PARADIS: an Adaptive Middleware
for Dynamic Task Allocation in a Grid

Michel Hurfin !, Jean-Pierre Le NarzuP, Julien Pley?, Philippe Raipin Parvédy?

LINRIA Rennes / IRISA — Campus de Beaulieu, 35042 Rennes ceffeance
2GET ENST Bretagne/ IRISA — Campus de Rennes, 35512 Cessdgrs — France
3University of Rennes / IRISA — Campus de Beaulieu, 35042 Bsmedex — France

{hurfin,jlenarzu,jpley,praipinpt@risa.fr

Abstract. The major purpose of a Grid is to federate multiple powerfed r
sources into a single virtual entity which can be accessaddparently and
efficiently by external users. As a Grid is usually an unigkssystem involving
heterogeneous resources located in different geograpmaains, distributed
and fault-tolerant resource allocation services have tptmwided. In particular
when a crash occurs tasks have to be reallocated quickly atahaatically, in
a completely transparent way from the users’ point of vielws paper presents
PARADIS, an adaptive middleware based on a set of basic agreemevitsesr
that has been integrated within an experimental Grid deididdo genomic ap-
plications. Most of these time-consuming applications@mmposed of a huge
number of independent tasks.

1. Introduction

A Grid is a distributed system involving heterogeneous ueses located in different ge-
ographical domains that are potentially managed by diffeoeganizations (companies,
laboratories, universities, ...) or individuals. The niggarpose of a Grid is to federate
multiple powerful distributed resources (computers bsib @lata storage facilities) within
a single virtual entity which can be accessed transparemtty efficiently by external
users. Most of the time, resources aggregated within suaidaage high-performance
computing resources: powerful computers and clustersiboti@arge databases and soft-
wares whose behavior can be tuned by selecting configurapittons to fit the needs of a
particular Grid user. In our study, we consider a Grid coneplas resources provided by
various institutions. These potential contributors amntdied preliminarily and corre-
spond to well-established institutions that agree to stiae resources and to trust each
other. Yet each institution keeps its independence andidrae The decision to include
or to exclude some (or even all) local resources from the Gaidbe taken at any time by
the local administrator without any coordination with thtbers. Similarly, the security
policy, the maintenance requirements and the rules useditage concurrent accesses
between the Grid users and the institution’s members (whigyuse their local resources
without notifying the Grid management system) are definedlly.

In this general context, we aim at developing services thihtllow a Grid user
to continuously take full advantage of the computing powared by the Grid in a sim-
ple and completely transparent manner. In this new busmesiel, the administrators of
the Grid have now the responsibility of ensuring that sudhitiresources are deployed to

meet the varying workload demands of the users. Whateveirtienstances, a complete
transparency and a quick response time are always expectheé loustomers. To fulfill
these two requirements adaptive control mechanisms hawe pooposed on one hand to
cope efficiently with the dynamic changes of the computingacity of the Grid (even if
these changes are unpredictable) and on the other handributis the tasks among the
resources in an efficient way (dynamic load balancing). THads us to address two major
issues that both require a continuous adaptation to thegamgueomputing environment,
namely theResource allocatiomssue and thelependabilityissue. We propose to solve
both problems in an homogeneous way using a slightly moddredip concept [15].
More precisely, all distant interactions between domagrsasponding to distinct organi-
zations are managed by a small group of registered procegsactly one per domain).
Each member of this group acts asnasterfor its own domain and interacts with the
other members of the group to build consistent observatibnsf current workloads in
each domain and (2) of the current composition of the grouphat sense, we argue that,
in a distributed system prone to failures, an agreementcgeiy a key concept to trans-
form several local views into a single global one withoutiogtfor a centralized control
approach and thus without having a single point of failufasagreement service allows
all the domains to acquire the same set of accurate datailnilegcthe current state of
the Grid. Based on this unanimous observation, each doraaifocally enact the right
adaptation to react to the observed changes.

In addition to the dynamic evolution of the set of resourtls,proposed mech-
anisms have to cope with unreliable estimation of the watlof each resource (even
when the set of resources is stable). First, for some péatiepplications, the duration of
a task cannot be estimated precisely. This may create aahffe between the estimated
workload used by the task allocation mechanism and the reedlead. Second, the ad-
ministrator of a domain may refuse that his resources anegxely devoted to the Grid.
Some local applications can be launched concurrently kal lnembers of the institution
without using the Grid mechanisms. In that case the worldaddhe used resources in-
crease without any control. In all the cases, adaptive nmesims are necessary to adjust
the task allocation with regards to these unforecast warktthanges.

This paper focuses only on the above mentioned aspects désign of our grid
(namely transparency, resource allocation and depemgabfdditional mechanisms de-
veloped to offer a secure and interactive access to the @rolugh a standard WEB site)
are not detailed herein. The grid architecture and softwaesented in this paper have
been experimented in a grid call&@noGRIDB and is dedicated to genomic applications:
it federates resources belonging to genomic or bioinfolsatenters dispatched in the
western part of France. The amount of shared data (progfdessand databases) that
can be accessed and maintained through a Grid is an impéataot when evaluating the
interests of Grid Computing. When a Grid is dedicated to d-wlehtified community of
users that have mutual interests and may agree on some ddiffows, the volume of
common information managed within the Grid is much more irtgd.

The overall paper is organized as follows. Following thigdduction, Section 2.

1This Grid has been designed in the context of a project progted “ACI GenoGRID” and founded
by the French Ministry of Research [12]. This project britggether researchers in biology and computer
science.

outlines the relationships with some related works. Sae@idocuses on the interactions
between a user and the Grid. In particular, we detail thenaragiing rules that have to
be respected by any application conceived to be executedrogxperimental Grid. Sec-
tion 4. discusses the multi-levels structure of the Gridohhs a key characteristic of our
approach. Section 5. presents the architecture of the evidde RRADIS. Some exper-
imental results obtained during the implementation andueof the Grid by biologists
are briefly presented in Section 6.. Finally, Section 7. tudes this paper.

2. Related Work

The projects that are the most related with our work are aiyuGrid computing projects
and also public-resource computing projects. Both shaelfective of federating mul-
tiple computing resources for use by cpu-intensive apptina. Although it should be
easier to address the dependability issue in Grid compuiisifjlorms (i.e. institutional
projects) than in public-ressource platforms, we obsenet Yery few projects has in-
cluded sophisticated mechanisms for tolerating and mgdkitures. However, we pro-
vide pointers to some projects that address, in some sémestult-tolerance problem.

- The OurGrid project [4, 5] is a public resource project lobse a peer-to-peer approach
where the user of the Grid has also to act as a provider of ressu OurGrid imple-
ments a fault-tolerance mechanism based on TCP/IP timeWien the broker, located
on a client machine, detects that the connection with a remmatchine executing tasks is
broken, it reallocates the tasks on another machine. Qiyréime architects of OurGrid
are working on a efficient, flexible and adaptable implenmtgonaof a failure detection
service as well as on an easy-to-use interface to such aseiey plan to evaluate the
interests of such a work for the OurGrid project.

- In the BOINC system [2], fault-tolerance is ensured by icgting tasks execution on
multiple sites (redundant computing). A "transitionerhegponent is in charge of generat-
ing the results; Then, as soon as a quorum of results is rdaaligalidater” component
calls an application-level function to decide if the resiwdte consistent and to select a
canonical result. The major advantage of the fault-tolenaechanisms implemented in
BOINC is that it allows to protect against failures as wellagminst malicious partici-
pants.

- Globus [7] and UNICORE [1] are probably the most famouseyst to provide a Grid
infrastructure. The facilities provided by these two wedkablished systems address sev-
eral issues not discussed in this paper. Our goal is to shakgesource allocation problem
in an asynchronous and unreliable setting. Until now, fauare addressed within these
systems only through the definition of a centralized failom@nager that is in charge of
detecting and notifying the observed crashes. We claimttiimBpproach is not the best
solution because it creates a single point of failure.

3. Access to and Use of the Grid

As indicated previously our major objective is to provideim@e and transparent ac-
cess to the Grid dedicated to genomic applications. As albiblogists are not expert
in computer science, all the problems related to the exacwf an application have to
be masked. In practice, a biologist can launch his favopidieations from anywhere

through one of the identified web portdls Any Grid user has to be registered first to
get an account: he needs to fill a form with necessary sedufitymation and receives
latter a certificate that allows to authenticate him duriagresession setup. This registra-
tion procedure allows to manage within the Grid private civées containing personal
files (applications, private files and in particular files @oning the results of previous
executions, ...). Thus after the login phase a user hassatzéss personal environment
containing only familiar information related to his own iadtes. At this stage, the bi-
ologist has the possibility to launch one of its applicasiday selecting this application
among a list of previously identified applications. The pnahary registration of any
application that will be executed in the Grid is mandatoryour approach and has to
be done once (but not necessarily by a future user). In adit the obvious benefits
in term of security, this strategy allows to gather inforimatabout the application itself
(list of parameters that are sometimes optional and may tefalt values, list of used
databases, requirements of the application in terms obtipgrsystem or memory space,
estimated volume of outputs and estimated execution tirb&sred during tests of the
application on different resources,...). At the registratime, the provided information
is logged in specific repositories. In every domain, a copthefapplication code and
copies of the accessed data banks are created. In every; pasiaple web page is also
created to simplify the submission process: a future uskrjuwsit have to indicate, via
this web form, the values of the input parameters and theitotaof the input files in his
private directory. Once the submission is done, the Grid liae no more to interact with
the Grid to ensure the completion of his application. Eveemvthe computing capacity
of the Grid changes dynamically in a predictable or unptetlie manner (voluntary in-
sertion or withdrawal of local computation resources, urglaaring of resources between
members of an institution and Grid users, crashes of soroemass, ...) reconfigurations
are performed automatically without the help of the Gridrugéhen his execution termi-
nates the Grid user is informed by an email. Yet at any timdydsealso the possibility
to consult the progress of the execution on the web: the nuofliasks already executed
and an estimation of the number of remaining tasks are peavid

