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Abstract. The performance evaluation of routing protocols for ad hoc networks
is a difficult task. However, a graph theoretic model – the evolving graphs –
was recently proposed to help capture the behavior of dynamic networks with
fixed-schedule behavior. Our recent experiments showed that evolving graphs
have all the potentials to be an effective and powerful tool in the development
of routing protocols for dynamic networks. In this paper, we design a new con-
gestion avoidance mechanism and a modified end-to-end delay metric in order
to improve the evolving graph based routing protocol proposed previously. We
use the NS2 network simulator to compare this new version to the three proto-
cols provided by NS2, namely AODV, DSR and DSDV, and to OLSR, which is
included in the experiments for the first time.

1. Introduction and Motivation
Wireless communication networks have become increasingly popular in the computing

industry and are widely available in our every day life. A promising type of these net-

works is the Mobile Ad hoc NETwork (MANET), which is a collection of mobile devices

that are dynamically connected in an arbitrary manner, without the aid of any established

infrastructure or centralized administration [Corson and Macker 1999]. These mobile de-

vices with wireless transmitters are called nodes. When two nodes want to communicate,

they may not be within each other’s range, but they may communicate if other nodes be-

tween them also participate in the network, acting as routers, forwarding packets to the

other end. These are called multi-hop wireless ad hoc networks.

In several environments these nodes are free to move and they may have nonuni-

form characteristics, driving the emergence of complex ad hoc networks that may have a

highly dynamic behavior. Thus, a large number of routing protocols have been developed

for MANETs [Akyildiz et al. 2002]. Besides the mobility, such protocols must deal with

the typical limitations of these networks, like energy limitations, low processing capacity,

low bandwidth, and high error rates [Corson and Macker 1999].

There are different approaches which try to optimize the cost of a routing path, but

most of them do not take into account the fact that some networks may have a predictable

dynamics. This is the case of some networks such as low earth orbit satellite systems

SBRC 2007 - Comunicação sem Fio I 17



(LEO), some wireless sensor networks, and periodic or cyclic behavior networks like

public transportation.

LEO satellite networks communicate via inter-satellite links among satellites that

are in communication range of each other, and the topology behavior is fixed. Hence

the trajectories of the satellites are known in advance, and it is possible to exploit this

determinism in routing optimization [Ferreira et al. 2002].

Wireless Sensor Networks (WSN) [Akyildiz et al. 2002] are composed of hun-

dreds or even thousands of sensor nodes inter-connected and collaborating with each other

to perform a specific task, e.g., detection of fire in forests, mapping of bio-complexity of

the environment, vehicle tracking and detection, etc. Due to energy limitations, network

nodes can be scheduled to sleep in given periods, in the aim of energy saving. So, in this

case, the network topology changes can also be predicted.

The behavior of these networks, henceforth referred to as Fixed Schedule Dy-
namic Networks (FSDNs) [Ferreira 2004, Bui-Xuan et al. 2003], is such that the topol-

ogy dynamics at different time intervals can be predicted (see Fig. 1(a)). Therefore,

since the classical graph model hardly apply to these networks, recently, evolving graphs
(EG) [Ferreira 2004,Bui-Xuan et al. 2003] have been proposed as a formal abstraction for

dynamic networks, and can be perfectly suited to the case of FSDNs and the construction

of least cost routing and other algorithms. The algorithms and insights obtained through

this model are theoretically very efficient and intriguing.

The first implementation and evaluation of an EG routing protocol was done

through simulations in [Monteiro et al. 2006] and the results were compared to three

other ad-hoc protocols. Extending that work, we have conducted a performance evalua-

tion through extensive simulations using NS2. The results are compared to four major ad

hoc protocols: DSDV, DSR, AODV and OLSR. In this work we give a more elaborated

and detailed behavioral analysis of the congestion on a EG based routing protocol, and a

different average end-to-end delay metric is used to measure the performance of the EG

protocols over the others. We also include OLSR in the comparison charts and provide

much more experimental data.

