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Abstract. The major purpose of a Grid is to federate multiple powerful re-
sources into a single virtual entity which can be accessed transparently and
efficiently by external users. As a Grid is usually an unreliable system involving
heterogeneous resources located in different geographical domains, distributed
and fault-tolerant resource allocation services have to beprovided. In particular
when a crash occurs tasks have to be reallocated quickly and automatically, in
a completely transparent way from the users’ point of view. This paper presents
PARADIS, an adaptive middleware based on a set of basic agreement services
that has been integrated within an experimental Grid dedicated to genomic ap-
plications. Most of these time-consuming applications arecomposed of a huge
number of independent tasks.

1. Introduction

A Grid is a distributed system involving heterogeneous resources located in different ge-
ographical domains that are potentially managed by different organizations (companies,
laboratories, universities, ...) or individuals. The major purpose of a Grid is to federate
multiple powerful distributed resources (computers but also data storage facilities) within
a single virtual entity which can be accessed transparentlyand efficiently by external
users. Most of the time, resources aggregated within such a grid are high-performance
computing resources: powerful computers and clusters but also large databases and soft-
wares whose behavior can be tuned by selecting configurationoptions to fit the needs of a
particular Grid user. In our study, we consider a Grid composed of resources provided by
various institutions. These potential contributors are identified preliminarily and corre-
spond to well-established institutions that agree to sharetheir resources and to trust each
other. Yet each institution keeps its independence and freedom. The decision to include
or to exclude some (or even all) local resources from the Gridcan be taken at any time by
the local administrator without any coordination with the others. Similarly, the security
policy, the maintenance requirements and the rules used to manage concurrent accesses
between the Grid users and the institution’s members (whichmay use their local resources
without notifying the Grid management system) are defined locally.

In this general context, we aim at developing services that will allow a Grid user
to continuously take full advantage of the computing power offered by the Grid in a sim-
ple and completely transparent manner. In this new businessmodel, the administrators of
the Grid have now the responsibility of ensuring that sufficient resources are deployed to



meet the varying workload demands of the users. Whatever thecircumstances, a complete
transparency and a quick response time are always expected by the customers. To fulfill
these two requirements adaptive control mechanisms have tobe proposed on one hand to
cope efficiently with the dynamic changes of the computing capacity of the Grid (even if
these changes are unpredictable) and on the other hand to distribute the tasks among the
resources in an efficient way (dynamic load balancing). Thisleads us to address two major
issues that both require a continuous adaptation to the changing computing environment,
namely theResource allocationissue and thedependabilityissue. We propose to solve
both problems in an homogeneous way using a slightly modifiedgroup concept [15].
More precisely, all distant interactions between domains corresponding to distinct organi-
zations are managed by a small group of registered processors (exactly one per domain).
Each member of this group acts as amasterfor its own domain and interacts with the
other members of the group to build consistent observations(1) of current workloads in
each domain and (2) of the current composition of the group. In that sense, we argue that,
in a distributed system prone to failures, an agreement service is a key concept to trans-
form several local views into a single global one without opting for a centralized control
approach and thus without having a single point of failures.An agreement service allows
all the domains to acquire the same set of accurate data describing the current state of
the Grid. Based on this unanimous observation, each domain can locally enact the right
adaptation to react to the observed changes.

In addition to the dynamic evolution of the set of resources,the proposed mech-
anisms have to cope with unreliable estimation of the workload of each resource (even
when the set of resources is stable). First, for some particular applications, the duration of
a task cannot be estimated precisely. This may create a difference between the estimated
workload used by the task allocation mechanism and the real workload. Second, the ad-
ministrator of a domain may refuse that his resources are exclusively devoted to the Grid.
Some local applications can be launched concurrently by local members of the institution
without using the Grid mechanisms. In that case the workloads of the used resources in-
crease without any control. In all the cases, adaptive mechanisms are necessary to adjust
the task allocation with regards to these unforecast workload changes.

This paper focuses only on the above mentioned aspects of thedesign of our grid
(namely transparency, resource allocation and dependability). Additional mechanisms de-
veloped to offer a secure and interactive access to the Grid (through a standard WEB site)
are not detailed herein. The grid architecture and softwarepresented in this paper have
been experimented in a grid calledGénoGRID1 and is dedicated to genomic applications:
it federates resources belonging to genomic or bioinformatics centers dispatched in the
western part of France. The amount of shared data (programs,files and databases) that
can be accessed and maintained through a Grid is an importantfactor when evaluating the
interests of Grid Computing. When a Grid is dedicated to a well-identified community of
users that have mutual interests and may agree on some data workflows, the volume of
common information managed within the Grid is much more important.

The overall paper is organized as follows. Following this Introduction, Section 2.

1This Grid has been designed in the context of a project project called “ACI GénoGRID” and founded
by the French Ministry of Research [12]. This project bringstogether researchers in biology and computer
science.



outlines the relationships with some related works. Section 3. focuses on the interactions
between a user and the Grid. In particular, we detail the programming rules that have to
be respected by any application conceived to be executed on our experimental Grid. Sec-
tion 4. discusses the multi-levels structure of the Grid which is a key characteristic of our
approach. Section 5. presents the architecture of the middleware PARADIS. Some exper-
imental results obtained during the implementation and theuse of the Grid by biologists
are briefly presented in Section 6.. Finally, Section 7. concludes this paper.

2. Related Work

The projects that are the most related with our work are naturally Grid computing projects
and also public-resource computing projects. Both share the objective of federating mul-
tiple computing resources for use by cpu-intensive applications. Although it should be
easier to address the dependability issue in Grid computingplatforms (i.e. institutional
projects) than in public-ressource platforms, we observe that very few projects has in-
cluded sophisticated mechanisms for tolerating and masking failures. However, we pro-
vide pointers to some projects that address, in some sense, the fault-tolerance problem.

- The OurGrid project [4, 5] is a public resource project based on a peer-to-peer approach
where the user of the Grid has also to act as a provider of resources. OurGrid imple-
ments a fault-tolerance mechanism based on TCP/IP timeouts. When the broker, located
on a client machine, detects that the connection with a remote machine executing tasks is
broken, it reallocates the tasks on another machine. Currently, the architects of OurGrid
are working on a efficient, flexible and adaptable implementation of a failure detection
service as well as on an easy-to-use interface to such a service. They plan to evaluate the
interests of such a work for the OurGrid project.
- In the BOINC system [2], fault-tolerance is ensured by replicating tasks execution on
multiple sites (redundant computing). A ”transitioner” component is in charge of generat-
ing the results; Then, as soon as a quorum of results is reached, a ”validater” component
calls an application-level function to decide if the results are consistent and to select a
canonical result. The major advantage of the fault-tolerant mechanisms implemented in
BOINC is that it allows to protect against failures as well asagainst malicious partici-
pants.
- Globus [7] and UNICORE [1] are probably the most famous systems to provide a Grid
infrastructure. The facilities provided by these two well-established systems address sev-
eral issues not discussed in this paper. Our goal is to study the resource allocation problem
in an asynchronous and unreliable setting. Until now, failures are addressed within these
systems only through the definition of a centralized failuremanager that is in charge of
detecting and notifying the observed crashes. We claim thatthis approach is not the best
solution because it creates a single point of failure.

3. Access to and Use of the Grid

As indicated previously our major objective is to provide a simple and transparent ac-
cess to the Grid dedicated to genomic applications. As all the biologists are not expert
in computer science, all the problems related to the execution of an application have to
be masked. In practice, a biologist can launch his favorite applications from anywhere



through one of the identified web portals2. Any Grid user has to be registered first to
get an account: he needs to fill a form with necessary securityinformation and receives
latter a certificate that allows to authenticate him during each session setup. This registra-
tion procedure allows to manage within the Grid private directories containing personal
files (applications, private files and in particular files containing the results of previous
executions, ...). Thus after the login phase a user has access to his personal environment
containing only familiar information related to his own activities. At this stage, the bi-
ologist has the possibility to launch one of its applications by selecting this application
among a list of previously identified applications. The preliminary registration of any
application that will be executed in the Grid is mandatory inour approach and has to
be done once (but not necessarily by a future user). In addition to the obvious benefits
in term of security, this strategy allows to gather information about the application itself
(list of parameters that are sometimes optional and may havedefault values, list of used
databases, requirements of the application in terms of operating system or memory space,
estimated volume of outputs and estimated execution times obtained during tests of the
application on different resources,...). At the registration time, the provided information
is logged in specific repositories. In every domain, a copy ofthe application code and
copies of the accessed data banks are created. In every portal, a simple web page is also
created to simplify the submission process: a future user will just have to indicate, via
this web form, the values of the input parameters and the locations of the input files in his
private directory. Once the submission is done, the Grid user has no more to interact with
the Grid to ensure the completion of his application. Even when the computing capacity
of the Grid changes dynamically in a predictable or unpredictable manner (voluntary in-
sertion or withdrawal of local computation resources, unfair sharing of resources between
members of an institution and Grid users, crashes of some resources, ...) reconfigurations
are performed automatically without the help of the Grid user. When his execution termi-
nates the Grid user is informed by an email. Yet at any time, hehas also the possibility
to consult the progress of the execution on the web: the number of tasks already executed
and an estimation of the number of remaining tasks are provided.