To benefit from the fact that many genomic applications cailyehe split into
several independent elementary tasks, we impose someesprgggramming rules. The
main constraint is related to the high-level structure ef¢bde corresponding to the ap-
plication. This code has to be divided into two differenttpa(l) an uniqgue main task and
(2) one or several elementary tasks. The functional aes/ihat have to be performed are
described within the elementary tasks. On the contrarydteeaf the main task consists
mainly in initiating and coordinating the activations oéte elementary tasks. This con-
trol activity is done using a set of three additional prines called SUBMIT, WAIT and
KILL. Once the input data needed to execute an elementakyisamvailable (extracted
either from the inputs provided to the global applicatiorthwy user or from the result re-
turned by a elementary task previously executed), the ¢xecaf the elementary task is
submitted by the main task using the non-blocking primi®BMIT. The WAIT prim-
itive allows to block the progress of the main task till aktmentioned elementary tasks
have been completed. The WAIT primitive is necessary toteraaynchronization point
when two sets of elementary tasks have to be executed insegudhe last primitive

20ne of these portals is currently installed in our own ingtt at the following address:
http://byzance.irisa.fr:1980/genogrid/

allows to stop the execution of the specified elementarysta3ke role of supervision
played by the main task also includes the gathering of resedtirned by the elementary
tasks and the final generation of a unique result file acdessdm the Web portals. As
indicated in [17] the computation performed by a main task saturate the machine
where this main task is executed. Thus in our approach bethesitary tasks and main
tasks are taken into account by the load balancing mechaniisrection 5., we will
describe how the main task and the elementary tasks sudmditeng the execution of
this main task are allocated in the Grid.

4. A Multi-Level Organization

As indicated in the Introduction, the grid we consider is adilomogeneous and uni-
form set of resources managed by a single institution biierad federation of several
institutions that are located in different geographica&aarand that agree to merge part
of their computing facilities. A local administrator is asgated to each domain and is
in charge of managing the level of participation of its ingion in terms of computing
power. A domain is more than just an administrative entitgs®urces within a domain
are connected through local area networks. Therefore, aithoim a synchronous sub-
network in which bounds on the transmission delay exist ardkaown. These kind
of assumption simplify the design of a master: a machine argsh of controlling the
Grid’s activities within its domain. The Grid is deployedesthe internet. For security
purpose, only a few machines in a domain are connected Wireith the outside world.
Therefore, interactions between domains can be limitedgmap of machine, one per
domain that are responsible to interact with the other domadn a large scale Grid, the
only reasonable assumption is to consider that this setoxigs corresponds to an asyn-
chronous distributed system. An asynchronous system iactesized by the lack of a
global synchronized clock, and puts no bound on the trarsamigielay of messagés
In some sense, domains can be considered as “synchronandssh an asynchronous
sea”. Most of the difficulties encountered when designingl Goftware are related to
well known problems in distributed computing (observatafrihe global state of a dis-
tributed system, crash failure detection, ...) that arel harsolve when the system is
asynchronous.

In the following sections, we describe successivelydbmain levebnd theGrid
level on which our current organization of the Grid relies. Throulge definition of a
two-level architecture that can be extended to more tharléwals, we aim to provide a
simple and realistic model for Grid-computing. As resouwatiecation and dependability
issues have to be tackled at the two levels, this model alieis identify the nature of
the potential changes in the computing environment, toraete how these changes are
observed and to propose adaptive solutions.

4.1. The Domain Level

A domain is a set of heterogeneous nodes which communicaesiymchronous way.
A node can be either a resource of the Grid or a machine devotedntrol activities.
The management of the domain is organized according to tletemslave model: in

3Such a bound may exist but either this value is unknown or tioevk value is so high that it cannot be
used to define reasonable timeouts.

Users

Portals

;=0 ; \)

. @ \ / @ v SO ! Masters/Proxie
: ’ Y ’ Y / * i (level 2)
Ry e e e e e e ————— .

1] \
\

,,
] \ v
’ \ , I’ \
’ \ ’ \ ’ N
; Y ; Y . ‘. Resources
1
1 1 1

____________ v m—e - - - - - -1 e g }

Domain X (level 1) Domain Y (level 1) Domain Z (level 1)

Figure 1. Grid Hierarchy

each domain, a single node named thasteris selected to manage all the other nodes
(named theslave$. In particular, the master has to schedule all the tasksecaout in

its domain. At any time, the master can check the loads ofates. This information is
used to compute an appropriate local scheduling of tasks cdmposition of the domain
is dynamic: the administrator of a domain can decide to add cgmove local resources
from its local set of computing facilities accessible thgbuhe Grid. Of course, these
modifications leads to increase or to decrease the compeaijpacity of the domain. We
assume that resources always join or leave the domain bgsé&gg to the master.

Nodes fail only by crashing. A faulty node behaves accordinigs specification
until it stops prematurely and definitively its computatidks a domain is synchronous,
all the crashes can be detected in a reliable way. When tkha ofaa resource is detected
by the master, the master distributes again the tasks (uglyi allocated to the faulty
node) among the remaining resources. The crash of the ntestealso to be tolerated.
Some nodes (theeirs) are preselected to replace the master when it disappelaanks
to a leader election protocol, a single heir is allowed tdaepthe previous master. If no
node can replace the master, all the domain becomes uraeailaf course, during the
computation, the heirs have to keep track of the whole kndgéeof their master. As the
role of these backups is just to ensure that there is not segnognt of failure per domain,
we will no more discuss about them in the remaining sections.

4.2. The Grid Level

The Grid is an asynchronous network connecting differemiaos (Fig. 1). To avoid a
flood of the Grid, only one node per domain is allowed to comicate with the other
domains, this node is called tipeoxy. All the proxies of the Grid constitute a group. In
practice, a single node per domain acts both as the proxyh@aster. Like the compo-
sition of a domain, the composition of the network of domasnslso dynamic. Through
invocations of thgoin andleaveoperations, the local administrator of a domain can de-
cide (independently from the other administrators) to ad@move his own domain from
the Grid whenever he wants (maintenance and repair, altegnperiods of private and
public use of the local resources, ...). A domain is unatéel& no node of this domain
can act as a proxy/master (occurrence of crash failured)tbeidomain has been dis-
connected from the Grid (occurrence of communication fagutemporary partitions).

On one hand, join and leave operations are intentional amadioast to all the members.
On the other hand, evolutions caused by occurrences ofdadlte unpredictable and are
not necessarily observed by all the members of the groueptoposed solution, each
proxy is coupled with a failure detector module which maiméaa list of domains that

it currently suspects to be unavailable.Gkoup Membershigervice will ensure that all
the proxies, that are currently members of the group, shaoasistent knowledge of the
past history of the group, namely, tfegn andleaveoperations already executed and the
failures suspected to have occurred.

5. Architecture of Paradis

The software architecture of Paradis (see Fig. 2) is definedrding the two-level orga-
nization of the Grid. At every domain, the master has to marhg domain itself and the
coordination with the other masters. These two distin@gaire played by two modules:
Domain Manager andGrid Manager. The Domain Manager is in charge of managing
resource allocation within a domain. When asked by the Grahdger, it computes a
score (also called a bid) for a task that reflects the adegbetyeen the domain and
the task, i.e. the ability for the domain to quickly execute task. The Grid Manager
module is responsible for determining whether the domalreibngs to should execute
or not a task; Therefore, it has to interact with the otheat granager modules. The Eden
framework is in charge of these interactions; It providesght of grid managers with a
reliable group service that enables them to take faultdoledecisions for task allocation.
Masters use the service of Eden to agree on a vector of saaek éntry in the vector
corresponding to the score of a domain). Then, by applyingtarthinistic algorithm,
every master can unambiguously determine on which domaitagk has to be allocated.
They select the same entry of the vector namely one entryhwdoatains the best score
that have been proposed and they decide that the corresypothaiinain will be in charge
of the execution of the task. The two modules and the Web lpootamunicate via the
exchange of notification events.

Section5.1. (respectively 5.2.) discusses how the gridasaged at the domain
level (resp. the grid level).

5.1. Management at the Domain Level

Every domain is managed following tiaster-Slavesnodel, with aDomain Manager
(DM) playing the role of the Master who assigns tasks to tlseueces of the domain,
depending on their capabilities to execute them. The DM miaglt like any machine
of the domain, so somieeirsexist in the domain, ready to take the DM’s place in case it
crashes.

Bids and Auctions : The execution of a main task or the execution of a set of eléangn
tasks is asked through the generation of a request. All ke taentioned in the request
will be executed within a single domain but perhaps by défferresources of this domain.
As the resources are different and have perhaps differerdioaals, the time required to
execute a task may vary from one machine to another. A loahbaig mechanism has
to be used to find, at a given time, the best distribution ofrétiests on the resources
that are currently available. In Paradis, this is impleradrthanks to a bid mechanism.
The goal is to determine if a given domain will be in charge oéquest and to identify

‘ WEB Portal ’

ﬁ&

[End] Notification [Request] Notification

Broadcast, Propose,
Get_Message

Grid Manager | EDEN

[Execute] Notification [Request, End, Giveup] Notification

Domain Manager

Master

Figure 2. Architecture of Paradis

the local resources it plans to use. To achieve this goakeitpeest has been previously
broadcast to all the DM using a atomic broadcast service.

First let us assume that a requéstis composed of a single task. When a DM
receivesR; from the GM, it determines which resource of its domain isrtist appro-
priate to execute the task by computing, for every resoieg, a bidbid, ; (also called
a score) representing the capability/®ds; to treatR; as quickly as possible. Actually,
this bid corresponds to the estimation of the time needednoptete ?; (waiting time
before execution included). Thus it takes into account tiveent workload of a resource
and the estimated execution time defined when the applichas been registered. K;
cannot be executed dRes; for incompatibility reasons, thefid; ; = co. Once the DM
has computed the bids for all its resources, it will seleetdheRes,,;, with the lowest
bid. If this bid is over a dynamic threshold (whose initialuais defined for each type of
task and increases after each new computation of the bickaa#k), the bid is also set to
Q.

When the request does not contain a single task to execuiz plag of tasks, there
are many ways to calculate the bids, depending on the syrgtegwant to implement.
You may want to get the first result as soon as possible, or ymuprefer to get the whole
bunch of result as soon as possible. These two examplesporé to two different ways
of compute the bids, and hence to two different task alloosti The main advantage
offered by the bid mechanism is that the bid computationtaloindependent from the
architecture of the grid. To implement a new load balancingtegy, a user just has to
change the formula that calculates the bid.

Once a bid has been computed, it is transmitted by the DM tdGtke At the
grid level, the bids are used to make auctions between tiferelit domains: thanks to
agreement protocols, all the GM agree on a single vectords @ne per domain of the
Grid). The auction is won by the domain that has proposedaivest bid (different from

00). The use of a dynamic threshold allows to postpone the idecighen the resources
are already too busy.

Processing of a Request on a DomainWhen a DM (which has proposed the lowest bid)
receives some requeRt to treat from the Grid Manager (GM), it determines again \Wwhic
resourcelRes is the most appropriate to execute itAés is not available at this moment,
then it adds the request to a lidtait_Req of requests to execute. Oné&ks is available,
the DM executes the tagk contained inR;. Then it remove$:; from Wait_Req and add

it to the list Exe_Req of the requests that are being executed. Ofids completed and
has returned the resultsult;, Res sends a messagEND, R;, result;) to the DM. The
DM removes then the request froBwe_Req and notifies the GM thak; is completed
and has returned the resuttsult; thanks to the notificatiofEND, R;, result;) .

The taskT; contained inR; may correspond to a main task. In this case, this
main task generates some new requésts, thanks to the SUBMIT function. Then, the
DM notifies the GM that there is a new requésgt.,, to send on the grid thanks to the
notification (REQUEST R;) .

In case there is no available resource to execute theltastintained inR; (this
may be the case if the resource that was supposed to exetftehe domain), the DM
has to notify the GM that it cannot tre&t, so thatR; can be executed on an other domain.
This corresponds to the notificati¢GIVEUP, R;).

5.2. Management at the Grid Level

At the grid level, due to the asynchronism of the system, gréshagement is more chal-
lenging than at the domain level. The lack of bounds on comaation delays makes
impossible to distinguish a slow proxy from a failed proxyhaf prevents to implement
reliable fault detection. Under such conditions, reacl@ing@greement on task allocation
and grid composition is impossible. Hopefully, this reskitow as the FLP impossibility
result [6], can be circumvented thanks to the concept ofliatnle failure detectors [3]
that observe the availability of remote proxies. Theseufas detectors are said “unreli-
able” because, in an asynchronous system, the detectidiaité@ proxy by other proxies
may be delayed or an available proxy can be mistaken for &/fank by some proxy [3].
Unreliable failure detectors can be classified accordinthéoproperties (completeness
and accuracy) they satisfy. A class of failure detectorotehCS is of particular inter-
est because this class has been proved to be the weakestattiegio solve a problem,
called the Consensus problem, that is very close to the tastation problem we have
to solve.

The consensus problem is defined in terms of two primitivéded@roposeand
decide In the consensus problem, each process proposes an vailied and then exe-
cutes a consensus algorithm until one of the proposed vaweided. The agreement
problem we have to solve is close to the consensus problemdifierence with a clas-
sical consensus is that the decided value should not be aihe giroposed values but a
vector of the proposed values. This problem is quite sinid#ine Interactive Consistency
problem.

EDEN : Eden (see Fig. 3) makes use of the unreliable failure deteotaept to provide
Paradis with a reliable group communication service [8].efe@s based on a Generic
Agreement Framework, callesiar, described in [10]. IrGAF, different instantiations of

the GAF parameters lead to generate different algorithms thatesefliciently the agree-
ment problems. An instantiation is given by a concrete agexd component that imple-
ments the interface of the agreement service.

We identify three concrete agreement components which are:

e Atomic Broadcast. It ensures that messages sent to the gfquipxies are deliv-
ered in the same order to all the members.

¢ Interactive Consistency. It ensures that all the membatstiopose a value decide
a same vector of values.

e Group Membership. It is in charge of managing the computaditd installation
of new views whenever it is necessary. One important prgparthis service
states that all members of the group should reach consebsus the current
membership (who is in the group and who is not) [9].

Eden publishes a unified interface to the concrete agreeronemponents needed
by Paradis. This unified interface exports three operati@ROADCAST, PROPOSE
and RECEIVE. The BROADCAST operation is used by a proxy teelisinate messages
to the other proxies. It relies upon the service of the AtoBrioadcast component to
ensure that every proxy will receive messages in the saneg.orie PROPOSE operation
allows a proxy to propose a score for a given task. The Intieea€onsistency component
used to implement it ensures that every proxy will decide dame vector of scores.
Finally, the RECEIVE method is the counterpart of the BROAET and PROPOSE
operations; it ensures that every proxy will receive decision the vector and messages
in the same order. The Group Membership component is usetbtadp a proxy with
information about suspected remote proxies. A proxy gessitiiormation through the
RECEIVE operation of the Eden interface.

Atomic
Broadcast

Failure
Detector

Component Component

Interactive
Consistency
Component

[Generic
7H Agreement ‘
\ Component

-

Group
Membership
Component

EDEN

Figure 3. Structure of the Eden framework

How Paradis uses this interface is explained in the follgvgnbsection.

5.3. Algorithm executed by the Grid Manager

As mentioned previously, the role of a Grid Manager (GM) isnanage the distribution
of the tasks over the grid. It makes the junction betweenws domain, represented
by the Domain Manager (DM), and the other domains. Thereftg@ctivity is first, to
communicate with the other GMs via Eden and with its coupl&titbrough notification
events, and second, to manage two lists of tasks: a list okstg to allocate and a list of
the requests that are currently being processed by evergidom

The Figure 4 presents the protocol executed by the GM. Itistnsf two parts:
Actions in Part 1 are in response to messages received frewthier GM through Eden;
Actions in Part 2 follow notification events coming from theupled DM.

Part 2 presents the 3 kinds of notification events a GM canved®m its local
DM or from the local portal. When a request is submitted toghd by a portal or by
a DM, the GM is notified of this submission and broadcasts duypiest to all the GM
through the BROADCAST function of EDEN. A notification of tlead of the treatment
of a request, or of the giving up of a requestceived from the local DM is broadcast
likewise.

Any message broadcast by a GM is received by every GM (sendkrdied) via
the ReceiveMessage() function of EDEN. This function returns the thsgees of mes-
sages broadcast by GMs (REQUEST, END, GIVEUP) in Part 1 andatiditional mes-
sages types: DECIDE and REMOVE. Part 1 concerns the readibaihese messages.

e (REQUEST R) informs the GM that there is a new requésto treat. It addsR
to Buffer, a FIFO that contains all the requests that are not allogade(b).

e (DECIDE, [bid; ¢, bid, 1, ..., bid; ,,]) returns the bids of all the domains for request
R; (6). The deterministic function Allocate() determines ethdomainD,,;, has
proposed the best bid (7). The GM stores the informationfhatill be executed
on D, inthe listAllocations (8). If D,,;, corresponds to the domain of the GM,
then the latest forward®; to its DM thanks to the function Execute() (9). Now
that there is no current auction, a new one can be starte@Nhes ready to bid
(11).

e (END, R;, result;) informs the GM that the reque#t; has been treated and re-
turned the resultesult;. Then, the GM removeB; from the listAllocations (14)
and call the function Stor&esult¢esult;) (15). This function will not “automat-
ically” store the results: it will store it only if the requesad been submitted to
the grid by his local DM or the local portal.

e (GIVEUP, R;) informs the GM that the domain that was in charge of reqé®st
has not been able to treat it. The GM removedrom the list Allocations and
adds it to theBufferof requests to allocate.

e (REMOVE, D;) informs the GM that the domaif,, just left the gri¢. The GM
removes then from the listllocations all the request that had been allocated to
Dy, (18-19) and add them to thHgufferof requests to allocate.

When there is no current auction being processed, a new onstad if there is
some request to allocate in the buffer (26-27). In this ctdse,GM calls the function

4This may happen if the domain does not have any resourcesthre request any more.
SEither after having called the Leave() function of EDEN oving left without a warning. In this case,
the leave ofD;, have been detected by the Failure Detection module of Eden.

Grid Manager

Part 1

(1) readyto_bid < True

(2) While (True) do

3) msg <— ReceiveMessage();

(4) switchmsg :

(5) caseREQUEST R): FeedBuffer(R);

(6) case(DECIDE, [bid; o, bid; 1, ..., bid; »]): begin
(7) Doyin — Allocate (F)Z'd/i’(), bidi,l, . bldz7n])
(8) StoreAllocation (D in, R;);

(9) if Dyin = MyDomain then Executé;)
(10) endif;

(12) readyto_bid < True;

(12) end;

(13) caseEND, R;, result;): begin

(14) UnstoreAllocation (R;);

(15) StoreResult R;, result;);

(16) end;

a7 cas€GIVEUP, R;): begin

(18) UnstoreAllocation (R;);

(19) FeedBuffer(RequestR;))

(20) casg REMOVE, Dy):

(21) Foreachr; in StoredAllocations(D;) do
(22) UnstoreAllocation (R;);

(23) FeedBuffer(R;);

(24) done;

(25) endswitch;

(26) If readyto_bid then

(27) If (R — ReadBuffer()) not NULL then

(28) bid; amyDomain <— DomainAdequacy(MyDomainR;)
(29) PROPOSEbédi,MyDomain)

(30) readyto_bid «— False

(31) endif

(32) endif

(33) done;

Part 2

(34) While (true) do

(35) Upon notification of notif,

(36) notife {(REQUEST R;), (END, R;, result;), (GIVEUP, R;)}
(37) BROADCAST(notif);

(38) done;

Figure 4. Grid Manager’s protocol

DomainAdequacy(MyDomainR;) (28). This call makes the local DM compute the bid
for the execution of?; on the resources of the domain. The GM sends then this bid to
Eden (29) and puts a lock on reatty bid to avoid concurrent bids (30).

In addition to this algorithm, the GM implements some proted¢o synchronize
the listsBufferand Allocations when it joins the grid.

6. Experimental Results

We have helped different teams of biologists working on geicaanalysis to adapt the
designs of their favorite applications to the few requiratsemposed by our experimen-
tal Grid. More precisely, the codes of three different agadions have been structured
into main/elementary tasks and registered in the Grid ith sumanner that they can now
be executed by external authorized biologists from one@pitrtals (for example, from
http://byzance.irisa.fr:1980/genogrid/). The first expeces we have conducted have val-
idated the interest of a Grid approach for this range of appibns that exhibit different
characteristics. The two first applications aim to compamneognic sequences contained
in two distinct data banks. In the first case, the applicatimuses on the study of viral
infections of the testicles: from the raw data containechm data banks, a reduced set
of pertinent data is selected to be analyzed. Thanks toritialifiltering done once, the
number of comparisons is approximatively equal@&10°. The second application aims
to identify new human mitochondrial proteins [16]. Usingragée machine, the execution
of the first application lasts several hours while the seapulication ends after several
months. In both cases, the computation power of a Grid altovdgcrease the execution
time: the main task is used to slice the whole computation &pre-defined number
of independent elementary tasks that are submitted inlphréh each elementary task,
a portion of the first data bank is compared to the whole sedaa bank. Interesting
behaviors occur when the two applications are running awantly. In the presence of
applications whose duration are not of the same order of imalg the choice of a gran-
ularity for the elementary tasks (which has an impact on thalrer and the duration of
the elementary tasks), the choice of adequate threshottishanaccuracy of the static
estimation of the available resources offered by the Gedeasential factors when defin-
ing the static code of the main task. As the termination ofghertest application can
be postponed after the end of the long-lasting ones, ourexmes show that dynamic
adaptation mechanisms have also to be added to the curfeméisoto maintain equity
between the time-consuming activities and the light apgibiis. The third application
is related to the protein threading problem [14, 13]: it abm&ssign a 3D structure to a
protein sequence. This application requires three phdsssnputation that have to be
executed sequentially. WAIT statements are used in the taainto create two interme-
diate synchronization points. In addition to the partic@ucture of its main task, this
application is characterized by the fact that an elemeritesly generated during the last
phase has an unpredictable execution time that ranges fs@rtohd up to one hour. Thus,
estimations used to compute the bids are just average vdlaéace this uncertainty, the
definition of an appropriate threshold and the possibitity® back on a previous decision
(by generating a new allocation decision) reveal to be gpyate solutions.

Experiments done with several instances of the three albgpgcations running at the
same time validate the interest of a Grid and demonstrabetiadg the mixing of distinct
applications requires to propose additional strategipsinuzing the use of the Grid re-
sources does not imply that the satisfaction of the usensdsaways maximized. This
problem is not specific to our approach and some of the prapeezhanisms (defini-
tion of a threshold, invalidation of a previous allocatidgrgve shown to be efficient to
implement complementary allocation policies.

As the main characteristic of our solution is to propose &anahical architecture
where a set of processe®(the proxies) interact only by executing agreement progcol

we now provide more details on the cost induced by the exatofiagreement protocols.
Within a domain, the interactions between a master andatd lesources are based on a
master/slave scheme and can be neglected compared to thétbesagreement protocols
executed by processes of different domains. Moreover tteestis are not really specific to
our solution. In the following, we focus on two particulaesarios. In the case of failure
free scenarios, we consider the cost of the atomic broadeaste that is intensively used
in our approach. To obtain a total order on the set of requeesdsto have a consistent
observation of the progress of the computation, each praby periodically this service.

Mean Request Delivering Duration for different Requests’ Interval
(Consensus Round Timeout = 1000ms)

1400

T T

Interval of Requests = 20ms——

Interval of Requests = 40ms->---

Interval of Requests = 60ms--*---

Interval of Requests = 80ms-&
Interval of Requests = 100ms-=-——
Interval of Requests = 120ms-©--
1000 | Interval of Requests = 200ms-e ---

1200

800 | .
600 | A

400 | A

Mean Request Delivering Duration (ms)

/—~/><///"> ke y
200 | P o |
7 *) o »
. »*“’!‘—irﬂﬂ
2 4 6 8 10 12
Number of Processes

Figure 5. Cost of the Atomic Broadcast Service: failure free scenario

In Figure 5, we consider the mean time required to broadcesfjzest using an
atomic broadcast service. It depends on the number of denf@imber of processes) but
also on the interval of time that elapses between two conisedoroadcasts. When the
number of domains remains small (less than ten organizgtitme cost of this agreement
service is acceptable. Of course, consensus-based seareaot scalable and such a
technigue cannot be used to federate thousands of domaiadlyFhe frequency of the
requests is related to the granularity of the elementakstas trade-off between the time
required to allocate a task and the time required to exebigddsk has to be found. To
circumvent this problem, elementary tasks can be aggrégateinches of tasks that will
be handled as single meta-tasks at the Grid level and thesmgesed into elementary
tasks at the domain level. Depending on their durations leid tharacteristics (known
off-line), the number of tasks that compose one bunch canl@etad dynamically during
the execution of the main task.

In Figure 6, we consider the cost induced by the occurrentéaslores. More
precisely, we consider the perturbations induced by arfaidnd the time required to
install a new view. Due to the fact that the system is an asymdus one, the failure
detector mechanism is not reliable. To avoid the withdrawah the Grid of an active
domain, a rather long period of time is necessary beforeclaing the computation of a
new view that will eliminate a domain from the Grid. Duringsiperiod, the suspected
process (which is really crashed) is supposed to act as aicator from time to time.
As a consensus algorithm based on the rotating paradigmtlie atore of our solution,

each round coordinated by a crashed process is uselessaedses the execution time
of the called service up to the fixed duration of a round. Winemew view is computed
and installed, state transfer mechanisms and synchramzadtequired to guarantee the
view synchrony property) create a last additional cost.ijufe 6, the cost of an atomic
broadcast in a set of 5 domains is analyzed. A first crash obaypfwithout any local
heir) occurs after 50 calls to this service. After 250 cafissecond proxy (in another
domain) stops also definitely its activity. In both cases, ¢bst of a call increases each
time the crashed process is supposed to act as a coordibaiores just after the first
crash and 7 times just after the second crash). The view ehhag a high impact on
the performances but immediately after a normal behaviobgerved again. Note that
timeouts have not be tuned to reduce this phenomena. Mareoaghes are rare and
usually masked by the heirs of the proxy.

Mean Request Delivering Duration when failures occur
(Five domains and two consecutive crashes)

2500 T T T T
Number of Requests = 500

Interval of Requests = 200ms
Consensus Round Timeout = 400rs

2000 (- i

1500 - B

1000 - B

Mean Request Delivering Duration (ms)

500 |- 1

OL\AMWJU ,)]

0 50 100 150 200 250 300 350 400 450 500
Request Identification

Figure 6. Cost of the Atomic Broadcast Service: crash failures of some proxies

7. Conclusion

This paper presentsaARADIS, an adaptive system based on a Consensus building block
that has been designed and implemented in a Grid dedicaggohtonic applications. Re-
source allocation and dependability are particular isslh@ssrequire a continuous adap-
tation to the changing computing environment. In the prepagpproach, an agreement
service is used by all the domains to acquire the same setofate data describing the
current state of the Grid. Based on this unanimous obsenjatiach domain can enact
the right adaptation to react to the discovery of changes.

References

[1] J. AlImond and M. Romberg, The unicore project: Uniforno@gs to supercomputing over
the web.Proc. of the 40th Cray User Group MeetintP98.

[2] D.P. Anderson, BOINC: A System for Public-Resource Catimgy and StorageRroc. of
the 5th IEEE/ACM International Workshop on Grid CompufiNgvember 2004.

[3] T. Chandra and S. Toueg, Unreliable Failure Detector®Rieliable Distributed Systems.
JACM 43(2):225-267, 1996.

[4] W. Cirne and D. Paranhos and L. Costa and E. Santos-Nelté.@rasileiro and J. Sauve
and F. A. B. Silva and C. O. Barros and C. Silveira., Running-B&Tasks Appli-
cations on Computational Grids: The MyGrid ApproaPinoc of the Int. Conference
on Parallel Processing (ICPRR003.

[5] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andra@ Novaes, M. Mowbray Labs
of the World, Unite!''in Journal of Grid Computing (to appear2006.

[6] M.J. Fischer, N.A. Lynch. and M.S. Paterson, Imposgipdf Distributed Consensus with
One Faulty ProcesSACM 32(2):374-382, 1985.

[7] I. Foster and C. Kesselman, “The Globus Project”: A St&eportProc. of the 7th IEEE
Heterogeneous Computing Workshpp. 4-19, 1998.

[8] F. Greve, Réponses efficaces au besoin d’accord dan®up@Ph.D. ThesisUniversity
of Rennes, november 2002.

[9] F. Greve, M. Hurfin, M. Raynal, and F. Tronel, Primary Campnt Asynchronous Group
Membership as an Instance of Generic Agreement Framewuook. of the 5th Int.
Symposium on Autonomous Decentralized Syspagss 93-100, 2001.

[10] M. Hurfin, R. Macédo, M. Raynal, and F. Tronel, A Gendfredmework to Solve Agree-
ment ProblemsProc. of the 18th IEEE Int. Symposium on Reliable Distridusg's-
tems (SRDS’99pages 56-65, 1999.

[11] M. Hurfin, J.-P. Le Narzul, J. Pley, and P. Raipin Pdg&\ Fault-Tolerant Protocol for
Resource Allocation in a Grid dedicated to Genomic Appiaa Proc. of the 5th
Int. Conference on Parallel Processing and Applied Mathigesa(PPAM 2003)

[12] D. Lavenier, H. Leroy, M. Hurfin, R. Andonov, L. Moucharaihd F. Guinand, Le projet
GénoGRID: une grille expérimentale pour la génomiquetes des 8mes Jouraes
Ouvertes Biologie Informatique Ma&matiquespp. 27-31, France, 2002.

[13] A. Marin, J. Pothier, K. Zimmermann and J.-F. Gibrat@HT: a filter-based fold recog-
nition method Proteins 49(4), pp. 493-509, december 2002.

[14] J. Pley, R. Andonov, J.-F. Gibrat, A. Marin, and V. Pmm, Parallélisations d’'une
méthode de reconnaissance de repliements de protéiR&SF). Proc. of the 3th
Jourrées Ouvertes de Biologie, Informatique et Mattatiquespp. 287-288, 2002.

[15] D. Powell, Special Issue on Group Communicati6ACM, 39(4), 1996.

[16] Y. Tourmen, M. Ferre, Y. Malthiery, P. