of CBC mode). The usual way to make a cipher of the Wide Trail family invo-

lutional is by including matrix transposition (restricting the block size to perfect squares)

or multiplication by a large unitary matrix (incurring large overheads) as components in

the round function; the solution adopted in Curupira is novel (see section 3.2.), and avoids

those drawbacks. Curupira is closely related to BKSQ [Daemen and Rijmen 1998] (an-

other member of the Wide Trail family), designed with smart cards in mind but lacking

involutional structure.

The key schedule adopted by a block cipher is called cyclic or periodic if (1) it

iterates some function on the cipher key to derive the round subkeys, and (2) that function

becomes the identity after a certain number of iterations. It is important to notice that,

with this setting, the subkeys need not be computed incrementally: they can be computed

backwards as often needed by the decryption process, or in a random order, or even all in

parallel, a useful feature if the cipher is implemented in dedicated hardware, for instance

to be deployed on servers. They can also be computed in-place, contrary to schemes

where all subkeys must be precomputed and stored in a large table.

As is de rigueur for any encryption algorithm proposal, we focus our attention on

a detailed security analysis, without losing sight of actual implementation issues.

This document is organized as follows. We introduce basic mathematical tools

in section 2. The Curupira cipher is described in section 3. Security issues of the result-

ing design are discussed in section 4. Implementation techniques together with efficiency

considerations and comparisons are presented in section 5. We conclude in section 6.

2. Mathematical preliminaries and notation

2.1. Finite fields

The finite field GF(28) will be represented as GF(2)[x]/p(x), where p(x) = x8+x6+x3+x2+

1 is the only primitive pentanomial of degree 8 over GF(2) for which a primitive cube root

of unity is represented as a quartic trinomial (namely, c(x) = x85 mod p(x) = x4+ x3+ x2),

which is the simplest form achievable. Since multiplications by the generator g(x) = x of

GF∗(28) and by c(x) both occur in the algorithm, it is important that c(x) be as simple as

possible for efficiency reasons.

An element u = u7x7+u6x6+u5x5+u4x4+u3x3+u2x2+u1x+u0 of GF(28) where

ui ∈ GF(2) for all i = 0, . . . , 7 will be denoted by the numerical value u7 · 27 + u6 · 26 + u5 ·
25 + u4 · 24 + u3 · 23 + u2 · 22 + u1 · 2 + u0, written in hexadecimal notation. For instance,

the polynomial c(x) = x4 + x3 + x2 is written 1C; by extension, the reduction polynomial

p(x) is written 14D.
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2.2. MDS codes
We provide a few relevant definitions regarding the theory of linear codes. For a more

extensive exposition on the subject we refer to [MacWilliams and Sloane 1977].

The Hamming distance between two vectors u and v from the n-dimensional vec-

tor space GF(2p)n is the number of coordinates where u and v differ. The Hamming weight

wh(a) of an element a ∈ GF(2p)n is the Hamming distance between a and the null vector

of GF(2p)n, i.e. the number of nonzero components of a.

A linear [n, k, d] code over GF(2p) is a k-dimensional subspace of the vector space

GF(2p)n, where the Hamming distance between any two distinct subspace vectors is at

least d (and d is the largest number with this property).

A generator matrix G for a linear [n, k, d] code C is a k × n matrix whose rows

form a basis for C. A generator matrix is in echelon or standard form if it has the form

G = [Ik×k Ak×(n−k)], where Ik×k is the identity matrix of order k. We write simply G = [I A]

omitting the indices wherever the matrix dimensions are irrelevant for the discussion, or

clear from the context.

Linear [n, k, d] codes obey the Singleton bound: d � n − k + 1. A code that

meets the bound, i.e. d = n − k + 1, is called a maximal distance separable (MDS)

code. A linear [n, k, d] code C with generator matrix G = [Ik×k Ak×(n−k)] is MDS if,

and only if, every square submatrix formed from rows and columns of A is nonsingu-

lar (cf. [MacWilliams and Sloane 1977, chapter 11, § 4, theorem 8]).

2.3. Matrices over GF(2m)
The set of all 3 × n matrices over GF(2m) is denoted byMn, with O and I standing for the

zero and identity matrices, respectively.

Consider the following matrices:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1

0 0 0

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0

1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1

1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

A straightforward inspection reveals that A and B are nilpotent and C is idempotent

over GF(2m) (A2 = B2 = O, C2 = C), and also that AB = BA = O.

As a consequence, all matrices of form D = I + aA + bB are involutions, i.e.

D2 = I, ∀a, b ∈ GF(2m). One can show by direct enumeration that the determinants

of all square submatrices formed from rows and columns of D take one of the forms

{a, a+ 1, b, b+ 1, a+ b, a+ b+ 1}, so that D is MDS iff a � 0, 1, b � 0, 1, and b � a, a+ 1.

The simplest such matrix to display the MDS property is thus D = I + 2A + 4B.

Furthermore, a simple calculation shows that a matrix of form E = I + cC is

invertible iff c � 1, in which case E−1 = I +
(

c
c+1

)
C. The determinants of all square

submatrices formed from rows and columns of E take one of the forms {1, c, c + 1}, so

that E is MDS iff c � 0, 1. If c is a primitive cube root of unity, i.e. if c2 + c + 1 = 0 then,

on the one hand c3 = 1 ⇒ c2 = 1/c, and on the other hand c2 = c + 1 ⇒ 1/(c + 1) =

1/c2 = c⇒ c/(c+ 1) = c2 = c+ 1. Thus E−1 assumes a particularly simple form, namely,

E−1 = I + (c + 1)C.
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Matrices D and E play important roles in Curupira (see sections 3.3. and 3.7.).

2.4. Cryptographic properties
A product of m distinct Boolean variables is called an m-th order product of the variables.

Every Boolean function f : GF(2)n → GF(2) can be written as a sum over GF(2) of

distinct m-order products of its arguments, 0 � m � n; this is called the algebraic normal

form of f . The nonlinear order of f , denoted ν( f ), is the maximum order of the terms

appearing in its algebraic normal form.

A linear Boolean function is a Boolean function of nonlinear order 1, i.e. its

algebraic normal form only involves isolated arguments. Given α ∈ GF(2)n, we denote by

�α : GF(2)n → GF(2) the linear Boolean function consisting of the sum of the argument

bits selected by the bits of α:

�α(x) =

n−1⊕
i=0

αi · xi.

A mapping S : GF(2n)→ GF(2n), x �→ S [x], is called a substitution box, or S-box

for short. An S-box can also be viewed as a mapping S : GF(2)n → GF(2)n and therefore

described in terms of its component Boolean functions si : GF(2)n → GF(2), 0 � i � n−1,

i.e. S [x] = (s0(x), . . . , sn−1(x)).

The nonlinear order of an S-box S , denoted νS , is the minimum nonlinear order

over all linear combinations of the components of S :

νS = min
α∈GF(2)n

{ν(�α ◦ S )}.

The difference table of an S-box S is defined as

eS (a, b) = #{c ∈ GF(2n) | S [c ⊕ a] ⊕ S [c] = b}.

The δ-parameter of an S-box S is defined as

δS = 2−n ·max
a�0, b

eS (a, b).

The product δS · 2n is called the differential uniformity of S .

The correlation c( f , g) between two Boolean functions f and g can be calculated

as follows:

c( f , g) = 21−n · #{x | f (x) = g(x)} − 1.

The λ-parameter of an S-box S is defined as the maximal value for the correlation

between linear functions of input bits and linear functions of output bits of S :

λS = max
(i, j)�(0,0)

c(�i, � j ◦ S ).

The branch number B of a linear mapping θ : GF(2n)→ GF(2n) is defined as

B(θ) = min
a�0
{wh(a) + wh(θ(a))}.
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Table 1. The P and Q mini-boxes
u 0 1 2 3 4 5 6 7 8 9 A B C D E F

P[u] 3 F E 0 5 4 B C D A 9 6 7 8 2 1

Q[u] 9 E 5 6 A 2 3 C F 0 4 D 7 B 1 8

2.5. Miscellaneous notation

Given a sequence of functions fm, fm+1, . . . , fn−1, fn, m � n, we adopt the notation

n©
r=m

fr ≡ fn ◦ fn−1 ◦ · · · ◦ fm+1 ◦ fm

and
r=n©
m

fr ≡ fm ◦ fm+1 ◦ · · · ◦ fn−1 ◦ fn.

If m > n, both expressions stand for the identity mapping.

3. Description of the CURUPIRA primitive
The Curupira cipher is an iterated block cipher that operates on a 96-bit cipher state
organized as a matrix in M4. It uses a 48t-bit (2 � t � 4) cipher key organized as a

matrix in M2t. In the following we will individually define the component mappings

and constants that build up Curupira, then specify the complete cipher in terms of these

components.

3.1. The nonlinear layer γ

Function γ : Mn → Mn consists of the parallel application of a nonlinear S-box S :

GF(28)→ GF(28) to all bytes of the argument individually:

γ(a) = b ⇔ bi, j = S [ai, j], 0 � i < 3, 0 � j < n.

The Curupira S-box is the same one defined for the Anubis and Khazad ciphers

[Barreto and Rijmen 2000a, Barreto and Rijmen 2000b], designed to display δS = 2−5,

λS = 2−2, and νS = 7 and hence to thwart differential, linear, and interpolation attacks. It

was also constructed so that S [S [x]] = x, ∀x ∈ GF(28). Therefore, γ is an involution.

The actual S-box can be computed on demand with algorithm 1 from two mini-

boxes (see table 1) that fit in just 16 bytes. Alternatively and more commonly, if space

is available it can be precomputed (either at compilation time or at system startup) and

stored in 256 bytes.

Algorithm 1 Computing S [u] from the mini-boxes P and Q
Input: u(x) ∈ GF(28), represented as a byte u.

Output: S [u].

1: uh ← P[(u � 4) & F], ul ← Q[u & F]

2: u′h ← Q[(uh & C) ⊕ ((ul � 2) & 3)], u′l ← P[((uh � 2) & C) ⊕ (ul & 3)]

3: uh ← P[(u′h & C) ⊕ ((u′l � 2) & 3)], ul ← Q[((u′h � 2) & C) ⊕ (u′l & 3)]

4: return (uh � 4) ⊕ ul
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3.2. The permutation layer π
Permutation π : Mn → Mn swaps each columns of its argument according to the rule:

π(a) = b ⇔ bi, j = ai,i⊕ j, 0 � i < 3, 0 � j < n.

Its easy to see that π is an involution.

3.3. The linear diffusion layer θ
The diffusion layer θ : Mn → Mn is a linear mapping based on the [6, 3, 4] MDS code

with generator matrix GD = [I D] where D = I + 2A + 4B, i.e.

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
3 2 2

4 5 4

6 6 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
so that

θ(a) = b ⇔ b = D · a.
Since D is self-inverse, θ is an involution.

Circulant matrices [Daemen et al. 1997, NIST 2001] are not suitable for the

diffusion layer because no circulant matrix can be involutional. Cauchy matrices

[Youssef et al. 1996, Youssef et al. 1997] might have been an option, but the resulting

coefficients are in general very complex, impairing efficient implementation. The actual

choice above involves the simplest possible coefficients, in the sense of minimum poly-

nomial degree and minimum Hamming weight.

3.4. The key addition σ[k]
The affine key addition σ[k] : Mn → Mn consists of the bitwise addition of a key matrix

k ∈ Mn, i.e.

σ[k](a) = b⇔ bi, j = ai, j ⊕ ki, j, 0 � i < 3, 0 � j < n.

This mapping is also used to introduce schedule constants in the key schedule. The key

addition so defined is obviously an involution.

3.5. Key representation
A 48t-bit user keyK , 2 � t � 4, externally stored as a byte array of length 6t, is internally

represented as a matrix K ∈ M2t such that

Ki, j = K[i + 3 j], 0 � i < 3, 0 � j < 2t.

In other words, the user key is mapped to the cipher key by columns (not by rows).

3.6. Schedule constants
The schedule constants q(s) are constant matrices defined as q(0) = 0 and, for s > 0 and

0 � j < 2t,

q(s)
i, j =

{
S [2t(s − 1) + j], if i = 0,
0, otherwise.

Good schedule constants should not be equal for all bytes in a state, and also not

equal for all bit positions in a byte. They should also be different in each round. The

actual choice meets these constraints. Taking values from the S-box itself avoids the need

for any extra storage. In fact, exactly t S-box entries are used per round.
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3.7. The key evolution ψs

The cipher key is updated during the cipher operation by a reversible transform defined

by two linear operations as follows.

Let ξ : M2t → M2t be the linear transform such that

ξ(a) = b⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b0, j = a0, j,
b1, j = a1,( j+1) mod 2t,
b2, j = a2,( j−1) mod 2t,

i.e. keeps the first row of its argument unchanged, rotates the second row one position to

the left, and rotates the third row one position to the right.

Let μ : Mn → Mn be the linear transform such that

μ(a) = E · a,
where E = I+cC, c being the primitive cube root of the unity c(x) = x4+ x3+ x2 ∈ GF(28).

Its inverse is μ−1(a) = E−1 · a where E−1 = I + (c + 1)C.

Define ω ≡ μ ◦ ξ, and let ωm denote the composition of ω with itself m times. Let

a ∈ M2t. By direct inspection one can verify that the period of ω over M2t is m = 6t for

2 � t � 4. In other words, m = 6t is the smallest positive integer such that ωm(a) = a,

∀a ∈ M2t. The idea is to compute ωm on a basis of M2t, e.g. {e(kl) | e(kl)
i j = δkiδl j}, and

verifying that ωm(e(kl)) � e(kl) for 1 � m < 6t but ωm(e(kl)) = e(kl) for m = 6t.

Define the accumulated schedule constant Q(s) =
∑s

i=0 ω
s−i+1(q(i)). Let K ∈ Mn be

the cipher key, and let the initial key stage to be K(0) ≡ K. The key evolution function ψr :

Mn → Mn computes key stage K(r) from key stage K(r−1). It is defined as ψr ≡ ω ◦σ[q(r)],

i.e.

K(r) = ψr(K(r−1)) =

(
r©

i=1
ω ◦ σ[q(i)]

)
(K) = ωr(K) + Q(r).

The key schedule derives subkeys from key stages K(0) through K(m−1). It is clear

that an extra application of ω and subsequent addition of Q(m−1) recovers the original

cipher key, i.e. K = ω(K(m−1)) + Q(m−1). Only Q(m−1) needs to be stored for sequential

processing; in all scheduling steps but this finalization the simpler constants q(r) can be

used. This cyclic schedule behavior resets the cipher; therefore, the key evolution process

can be conducted in-place; no extra storage is needed for the key stages, which can always

be computed on-the-fly at low computational cost.

3.8. The key selection φr

The effective round subkeys κ(r) needed by the cipher are computed (either directly from

the cipher key K or indirectly from key stage K(r)) via the key selection function, φr :

Mn → Mn, defined so that:

κ(r) = φr(K)⇔ κ(r)

0, j = S [K(r)

0, j] and κ(r)
i, j = K(r)

i, j for i > 0, 0 � j < 4.

The key selection function introduces nonlinearity in the key schedule, ensuring 8 appli-

cations of the S-box between any two rounds subkeys and 4(R + 1) applications of the

S-box for the whole key schedule, where R is the number of rounds.
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3.9. The complete cipher

Curupira is defined for the cipher key K ∈ Mn and R rounds as the mapping Curupira[K] :

M4 → M4 given by

Curupira[K] ≡ σ[κ(R)] ◦ π ◦ γ ◦
(

R−1©
r=1

σ[κ(r)] ◦ θ ◦ π ◦ γ
)
◦ σ[κ(0)].

The initial key addition σ[κ(0)] is called whitening. The composite mapping ρ[κ(r)] ≡
σ[κ(r)] ◦ θ ◦ π ◦ γ is called the round function for the r-th round; by convenience, the

related mapping ρ′[κ(R)] ≡ σ[κ(R)] ◦ π ◦ γ is called the last round function, although it is

not the same as the round function.

An R-round iterated cipher needs R + 1 subkeys. The key evolution has period

m = 6t, the number of rounds is at most 6t − 1. The actual number of rounds is variable:

for 48t-bit keys, it is any value in range 4t − 2 � R � 6t − 1 (see table 2). The cyclic

property of the key schedule is only fully available (in the sense of automatically resetting

the cipher after each encryption) with the maximum number of rounds for each key size,

but the round subkeys can always be computed independently in any desired order.

Table 2. Allowed number of rounds for each key size
key size (bits) min # rounds max # rounds

96 10 11

144 14 17

192 18 23

3.10. The inverse cipher

We now show that Curupira is an involutional cipher, in the sense that the only difference

between the cipher and its inverse is in the key schedule.

Theorem 1. Let α[κ(0), . . . , κ(R)] stand for Curupira encryption under the sequence of
round keys κ(0), . . . , κ(R), and let the decryption keys be defined as κ̄(0) ≡ κ(R), κ̄(R) ≡ κ(0),
and κ̄(r) ≡ θ(κ(R−r)) for 0 < r < R. Then α−1[κ(0), . . . , κ(R)] = α[κ̄(0), . . . , κ̄(R)].

Proof. We start from the definition of α[κ(0), . . . , κ(R)]:

α[κ(0), . . . , κ(R)] = σ[κ(R)] ◦ π ◦ γ ◦
(

R−1©
r=1

σ[κ(r)] ◦ θ ◦ π ◦ γ
)
◦ σ[κ(0)].

Since the component functions are involutions, the inverse transform is obtained by

applying them in reverse order. However, we notice that γ ◦ π = π ◦ γ, since π
moves but does not mix elements of its argument while γ only affects individual ele-

ments, independently of their coordinates. Besides, θ ◦ σ[κ(r)] = σ[θ(κ(r))] ◦ θ, since

(θ ◦σ[κ(r)])(a) = θ(κ(r) + a) = θ(κ(r))+ θ(a) = (σ[θ(κ(r))] ◦ θ)(a), for any input a. Therefore

we can write:

α−1[κ(0), . . . , κ(R)] = σ[κ(0)] ◦
(

r=R−1©
1

π ◦ γ ◦ σ[θ(κ(r))] ◦ θ
)
◦ π ◦ γ ◦ σ[κ(R)].
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Substituting κ̄(r) in the above equation and slightly changing the grouping of operations

we arrive at the desired result:

α−1[κ(0), . . . , κ(R)] = σ[κ̄(R)] ◦ π ◦ γ ◦
(

R−1©
r=1

σ[κ̄(r)] ◦ θ ◦ π ◦ γ
)
◦ σ[κ̄(0)] = α[κ̄(0), . . . , κ̄(R)].

�

4. Analysis

For all allowed key lengths, the security goals are that Curupira is K-secure and hermetic
in the sense of [Daemen 1995]. We now present the results of our security analysis.

4.1. Differential and linear cryptanalysis

One can show [Daemen and Rijmen 1998, section 3.1] that every four-round differential

characteristic or linear approximation has at least 16 active S-boxes. As a consequence,

no four-round differential characteristic has probability larger than δ16
S = (2−5)16 = 2−80,

and no four-round linear approximation has input-output correlation larger than λ16
S =

(13 × 2−6)16 ≈ 2−36.8. This makes classical differential or linear attacks, which need

characteristics with probability larger than 2−95 or input-output correlations larger than

2−48 over all rounds, as well as some advanced variants like differential-linear attacks,

very unlikely to succeed for the full cipher.

Attacks based on linear cryptanalysis can sometimes be improved by using non-

linear approximations [Knudsen and Robshaw 1996]. However, with the current state of

the art the application of nonlinear approximations seems limited to the first and/or the

last round of a linear approximation. This seems to be even more so for ciphers using

strongly nonlinear S-boxes, like Curupira.

4.2. Truncated differentials

A truncated differential attack similar to that described in [Daemen and Rijmen 1998, sec-

tion 3.2 and appendix A] against 7 rounds of BKSQ applies to Curupira reduced to the

same number of rounds. Since the probability of the truncated differential for right pairs

of plaintexts over six rounds is very low (2−48, the same as that of a random pairs of plain-

texts), no truncated differential faster than exhaustive key search has been found for 8 or

more rounds.

4.3. Interpolation attacks

Interpolation attacks [Jakobsen and Knudsen 1997] generally depend on the cipher com-

ponents (particularly the S-box) having simple algebraic structures that can be combined

to give expressions with manageable complexity. The complex algebraic expression of

the pseudo-randomly generated S-box in GF(28), in combination with the effect of the

diffusion layer, makes these types of attack infeasible for more than a few rounds.

4.4. Weak keys and related-key cryptanalysis

Weak keys are keys that result in a block cipher mapping with detectable weaknesses.

Typically, this occurs for ciphers in which the nonlinear operations depend on the actual
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key value. This is not the case for Curupira, where keys are applied using XOR and all

nonlinearity is in the fixed S-box.

Related-key attacks generally rely upon slow diffusion and/or symmetry in the

key schedule. The Curupira key schedule was itself designed according to the Wide

Trail strategy and features fast, nonlinear diffusion of cipher key differences to the round

keys. This makes related-key attacks, including advanced variants like that described

in [Ferguson et al. 2001, section 4], exceedingly unlikely.

For key lengths that are larger than the length of one round key, it is inevitable that

there exist sets of keys that produce identical values for at least one round key. We leave it

as an open problem to determine whether classes of keys can be determined that produce

identical round key values for two or more consecutive rounds. Even so, it is unclear how

such keys could possibly be used successfully in a related-key attack.

4.5. Saturation attacks

Saturation or integral attacks are among the most effective attacks against ciphers of the

Wide Trail strategy with a reduced number of rounds. Adapting the basic saturation at-

tacks against reduced-round Rijndael [Daemen and Rijmen 2002, section 10.2] to work

against Curupira is straightforward.

The partial sum improvement [Ferguson et al. 2000] is a dynamic programming

technique that trades computational effort for storage by reorganizing the intermediate

computations. While it still requires the same amount of chosen plaintexts as a basic 6-

round attack, the computational effort drops by a factor around 214 at the cost of about

216 bits of extra storage. There is a very complex extension of the partial sum technique

called the herds attack. It is not really clear whether it works against Curupira; if so, it

would break 7 rounds at the cost of 99.6% of all possible plaintexts, an offline effort of

288 encryptions, and a huge amount of storage.

Table 3 summarizes the complexities of saturation attacks against Curupira.

Table 3. Complexity of saturation attacks against Curupira
rounds (n) plaintexts n-round encryptions

4 29 29

5 211 235

6 227 237

7 296 − 287 288

4.6. The Gilbert-Minier attack

The Gilbert-Minier attack [Gilbert and Minier 2000] breaks 7 rounds of Curupira with

224 guesses for one column of the first round key × 212 c-sets × 48 S-box lookups per entry

× 264 entries/table × 2 tables, or about 2110 S-box lookups (2104 7-round encryptions), plus

232 chosen plaintexts. It is unclear whether the speedup against 7-round Rijndael with

128-bit keys can be modified to work against 7-round Curupira with 96-bit keys; if so,

this attack would become marginally faster than exhaustive search.
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4.7. A general extension attack
Any n-round attack can be extended against n+ 1 or more rounds for long keys by simply

guessing the whole κ(n+1) round key and proceeding with the n-round attack [Lucks 2000].

Each extra round increases the complexity by a factor 296 S-box lookups. Since the com-

plexity of a 6-round saturation attack with the partial sum improvement is 5 × 240 S-box

lookups, a 7-round extension costs 5 × 2136 S-box lookups, or about 2132 7-round encryp-

tions, faster than exhaustive search for 144-bit and 192-bit keys.

4.8. Algebraic and other attacks
There is no consensus regarding the effectiveness of algebraic attacks like the XSL

method [Courtois and Pieprzyk 2002]. Because of the heuristic nature of such attacks,

theoretical complexity analyses remain controversial, while experimental evidence tends

to deny their viability. At the time of this writing no such attack has ever been

demonstrated, not even against simplified versions of AES, whose S-box has a far

simpler algebraic structure than the S-box used in Curupira. It is pointed out, how-

ever, that this very S-box in a different context has already been subjected to third-

party scrutiny, with the explicit goal of assessing its resistance against algebraic at-

tacks [Biryukov and DeCannière 2003], and no evidence of weaknesses was found.

Boomerang attacks [Wagner 1999] benefit from ciphers whose strength is different

for encryption and decryption; this is hardly the case for Curupira, due to its involutional

structure. Slide attacks [Biryukov and Wagner 1999] are thwarted by the asymmetry in-

troduced in the key schedule by the schedule constants.

Summarizing, no attack faster than exhaustive key search could be found against

Curupira.

5. Implementation issues
On an 8-bit processor with a limited amount of RAM, the nonlinear substitution layer is

performed bytewise, combined with the σ[k] transformation. For θ and ψs, it is necessary

to implement matrix multiplication.

Multiplication by the polynomial g(x) = x in GF(28) is of central importance. It

can be implemented with one shift and one conditional XOR, or more efficiently using a

256-byte table X such that X[u] ≡ x · u, if space is available [Daemen and Rijmen 2002,

section 4.1.1]. Whatever the choice, we denote by xtimes(u) the result of x · u(x).

Equally important is multiplication by the polynomial c(x) = x4 + x3 + x2 in GF(28).

We denote by ctimes(u) the result of c(x) · u(x). It can be implemented as ctimes(u) ≡
xtimes(xtimes(xtimes(xtimes(u) ⊕ u) ⊕ u)), using 2 XORs and 4 xtimes operations.

Algorithm 2 calculates D · a for a vector a ∈ M1 at the cost of 6 XORs and 2

xtimes operations.

Algorithm 3 calculates E · a for a vector a ∈ M1 (or a column of a matrix in Mn)

at the cost of 5 XORs and 1 ctimes operation, or 7 XORs and 4 xtimes operations. It

also calculates E−1 · a at the cost of one extra XOR.

5.1. Efficiency considerations
We now compare the relative efficiency of Curupira and Skipjack. This is quite rep-

resentative in context of ciphers designed for sensor networks in face of the results
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Algorithm 2 Computing D · a
Input: a ∈ M1.

Output: D · a.

1: v← xtimes(a0 ⊕ a1 ⊕ a2), w← xtimes(v)

2: b0 ← a0 ⊕ v, b1 ← a1 ⊕ w, b2 ← a2 ⊕ v ⊕ w
3: return b

Algorithm 3 Computing E · a or E−1 · a
Input: a ∈ M1.

Input: e, a Boolean flag signaling whether E · a (true) or E−1 · a (false) is to be computed.

1: v← a0 ⊕ a1 ⊕ a2

2: if e then
3: v← ctimes(v)

4: else
5: v← ctimes(v) ⊕ v
6: end if
7: b0 ← a0 ⊕ v, b1 ← a1 ⊕ v, b2 ← a2 ⊕ v
8: return b

of [Law et al. 2006]. Thus, a similar advantage exists with respect to MISTY1 and even

more so regarding the AES or the other ciphers considered in that survey.

The encryption cost of R-round Curupira is 3R − 1 XORs, 3(R − 1)/2 xtimes
operations and R S-box lookups per byte, not counting the cost of the key schedule. For

instance, 10-round Curupira with a 96-bit key takes 29 XORs, 6 xtimes operations and

10 S-box lookups per encrypted byte. By comparison, Skipjack takes 48 XORs and 16 F-

table lookups per encrypted byte, not counting counter increments and key index updates

for the key schedule. Assuming that the cost of any of the basic operations for each cipher

is roughly the same, we estimate Curupira to cost 45/64 ≈ 70% as much as Skipjack

on average. We are currently working on Curupira implementation and a comparison

between the ciphers, specially for constrained platforms, will be released soon.

The Curupira key schedule is admittedly more complex than its counterparts.

Still, it amounts to less than 1/2 S-box lookup, 1/6 of a ctimes operation and 2 XORs

per key byte and per round, and it thwarts several kinds of related-key attacks.

We point out that adoption of Curupira also allows for a noticeable reduction in

energy consumption and processing time if a standard MAC like CBCMAC, which de-

mands a full encryption per authenticated data block, is replaced by a MAC of the ALRED

family like Pelican [Daemen and Rijmen 2005], which requires only 4/R encryptions per

block plus two full encryptions for the whole message.

6. Conclusion
We have described Curupira, a new, special-purpose block cipher targeted at applications

with heavily constrained resources, particularly sensor networks and ad-hoc networks

involving mobile equipment. Curupira was designed according to the Wide Trail strategy

and displays both involutional structure and cyclic key schedule, two important features

to overcome the limitations of the target platforms. The resulting cipher is compact and

efficient, yet the security analysis indicates that it is about as strong a cipher as can be

designed under the assumed operational constraints.
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