To benefit from the fact that many genomic applications can easily be split into
several independent elementary tasks, we impose some simple programming rules. The
main constraint is related to the high-level structure of the code corresponding to the ap-
plication. This code has to be divided into two different parts: (1) an unique main task and
(2) one or several elementary tasks. The functional activities that have to be performed are
described within the elementary tasks. On the contrary the role of the main task consists
mainly in initiating and coordinating the activations of these elementary tasks. This con-
trol activity is done using a set of three additional primitives called SUBMIT, WAIT and
KILL. Once the input data needed to execute an elementary task is available (extracted
either from the inputs provided to the global application bythe user or from the result re-
turned by a elementary task previously executed), the execution of the elementary task is
submitted by the main task using the non-blocking primitiveSUBMIT. The WAIT prim-
itive allows to block the progress of the main task till all the mentioned elementary tasks
have been completed. The WAIT primitive is necessary to create a synchronization point
when two sets of elementary tasks have to be executed in sequence. The last primitive

2One of these portals is currently installed in our own institute at the following address:
http://byzance.irisa.fr:1980/genogrid/



allows to stop the execution of the specified elementary tasks. The role of supervision
played by the main task also includes the gathering of results returned by the elementary
tasks and the final generation of a unique result file accessible from the Web portals. As
indicated in [17] the computation performed by a main task can saturate the machine
where this main task is executed. Thus in our approach both elementary tasks and main
tasks are taken into account by the load balancing mechanism. In Section 5., we will
describe how the main task and the elementary tasks submitted during the execution of
this main task are allocated in the Grid.

4. A Multi-Level Organization

As indicated in the Introduction, the grid we consider is nota homogeneous and uni-
form set of resources managed by a single institution but rather a federation of several
institutions that are located in different geographical areas and that agree to merge part
of their computing facilities. A local administrator is associated to each domain and is
in charge of managing the level of participation of its institution in terms of computing
power. A domain is more than just an administrative entity. Resources within a domain
are connected through local area networks. Therefore, a domain is a synchronous sub-
network in which bounds on the transmission delay exist and are known. These kind
of assumption simplify the design of a master: a machine in charge of controlling the
Grid’s activities within its domain. The Grid is deployed over the internet. For security
purpose, only a few machines in a domain are connected directly with the outside world.
Therefore, interactions between domains can be limited to agroup of machine, one per
domain that are responsible to interact with the other domains. In a large scale Grid, the
only reasonable assumption is to consider that this set of proxies corresponds to an asyn-
chronous distributed system. An asynchronous system is characterized by the lack of a
global synchronized clock, and puts no bound on the transmission delay of messages3.
In some sense, domains can be considered as “synchronous islands in an asynchronous
sea”. Most of the difficulties encountered when designing Grid software are related to
well known problems in distributed computing (observationof the global state of a dis-
tributed system, crash failure detection, ... ) that are hard to solve when the system is
asynchronous.

In the following sections, we describe successively thedomain leveland theGrid
level on which our current organization of the Grid relies. Through the definition of a
two-level architecture that can be extended to more than twolevels, we aim to provide a
simple and realistic model for Grid-computing. As resourceallocation and dependability
issues have to be tackled at the two levels, this model allowsus to identify the nature of
the potential changes in the computing environment, to determine how these changes are
observed and to propose adaptive solutions.

4.1. The Domain Level

A domain is a set of heterogeneous nodes which communicate ina synchronous way.
A node can be either a resource of the Grid or a machine devotedto control activities.
The management of the domain is organized according to the master-slave model: in

3Such a bound may exist but either this value is unknown or the known value is so high that it cannot be
used to define reasonable timeouts.
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each domain, a single node named themasteris selected to manage all the other nodes
(named theslaves). In particular, the master has to schedule all the tasks carried out in
its domain. At any time, the master can check the loads of its slaves. This information is
used to compute an appropriate local scheduling of tasks. The composition of the domain
is dynamic: the administrator of a domain can decide to add orto remove local resources
from its local set of computing facilities accessible through the Grid. Of course, these
modifications leads to increase or to decrease the computingcapacity of the domain. We
assume that resources always join or leave the domain by requesting to the master.

Nodes fail only by crashing. A faulty node behaves accordingto its specification
until it stops prematurely and definitively its computation. As a domain is synchronous,
all the crashes can be detected in a reliable way. When the crash of a resource is detected
by the master, the master distributes again the tasks (previously allocated to the faulty
node) among the remaining resources. The crash of the masterhas also to be tolerated.
Some nodes (theheirs) are preselected to replace the master when it disappears. Thanks
to a leader election protocol, a single heir is allowed to replace the previous master. If no
node can replace the master, all the domain becomes unavailable. Of course, during the
computation, the heirs have to keep track of the whole knowledge of their master. As the
role of these backups is just to ensure that there is not a single point of failure per domain,
we will no more discuss about them in the remaining sections.

4.2. The Grid Level

The Grid is an asynchronous network connecting different domains (Fig. 1). To avoid a
flood of the Grid, only one node per domain is allowed to communicate with the other
domains, this node is called theproxy. All the proxies of the Grid constitute a group. In
practice, a single node per domain acts both as the proxy and the master. Like the compo-
sition of a domain, the composition of the network of domainsis also dynamic. Through
invocations of thejoin andleaveoperations, the local administrator of a domain can de-
cide (independently from the other administrators) to add or remove his own domain from
the Grid whenever he wants (maintenance and repair, alternating periods of private and
public use of the local resources, ...). A domain is unavailable if no node of this domain
can act as a proxy/master (occurrence of crash failures) or if the domain has been dis-
connected from the Grid (occurrence of communication failures, temporary partitions).



On one hand, join and leave operations are intentional and broadcast to all the members.
On the other hand, evolutions caused by occurrences of failure are unpredictable and are
not necessarily observed by all the members of the group. In the proposed solution, each
proxy is coupled with a failure detector module which maintains a list of domains that
it currently suspects to be unavailable. AGroup Membershipservice will ensure that all
the proxies, that are currently members of the group, share aconsistent knowledge of the
past history of the group, namely, thejoin andleaveoperations already executed and the
failures suspected to have occurred.

5. Architecture of Paradis

The software architecture of Paradis (see Fig. 2) is defined according the two-level orga-
nization of the Grid. At every domain, the master has to manage the domain itself and the
coordination with the other masters. These two distinct roles are played by two modules:
Domain Manager andGrid Manager . The Domain Manager is in charge of managing
resource allocation within a domain. When asked by the Grid Manager, it computes a
score (also called a bid) for a task that reflects the adequacybetween the domain and
the task, i.e. the ability for the domain to quickly execute the task. The Grid Manager
module is responsible for determining whether the domain itbelongs to should execute
or not a task; Therefore, it has to interact with the other grid manager modules. The Eden
framework is in charge of these interactions; It provides the set of grid managers with a
reliable group service that enables them to take fault-tolerant decisions for task allocation.
Masters use the service of Eden to agree on a vector of scores (each entry in the vector
corresponding to the score of a domain). Then, by applying a deterministic algorithm,
every master can unambiguously determine on which domain the task has to be allocated.
They select the same entry of the vector namely one entry which contains the best score
that have been proposed and they decide that the corresponding domain will be in charge
of the execution of the task. The two modules and the Web portal communicate via the
exchange of notification events.

Section 5.1. (respectively 5.2.) discusses how the grid is managed at the domain
level (resp. the grid level).

5.1. Management at the Domain Level

Every domain is managed following theMaster-Slavesmodel, with aDomain Manager
(DM) playing the role of the Master who assigns tasks to the resources of the domain,
depending on their capabilities to execute them. The DM may crash, like any machine
of the domain, so someheirsexist in the domain, ready to take the DM’s place in case it
crashes.

Bids and Auctions : The execution of a main task or the execution of a set of elementary
tasks is asked through the generation of a request. All the tasks mentioned in the request
will be executed within a single domain but perhaps by different resources of this domain.
As the resources are different and have perhaps different workloads, the time required to
execute a task may vary from one machine to another. A load balancing mechanism has
to be used to find, at a given time, the best distribution of therequests on the resources
that are currently available. In Paradis, this is implemented thanks to a bid mechanism.
The goal is to determine if a given domain will be in charge of arequest and to identify
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Figure 2. Architecture of Paradis

the local resources it plans to use. To achieve this goal, therequest has been previously
broadcast to all the DM using a atomic broadcast service.

First let us assume that a requestRi is composed of a single task. When a DM
receivesRi from the GM, it determines which resource of its domain is themost appro-
priate to execute the task by computing, for every resourceResj , a bidbidi,j (also called
a score) representing the capability ofResj to treatRi as quickly as possible. Actually,
this bid corresponds to the estimation of the time needed to completeRi (waiting time
before execution included). Thus it takes into account the current workload of a resource
and the estimated execution time defined when the application has been registered. IfRi

cannot be executed onResj for incompatibility reasons, thenbidi,j = ∞. Once the DM
has computed the bids for all its resources, it will select the oneReswin with the lowest
bid. If this bid is over a dynamic threshold (whose initial value is defined for each type of
task and increases after each new computation of the bid of the task), the bid is also set to
∞.

When the request does not contain a single task to execute, but a bag of tasks, there
are many ways to calculate the bids, depending on the strategy you want to implement.
You may want to get the first result as soon as possible, or you may prefer to get the whole
bunch of result as soon as possible. These two examples correspond to two different ways
of compute the bids, and hence to two different task allocations. The main advantage
offered by the bid mechanism is that the bid computation is totally independent from the
architecture of the grid. To implement a new load balancing strategy, a user just has to
change the formula that calculates the bid.

Once a bid has been computed, it is transmitted by the DM to theGM. At the
grid level, the bids are used to make auctions between the different domains: thanks to
agreement protocols, all the GM agree on a single vector of bids (one per domain of the
Grid). The auction is won by the domain that has proposed the lowest bid (different from



∞). The use of a dynamic threshold allows to postpone the decision when the resources
are already too busy.

Processing of a Request on a Domain:When a DM (which has proposed the lowest bid)
receives some requestRi to treat from the Grid Manager (GM), it determines again which
resourceRes is the most appropriate to execute it. IfRes is not available at this moment,
then it adds the request to a listWait Req of requests to execute. OnceRes is available,
the DM executes the taskTi contained inRi. Then it removesRi from Wait Req and add
it to the listExe Req of the requests that are being executed. OnceTi is completed and
has returned the resultresulti, Res sends a message〈END, Ri, resulti〉 to the DM. The
DM removes then the request fromExe Req and notifies the GM thatRi is completed
and has returned the resultresulti thanks to the notification〈END, Ri, resulti〉 .

The taskTi contained inRi may correspond to a main task. In this case, this
main task generates some new requestsRnew thanks to the SUBMIT function. Then, the
DM notifies the GM that there is a new requestRnew to send on the grid thanks to the
notification 〈REQUEST, Ri〉 .

In case there is no available resource to execute the taskTi contained inRi (this
may be the case if the resource that was supposed to execute itleft the domain), the DM
has to notify the GM that it cannot treatRi, so thatRi can be executed on an other domain.
This corresponds to the notification〈GIVEUP, Ri〉.

5.2. Management at the Grid Level

At the grid level, due to the asynchronism of the system, gridmanagement is more chal-
lenging than at the domain level. The lack of bounds on communication delays makes
impossible to distinguish a slow proxy from a failed proxy. That prevents to implement
reliable fault detection. Under such conditions, reachingan agreement on task allocation
and grid composition is impossible. Hopefully, this result, know as the FLP impossibility
result [6], can be circumvented thanks to the concept of unreliable failure detectors [3]
that observe the availability of remote proxies. These failures detectors are said “unreli-
able” because, in an asynchronous system, the detection of afailed proxy by other proxies
may be delayed or an available proxy can be mistaken for a faulty one by some proxy [3].
Unreliable failure detectors can be classified according tothe properties (completeness
and accuracy) they satisfy. A class of failure detectors denoted3S is of particular inter-
est because this class has been proved to be the weakest one enabling to solve a problem,
called the Consensus problem, that is very close to the task allocation problem we have
to solve.

The consensus problem is defined in terms of two primitives called proposeand
decide. In the consensus problem, each process proposes an initialvalue and then exe-
cutes a consensus algorithm until one of the proposed valuesis decided. The agreement
problem we have to solve is close to the consensus problem. The difference with a clas-
sical consensus is that the decided value should not be one ofthe proposed values but a
vector of the proposed values. This problem is quite similarto the Interactive Consistency
problem.

EDEN : Eden (see Fig. 3) makes use of the unreliable failure detector concept to provide
Paradis with a reliable group communication service [8]. Eden is based on a Generic
Agreement Framework, calledGAF, described in [10]. InGAF, different instantiations of



theGAF parameters lead to generate different algorithms that solve efficiently the agree-
ment problems. An instantiation is given by a concrete agreement component that imple-
ments the interface of the agreement service.

We identify three concrete agreement components which are:

• Atomic Broadcast. It ensures that messages sent to the groupof proxies are deliv-
ered in the same order to all the members.
• Interactive Consistency. It ensures that all the members that propose a value decide

a same vector of values.
• Group Membership. It is in charge of managing the computation and installation

of new views whenever it is necessary. One important property of this service
states that all members of the group should reach consensus about the current
membership (who is in the group and who is not) [9].

Eden publishes a unified interface to the concrete agreementcomponents needed
by Paradis. This unified interface exports three operations: BROADCAST, PROPOSE
and RECEIVE. The BROADCAST operation is used by a proxy to disseminate messages
to the other proxies. It relies upon the service of the AtomicBroadcast component to
ensure that every proxy will receive messages in the same order. The PROPOSE operation
allows a proxy to propose a score for a given task. The Interactive Consistency component
used to implement it ensures that every proxy will decide thesame vector of scores.
Finally, the RECEIVE method is the counterpart of the BROADCAST and PROPOSE
operations; it ensures that every proxy will receive decisions on the vector and messages
in the same order. The Group Membership component is used to provide a proxy with
information about suspected remote proxies. A proxy gets this information through the
RECEIVE operation of the Eden interface.

G e n e r i cA g r e e m e n tC o m p o n e n t
A t o m i cB r o a d c a s tC o m p o n e n t F a i l u r eD e t e c t o rC o m p o n e n t

G r o u pM e m b e r s h i pC o m p o n e n t
I n t e r a c t i v eC o n s i s t e n c yC o m p o n e n t

Figure 3. Structure of the Eden framework

How Paradis uses this interface is explained in the following subsection.



5.3. Algorithm executed by the Grid Manager

As mentioned previously, the role of a Grid Manager (GM) is tomanage the distribution
of the tasks over the grid. It makes the junction between its own domain, represented
by the Domain Manager (DM), and the other domains. Therefore, its activity is first, to
communicate with the other GMs via Eden and with its coupled DM through notification
events, and second, to manage two lists of tasks: a list of requests to allocate and a list of
the requests that are currently being processed by every domain.

The Figure 4 presents the protocol executed by the GM. It consists of two parts:
Actions in Part 1 are in response to messages received from the other GM through Eden;
Actions in Part 2 follow notification events coming from the coupled DM.

Part 2 presents the 3 kinds of notification events a GM can receive from its local
DM or from the local portal. When a request is submitted to thegrid by a portal or by
a DM, the GM is notified of this submission and broadcasts the request to all the GM
through the BROADCAST function of EDEN. A notification of theend of the treatment
of a request, or of the giving up of a request4 received from the local DM is broadcast
likewise.

Any message broadcast by a GM is received by every GM (sender included) via
the ReceiveMessage() function of EDEN. This function returns the threetypes of mes-
sages broadcast by GMs (REQUEST, END, GIVEUP) in Part 1 and two additional mes-
sages types: DECIDE and REMOVE. Part 1 concerns the reactions to these messages.

• 〈REQUEST, R〉 informs the GM that there is a new requestR to treat. It addsR
to Buffer, a FIFO that contains all the requests that are not allocatedyet (5).
• 〈DECIDE, [bidi,0, bidi,1, ..., bidi,n]〉 returns the bids of all the domains for request

Ri (6). The deterministic function Allocate() determines which domainDwin has
proposed the best bid (7). The GM stores the information thatRi will be executed
onDwin in the listAllocations (8). If Dwin corresponds to the domain of the GM,
then the latest forwardsRi to its DM thanks to the function Execute() (9). Now
that there is no current auction, a new one can be started, theGM is ready to bid
(11).
• 〈END, Ri, resulti〉 informs the GM that the requestRi has been treated and re-

turned the resultresulti. Then, the GM removesRi from the listAllocations (14)
and call the function StoreResult(resulti) (15). This function will not “automat-
ically” store the results: it will store it only if the request had been submitted to
the grid by his local DM or the local portal.
• 〈GIVEUP, Ri〉 informs the GM that the domain that was in charge of requestRi

has not been able to treat it. The GM removesRi from the listAllocations and
adds it to theBufferof requests to allocate.
• 〈REMOVE, Dk〉 informs the GM that the domainDk just left the grid5. The GM

removes then from the listAllocations all the request that had been allocated to
Dk (18-19) and add them to theBufferof requests to allocate.

When there is no current auction being processed, a new one can start if there is
some request to allocate in the buffer (26-27). In this case,the GM calls the function

4This may happen if the domain does not have any resource to treat the request any more.
5Either after having called the Leave() function of EDEN or having left without a warning. In this case,

the leave ofDk have been detected by the Failure Detection module of Eden.



Grid Manager

Part 1

(1) readyto bid← True
(2) While (True) do
(3) msg ← ReceiveMessage();
(4) switchmsg :
(5) case〈REQUEST, R〉: FeedBuffer(R);
(6) case〈DECIDE, [bidi,0, bidi,1, ..., bidi,n]〉: begin
(7) Dwin ← Allocate ([bidi,0, bidi,1, ...,bidi,n])
(8) StoreAllocation (Dwin, Ri);
(9) if Dwin = MyDomain then Execute(Ri)
(10) endif;
(11) readyto bid← True;
(12) end;
(13) case〈END, Ri, resulti〉: begin
(14) UnstoreAllocation (Ri);
(15) StoreResult (Ri, resulti);
(16) end;
(17) case〈GIVEUP, Ri〉: begin
(18) UnstoreAllocation (Ri);
(19) FeedBuffer(Request(Ri))
(20) case〈REMOVE, Dk〉:
(21) ForeachRl in StoredAllocations(Dk) do
(22) UnstoreAllocation (Rl);
(23) FeedBuffer(Rl);
(24) done;
(25) endswitch;
(26) If readyto bid then
(27) If (R← ReadBuffer() ) not NULL then
(28) bidi,MyDomain ← DomainAdequacy(MyDomain,Ri)
(29) PROPOSE (bidi,MyDomain)
(30) readyto bid← False
(31) endif
(32) endif
(33) done;

Part 2

(34) While (true) do
(35) Upon notification of notif,
(36) notif∈ {〈REQUEST, Ri〉, 〈END, Ri, resulti〉, 〈GIVEUP, Ri〉}
(37) BROADCAST(notif);
(38) done;

Figure 4. Grid Manager’s protocol

DomainAdequacy(MyDomain,Ri) (28). This call makes the local DM compute the bid
for the execution ofRi on the resources of the domain. The GM sends then this bid to
Eden (29) and puts a lock on readyto bid to avoid concurrent bids (30).

In addition to this algorithm, the GM implements some protocols to synchronize
the listsBufferandAllocations when it joins the grid.



6. Experimental Results

We have helped different teams of biologists working on genomic analysis to adapt the
designs of their favorite applications to the few requirements imposed by our experimen-
tal Grid. More precisely, the codes of three different applications have been structured
into main/elementary tasks and registered in the Grid in such a manner that they can now
be executed by external authorized biologists from one of the portals (for example, from
http://byzance.irisa.fr:1980/genogrid/). The first experiences we have conducted have val-
idated the interest of a Grid approach for this range of applications that exhibit different
characteristics. The two first applications aim to compare genomic sequences contained
in two distinct data banks. In the first case, the applicationfocuses on the study of viral
infections of the testicles: from the raw data contained in the data banks, a reduced set
of pertinent data is selected to be analyzed. Thanks to this initial filtering done once, the
number of comparisons is approximatively equal to16x109. The second application aims
to identify new human mitochondrial proteins [16]. Using a single machine, the execution
of the first application lasts several hours while the secondapplication ends after several
months. In both cases, the computation power of a Grid allowsto decrease the execution
time: the main task is used to slice the whole computation into a pre-defined number
of independent elementary tasks that are submitted in parallel. In each elementary task,
a portion of the first data bank is compared to the whole seconddata bank. Interesting
behaviors occur when the two applications are running concurrently. In the presence of
applications whose duration are not of the same order of magnitude, the choice of a gran-
ularity for the elementary tasks (which has an impact on the number and the duration of
the elementary tasks), the choice of adequate thresholds and the accuracy of the static
estimation of the available resources offered by the Grid are essential factors when defin-
ing the static code of the main task. As the termination of theshortest application can
be postponed after the end of the long-lasting ones, our experiences show that dynamic
adaptation mechanisms have also to be added to the current software to maintain equity
between the time-consuming activities and the light applications. The third application
is related to the protein threading problem [14, 13]: it aimsto assign a 3D structure to a
protein sequence. This application requires three phases of computation that have to be
executed sequentially. WAIT statements are used in the maintask to create two interme-
diate synchronization points. In addition to the particular structure of its main task, this
application is characterized by the fact that an elementarytask generated during the last
phase has an unpredictable execution time that ranges from 1second up to one hour. Thus,
estimations used to compute the bids are just average values. To face this uncertainty, the
definition of an appropriate threshold and the possibility to go back on a previous decision
(by generating a new allocation decision) reveal to be appropriate solutions.
Experiments done with several instances of the three above applications running at the
same time validate the interest of a Grid and demonstrate also that the mixing of distinct
applications requires to propose additional strategies: optimizing the use of the Grid re-
sources does not imply that the satisfaction of the users is also always maximized. This
problem is not specific to our approach and some of the proposed mechanisms (defini-
tion of a threshold, invalidation of a previous allocation)have shown to be efficient to
implement complementary allocation policies.

As the main characteristic of our solution is to propose a hierarchical architecture
where a set of processes (i.e. the proxies) interact only by executing agreement protocols,



we now provide more details on the cost induced by the execution of agreement protocols.
Within a domain, the interactions between a master and its local resources are based on a
master/slave scheme and can be neglected compared to the cost of the agreement protocols
executed by processes of different domains. Moreover thesecosts are not really specific to
our solution. In the following, we focus on two particular scenarios. In the case of failure
free scenarios, we consider the cost of the atomic broadcastservice that is intensively used
in our approach. To obtain a total order on the set of requestsand to have a consistent
observation of the progress of the computation, each proxy calls periodically this service.
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Figure 5. Cost of the Atomic Broadcast Service: failure free scenario

In Figure 5, we consider the mean time required to broadcast arequest using an
atomic broadcast service. It depends on the number of domains (number of processes) but
also on the interval of time that elapses between two consecutive broadcasts. When the
number of domains remains small (less than ten organizations), the cost of this agreement
service is acceptable. Of course, consensus-based services are not scalable and such a
technique cannot be used to federate thousands of domains. Finally the frequency of the
requests is related to the granularity of the elementary tasks. A trade-off between the time
required to allocate a task and the time required to execute this task has to be found. To
circumvent this problem, elementary tasks can be aggregated in bunches of tasks that will
be handled as single meta-tasks at the Grid level and then decomposed into elementary
tasks at the domain level. Depending on their durations and their characteristics (known
off-line), the number of tasks that compose one bunch can be adapted dynamically during
the execution of the main task.

In Figure 6, we consider the cost induced by the occurrences of failures. More
precisely, we consider the perturbations induced by a failure and the time required to
install a new view. Due to the fact that the system is an asynchronous one, the failure
detector mechanism is not reliable. To avoid the withdrawalfrom the Grid of an active
domain, a rather long period of time is necessary before launching the computation of a
new view that will eliminate a domain from the Grid. During this period, the suspected
process (which is really crashed) is supposed to act as a coordinator from time to time.
As a consensus algorithm based on the rotating paradigm is atthe core of our solution,



each round coordinated by a crashed process is useless and increases the execution time
of the called service up to the fixed duration of a round. When the new view is computed
and installed, state transfer mechanisms and synchronizations (required to guarantee the
view synchrony property) create a last additional cost. In Figure 6, the cost of an atomic
broadcast in a set of 5 domains is analyzed. A first crash of a proxy (without any local
heir) occurs after 50 calls to this service. After 250 calls,a second proxy (in another
domain) stops also definitely its activity. In both cases, the cost of a call increases each
time the crashed process is supposed to act as a coordinator (5 times just after the first
crash and 7 times just after the second crash). The view change has a high impact on
the performances but immediately after a normal behavior isobserved again. Note that
timeouts have not be tuned to reduce this phenomena. Moreover crashes are rare and
usually masked by the heirs of the proxy.
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7. Conclusion
This paper presents PARADIS, an adaptive system based on a Consensus building block
that has been designed and implemented in a Grid dedicated togenomic applications. Re-
source allocation and dependability are particular issuesthat require a continuous adap-
tation to the changing computing environment. In the proposed approach, an agreement
service is used by all the domains to acquire the same set of accurate data describing the
current state of the Grid. Based on this unanimous observation, each domain can enact
the right adaptation to react to the discovery of changes.
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