The remainder of this paper is organized as follows: In the next section we de-

scribe the concept of evolving graphs. Section 3 shows the simulation environment and

the decisions made in the implementation. Section 4 presents the simulation results and

analyses. Finally, we present our conclusions in Section 5.

2. Evolving Graph Model
To capture the deterministic behavior of some fixed scheduled dynamic networks (FS-

DNs), we use the evolving graph (EG) model introduced recently. This theory studied

in [Ferreira 2004, Bui-Xuan et al. 2003] aims to represent a formal abstraction of dy-

namic networks, which formalize a time domain in graphs.

As an example, consider the four snapshots taken at different time intervals of a

MANET, as depicted in Fig. 1(a). As one can readily observe, nodes D and G are never

connected on a single time interval. Notwithstanding, D can indeed send messages to G,

using the path over time composed of D, C,E, F,G. Surprisingly, this otherwise trivial

fact cannot be directly modeled by usual graphs.
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Figure 1. Edges are labeled with corresponding presence time intervals. Observe
that {E,G,F} is not a valid journey, since the edge {G,F} exists only in the past
with respect to {E,G}.

Concisely, an evolving graph is an indexed sequence of τ subgraphs of a given

graph, where the subgraph at a given index corresponds to the network connectivity at the

time interval indicated by the index number, as shown in Fig. 1(b).

The time domain is further incorporated into the model by restricting journeys
(i.e., the equivalent of paths over time) to never move into edges which only existed in

past subgraphs. A journey in an evolving graph is thus a path in the underlying graph

whose edge time-labels are in a non-decreasing order. Now, it is easy to see in Fig. 1(b)

that D, C, E, F,G is a journey, as mentioned above. Further, note that D, C,E, G is also

a journey, with less hops, but delivering the message later (in time interval 3 instead of 2),

giving raise to different objective functions that may be optimized.

2.1. Journey Metrics

In the pursue of an optimal journey in FSDN, three metrics have been formalized until

now for EG [Bui-Xuan et al. 2003]. They are the foremost, shortest, and fastest journey,

which find, respectively, the earliest arrival date, the minimum number of hops, and the

minimum delay (time span) route. These three parameters can be individually optimized

in polynomial time [Bui-Xuan et al. 2003].

We use in this paper the Foremost Journey algorithm, which computes from a

source node s the journeys that arrive the earliest as possible on all other nodes. The

algorithm to compute such journeys can be seen as an adaptation of Dijkstra’s shortest

paths algorithm, and is detailed below. The Foremost Journey is chosen among other

journey metrics because it is the most intuitive.

2.2. Foremost Journey Algorithm

To compute the Foremost Journey from s at time t to all other nodes, we use a direct

adaptation of Dijkstra as detailed in [Bui-Xuan et al. 2003]. The output of the algorithm

is a tree with the Foremost journey traversal paths from s to all other nodes. The routing

protocol originated by this algorithm will be henceforth referred to as EGForemost and is

detailed in Section 3.1
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3. Simulation Environment

We have conducted our performance analysis using the NS2 [NS2 2007] simulator version

2.29, with the mobile extensions by CMU Monarch which provides IEEE 802.11 Medium

Access Control (MAC) protocol, and realistic radio and physical layer. The radio model

uses characteristics similar to the commercial radio interface, Lucent WaveLAN, modeled

as a shared-media radio with a nominal bit rate of 2 MB/s and a nominal propagation range

of 250m.

In all simulations, 50 nodes are randomly placed in a 1500m x 500m area. The

simulation time is 900 seconds. A number of 10 constant bit rate (CBR) UDP traffic
flows, are chosen between node pairs. The average traffic rate is 2 packets/sec with

packets with 256 bytes length.

This low data rate is chosen to address a sensor network like environment. The

interface queue length at link layer (IFQ) is the default: 50 packets. These values were

chosen to be similar as the ones used in [Broch et al. 1998, Perkins et al. 2001]. We do

not use TCP for the simulations, as we did not want to investigate TCP particularities,

which uses flow control, retransmit features and so on, but rather concentrate on routing

protocols behavior.

In these experiments (in contrast with [Monteiro et al. 2006]) we decided to dis-

able the ARP (Address Resolution Protocol) of mobile nodes. In NS2, the address resolu-

tion is an approximation of the BSD Unix ARP, so the resolution is performed on-demand

as packets arrive from the application layer, and the buffer size to each neighbor is only

one single packet. When an address resolution is in process, all incoming packet to the

same destination will be dropped. This leads to great amount of dropped packets in ARP

resolution. Agreeing with the good discussion done in [Carter et al. 2003] by Carter, Yi

and Kravets, in which MANET need to have it own ways to do neighbor discovering, the

address resolution in our simulations are automatic.

We divided the mobility models in two separated kind of scenarios, one using

the popular random waypoint (RWP) model [Perkins et al. 2001], and another proposed

in [Monteiro et al. 2006] and even more suitable to the case of sensor networks, called

intermittent model, and explained below.

In the Random Waypoint (RWP) mobility model, a mobile node alternately moves

to a randomly chosen location, with speed chosen from 1 to 20 m/s according to a normal

distribution, and pauses for an uniformly chosen time between 0 and PAUSETIME. The

simulation was run with values of PAUSETIME varying from 0 (continuous motion) to

900 seconds (very low mobility in the network). To avoid known problems of the RWP

model shown in [Yoon et al. 2003], we are using only non-zero values of minimum speed.

The use of this classical scenario, yet with its known limitations, is important to compare

the results with other performance studies. The program setdest from CMU, bundled in

NS2, were used to generate these scenarios.

The Intermittent Model is based on fixed position nodes that remain uninterrupt-

edly turning themselves on and off (awake and sleep) in given periods (see schema on Fig.

2). Here, the parameters we change are the SLEEPPROB (ranging from 0 to 50%), and

the HOLDTIME (ranging from 15s to 180s). In the beginning of simulation each node is

awake, and for the entire simulation it has a SLEEPPROB probability to go to sleep (turn-
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ing itself off). If a node goes to sleep, it remains off for an uniformly randomly chosen

HOLDTIME.

Once this time expires, the node is turned on and stays awake for the same amount

of slept time. If a node does not go to sleep, it will stay awake for HOLDTIME, calculated

the same way of former case. This model aims to capture the behavior of networks with

functioning schedules, e.g. wireless sensor networks (see chapter 7 of [Krishnamachari

2005]).

Once this time expires, the node is turned on and stays awake for another period

based on HOLDTIME. If a node does not go to sleep (chance of 1 − SLEEPPROB), it will

stay awake for for HOLDTIMEbefore trying again. It is important to point out that HOLD-

TIMEis recomputed at each state change. We called this scenario Intermittent Model and

is initially proposed in [Monteiro et al. 2006]. We did not find similar mobility models

in the literature. This model aims to capture the behavior of networks with functioning

schedules, e.g. wireless sensor networks (see chapter 7 of [Krishnamachari 2005]).

Figure 2. State changes in the Intermittent Mobility Model.

For each evaluated parameter we created 10 random scenarios with different ran-

dom seeds. Therefore we ran the simulation 110 times for the first model, i.e., 10 times

for each value of PAUSETIME: 0, 50, 100, 200, ..., 900 seconds, and 300 times for the In-
termittent Model, i.e., 10 times for each combination of SLEEPPROB: 0, 5, 10, ..., 50%
and HOLDTIME: 15, 60, 180 seconds. Note that in the second scenario we change two

parameters, and the value of 0% of SLEEPPROB means that no one go to sleep, hence the

scenario remains static from the beginning to the end of the simulation, which is relevant

as a reference. All five routing protocols (AODV, DSDV, DSR, OLSR, EGForemost) were

run on the same 410 scenarios. Thus, identical mobility and traffic scenarios (as they have

the same seeds) were used across protocols.

The implementations used to evaluate DSDV, AODV and DSR protocols are the

ones provided in the NS2 package. All of them were implemented by the CMU Monarch

group. To the OLSR, we used the implementation by Francisco J. Ros [Ros 2007] (UM-

OLSR) version 0.8.8. In all of them, we used the default parameters and constants. AODV

implementation, as of NS2 version 2.29, contains some further optimization code from

[Perkins et al. 2001].

Each simulation in NS2 generates a trace file, containing all communications that

have been done between nodes, including the MAC layer. Afterwards this file is analyzed

to consolidate the results, shown in section 4.
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3.1. Evolving Graph Based Routing Protocol - EGForemost

Mobility in NS2 is usually represented by a script in Tcl language containing scheduling

commands, e.g. setdest, on or off. In general it is saved in a separated file used by the sim-

ulation. Therefore, we made a program (calceg∗) that reads a mobility file used by NS2
and capture the node movements to generate the corresponding EG. This EG is after-

wards used as input for the foremost journey evolving graph based protocol (EGForemost),

as shown in section 2.2. Note that, to calculate the EG, the transmission and reception

range of each node must be taken into account, in our case is fixed in exactly 250 meters.

Before the simulation begins, the EG of the network is distributed among all

nodes. So, each node in the simulation knows exactly what is going to happen in the

network topology during the whole simulation. It knows exactly when some other node

will be available or not for communication. At first sight, this important assumption may

not appear to be realistic. However, there are many practical situations, e.g. those shown

in [Akyildiz et al. 2002, Ferreira et al. 2002], in which an EG can be built before the

routing phase. Also, when developing or tuning routing protocols or mobility models, the

EG can be generated and used as a reference.

3.2. Implementation details
Supposing that all nodes – this can be changed for transmitting nodes only – have the

knowledge of the EG, the implementation of the EGForemost routing algorithm is straight-

forward.

Let edge schedules be a set of time intervals representing the existence of link-

connectivity between two nodes. An edge exists when two nodes are in the range of each

other. The Evolving Graph (EG) of a dynamic network can be represented by a list of

edge schedules for each pair of nodes. Thus, each node has a list of its neighbors at a

given time (remember that the EG is calculated from the mobility scenario and a well

known transmission range)

When a packet arrives at the routing layer of node u at time tnow, the node com-

putes the foremost journey from the packet source s to the destination d. Suppose that

the journey next hop is the node v at time tv. If tv = tnow, then both nodes are in the

range of each other (i.e, there is an edge in edge schedules of (u, v) at time tnow), and the

packet is readily forwarded to v. Otherwise, if tv > tnow, the node is not reachable, and

node u must schedule the transmission of the packet to the time tv. This is the earliest

feasible edge present in edge schedules of (u, v) with time greater than tnow and before

the simulation’s end time.

Using the example in Fig. 1(b), the foremost journey for a message sent at time

index 1 from D to G will be D, C, E, F,G. The packet will reach F at the same time index

1, then afterwards F will schedule to send the packet to G at the earliest edge presence in

the edge schedules of F − G. Hence the packet will be sent by F at time index 2.

If two routes have the same time length when computing the foremost journey, the

one with less number of hops will be chosen for routing, and in the case where they even

have the same number of hops, the route with the smaller node ID will be chosen. This

way ensure a complete order when choosing nodes (i.e. sorting nodes in the heap).

∗The EG implementation and related software can be found at http://julian.com.br/mobidyn/software
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3.2.1. Estimating the Node Traversal Time

One important input in the EG graph algorithms is the traversal time to be used in the

calculation of the least cost journeys. We did several experiments to estimate the average

one-hop delay in scenarios with similar network load as the one used in this paper.

200m
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4
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1 2 3 5

6 7 8 9 10
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250m

Figure 3. Static scenario to esti-
mate one-hop delay.
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Here, 10 nodes are deployed in one static scenario as shown in Fig. 3. 5 flows

are created between nodes and different packet sizes (from 64 to 1000 bytes) and bit rates

(from 1 to 32 pkts/s) were simulated. The results (see Fig. 4) showed that the one-hop

delay time is almost always linearly dependent of the packet size. So, in all experiments

done in this paper, we used a packet size of 256 bytes and a rate of 2 pkt/s, and the average

traversal time is estimated in 3.5 ms. The gray dashed line in the bottom is a reference

from a 2 node only scenarios (i.e. without collisions).

3.3. Other Routing Protocols
A great deal of work has been produced comparing the performance of the three major

ad hoc protocols, DSDV, DSR, and AODV [Perkins et al. 2001, Broch et al. 1998].

Consequently, we chose these three, which are available within NS2 package, to perform

the assessment of the EGForemost. For the sake of completeness, we included the OLSR

protocol in our experiments. Since we are not going to detail these well-known protocols

here, we refer the interested reader to the survey in [Lang 2003].

4. Simulation Results
Our results are based in a simulation of an ad hoc network composed by wireless mobile

nodes moving around, going to sleep a while, and communicating with each other. As

well as mobility models, the results shown here are separated in two parts, one using the

RWP mobility model, and another using the Intermittent Model. We focused our analysis

in four main metrics:

• Average throughput: The average number of packets received per amount of

time (from the first packet sent to the last packet received).
• Average end-to-end delay: The average time between sending and successfully

receiving a packet.
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• Ratio of dropped packets by no route (NRTE): Fraction of dropped packets by

no available route per total number of sent packets. In the case of EGForemost, the

NRTE is the number of non-existing routes during the simulation.

• Ratio of dropped packets by Interface Queue overflow (IFQ): Fraction of

dropped packets by link queue overflow per total number of sent packets. This

queue is at the link layer, i.e., it is used when the routing layer want to effectively

sent a packet to be delivered.

The EGForemost used in these experiments do not have any protocol overhead

(there are no control messages since all nodes already have the EG of the whole network).

4.1. Random Waypoint Mobility Model

As mentioned earlier, in the RWP scenario the parameter we are changing is the PAUSE-

TIME. Low values of PAUSETIME means high mobility and high values of PAUSETIME

means low mobility.
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all protocols.

As shown in Fig. 5, the EGForemost performance has better values of throughput

for all pause times, besides the fact that reactive protocols got very close values in this

metric. As suspected, the pro-active (table driven protocols) did not performed well in

this first scenario. The periodically updated tables did not get update as fast as needed.

They perform better when the mobility decreases. Although the parameters of this mobil-

ity model is not so stressing, as we can see, the DSR performed a little better than AODV.

Finally, as expected, EGForemost produced the best results in this metric in all RWP sim-

ulations scenarios. The theoretical throughput of the network is 2 ∗ 256 ∗ 8 = 4096 bits/s

and the EGForemost results are very close to it.

The goal of the foremost journey algorithm is to calculate journeys that reach the

destination as soon as possible. But, if we get the absolute values of average end-to-end

delay of all packets, the EGForemost protocol should get high values of delay. Due to the

behavior of the EG foremost algorithm, some packets may have to wait for a long time

upon an edge exists,

and this time is computed by the end-to-end delay metric. In other words, when

using the Foremost Journey EG based routing algorithm, the packets could take long in
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time to reach the destination. However, it is proven in [Bui-Xuan et al. 2003], that using

EG the packets will reach the destination as soon as possible if the journey exists in any

moment. Indeed, on the other protocols some of this ”late” delivered packets are just

being dropped.

Hence, to be fair with the foremost algorithm and better perceive the performance

of the EGForemost protocol, we calculated the average end-to-end delay taking into ac-

count only the packets that has been successfully delivered at the destination in all proto-

cols (i.e. the intersection of received packets). The results in the Fig. 6 shows EGForemost

as a lower bound in the end-to-end delay in this scenario. Moreover, almost all packets

are delivered. The reactive protocols, AODV and DSR, does not have a smooth curve,

due to the induced delays from the route discovering process. The variance of their values

is very high too.

4.2. Intermittent Mobility Model

The intermittent mobility scenarios are more realistic in the sense of FSDN networks,

on which the nodes have fixed position and their on/off dynamics can be more easily

predicted.

In the next results we change the values of SLEEPPROB from 0 to 50%. High

probability to sleep means that the network has a low connectivity, i.e., a large quantity

of nodes are disconnected from each other because many of them are in sleep state.
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The values of HOLDTIME means dynamism, i.e., how often the connections

among nodes changes, low values of HOLDTIME means high dynamics and vice versa.

Fig. 7 is an analysis of the Intermittent Model scenarios and illustrates that behavior. In

the low connectivity scenarios (50% of SLEEPPROB) the number of topology changes for

an HOLDTIME of 15s is 12 times the number of the ones with HOLDTIME 180s.

As we will see in the following results, this model harness some characteristics of

mobility that are not captured with the former RWP model.

In Fig. 8, we show again that EGForemost has better values of throughput. The

gray line above all is the rate of generated traffic flows, this means it is the maximum

expected value of throughput. The rate value is not constant due to the transmitting nodes
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Figure 8. Average throughput as a function of SLEEPPROB (connectivity).

that can also go to sleep, and, when they are off, they do not generate traffic. In Fig.

8(a) the values of the flow rate vary from 4096 b/s to 2728 b/s, an decrease of 33.4% of

generated packets in the network.

Observing the results, in the case of high dynamics (HOLDTIME 15s), the through-

put of EGForemost is almost the highest possible in all connectivity scenarios (the through-

put curve is very close to the flow rate). On the other hand, in the case of low dynamics,

the values of throughput for EG decreases, with the others protocols, as the connectivity

decreases (from 0 to 50% SLEEPPROB).
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Figure 9. Drop packets by NRTE ratio as a function of SLEEPPROB (connectivity).

This EGForemost loose of performance (37% less if compared to the rate of flow) is

not related to the number of inexistent routes. As shown in the graph of Fig. 9, the number

of packet dropped by NRTE is very low (an average of 3.3% on the low connectivity

scenario). The values of dropped packets by no available route (NRTE) means that there

are no available path from the moment of generation to the end of simulation.

So, the explanation of this throughput decrease on low connectivity scenarios is

not due to inexistent routes, but to another reasons explained ahead:

26 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



4.2.1. Bottlenecks and Congestion

The intrinsic behavior of EGForemost to schedule packets to be sent when some node

awakes arises the problem of bottlenecks, on which a large quantity of packets are sched-

uled to be sent in the same moment, and the link interface queue (IFQ) does not hold that

incoming traffic (the default value in NS2 is 50 pkts). Furthermore, the EG algorithm do

not have any mechanism to load balance the flows, so, many flows with different sources

could potentially pass through the same path in the middle of the journey, even when

some other ones are available at the same cost (i.e. arriving at the same time).

The simulation done using the random waypoint model does not suffer from this

effect, due to the high mobility of the system, the bottlenecks do not exist at all. This

characteristic appeared in the low connectivity and low dynamics scenarios of the Inter-
mittent Model, on which the nodes in the evolving graph remain disconnected for long

time periods, and a large quantity of packets are being scheduled to the moment when

these nodes wake-up.
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Figure 10. Number of dropped packets over time for one single Intermittent Sce-
nario (SLEEPPROB 50% and HOLDTIME 180s).

The histogram at Fig. 10 contains the number of dropped packets over time on one

single simulation, in this case, is one scenario with SLEEPPROB of 50% and HOLDTIME

of 180s. It shows that the packets are dropped in the EGForemost in a burst, and again,

due to few specific nodes that goes to sleep for a long a time and when they wake-up, a

large quantity of packets are waiting to be sent, overflowing the queues and then dropping

packets.

In Fig. 11 we see the high values of dropped packets by IFQ overflow on a low

connectivity scenario (35% of packets are dropped by IFQ). These high values negatively

affect the throughput of EGForemost as already shown in Fig. 8(b). We tried 3 different

approaches to minimize this dropping problem (see Table 1):

1. Jitter: Add an enforced jitter (uniformly random value from 0 to 0.5s) at sent time

to each packet;

2. SmartJitter: Add a fixed size jitter only when some connection is congested, the

size of this jitter is the same as the average edge traversal time;

3. Increase the IFQ length: Raise buffer size of the interface queue from 50 to 500

pkts.
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Figure 11. Number of dropped pkts
by IFQ on HOLDTIME 180s
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Table 1. Scheduling schemas used to minimize the bottlenecks (Fig. 12).
Packet IFQlen 500 Jitter 0.5s SmartJitter

p1 t t + rnd(0.5) t
p2 t t + rnd(0.5) t
... t t + rnd(0.5) t
p50 t t + rnd(0.5) t
p51 t t + rnd(0.5) t + δ
p52 t t + rnd(0.5) t + 2 ∗ δ
pn t t + rnd(0.5) t + (n − IFQlen) ∗ δ

The results of the experiments with these 3 approaches can be seen in Fig.12. EG
normal is the reference curve, as seen in Fig. 11. The first approach is the enforced

random chosen jitter from 0 to half second (0.5s) when sending each packet at each node.

In the average, the number of dropped packets decreased 30%. One trade-off with this

approach is the high values of end-to-end delay, due to the extra time added at each

scheduled packet.

The second one, the SmartJitter, is an improvement of the former. Here, when

the queues (one for each pair of neighbors) are not full, the nodes can send packets to

other nodes without any jitter on sent time. However, when some node fulls the IFQueue,

then a fixed size jitter is added to each subsequent packet to be sent. The calculation of

the SmartJitter time at node u sending a packet to v at time tv is shown in the following

schema:

if npkts[tv] ≤ IFQlen then
smartjitter = 0

else
smartjitter = δ ∗ (npkts[tv] − IFQlen)

end if
tv = tv + smartjitter
npkts[tv] = nPkts[tv] + 1

28 25° Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos



Where npkts[tv] is the number of packets already scheduled to use the edge from

u to v at time tv. IFQlen is the interface queue length, and δ is the average traversal time

of one-hop transmission. We used the value 3.5 ms in all simulations, and it was estimated

from the average value of one-hop transmission with packet size 256 bytes. The value of

the traversal time is linearly dependent of the size of the packet. This value was obtained

through simulations using similar network load and is briefly discussed in section 3.2.1.

With the SmartJitter, the number of dropped packets decreased 47% compared to

original EGForemost.Although, the best solution so far is to increase the default length of

the IFQ from 50 to 500 packets. With this last approach, the values of dropped packets

decreased 91%. Indeed, the SmartJitter is a good solution, in practical situations, when

the size of IFQ buffer could not be changed.

5. Conclusion

Our main contribution in this paper is to address some questions stemming from the first

implementation of an EG routing protocol [Monteiro et al. 2006], and to reinforce that

EG theory can be used as a benchmark tool to the development of other ad-hoc protocols.

For instance, a congestion problem may happen when a highly loaded node re-

mains unavailable for long time, causing a huge overhead when it comes back, and pack-

ets are dropped due to packet collision and queue overflows. The use of high values of

enforced jitter time when sending packets can minimize the drop rate, but is not feasible

in regular protocols. We introduced the SmartJitter as an option to minimize the conges-

tion and achieved good results. The development of a good EG adaptive algorithm could

possibly manage that problem, identifying such congested nodes to find out alternative

routing paths. However there are no theoretical results on flows over EGs, which remains

an interesting open problem.

It should be noted that the high values of average end-to-end delay is an inherent

characteristic of the communication network dynamics. In the case of EG based proto-

cols, on which the foremost journey metric is studied, the end-to-end delay is in any case

the minimum arrival date for a packet. If large delays are not acceptable, then one policy

could be to drop packets that are aged in the network, or – even better – use a fastest
journey approach instead of the foremost journey as done here.

Future work includes implementation of other EG based protocols with different

metrics, like shortest path and fastest journey. A natural extension to this work is re-

lated to the deviations in the predicted network dynamics, on which the actual EG used

by the nodes is not accurate anymore. This engenders the utilization of a model with

stochastically predictable behavior to better address such variations.
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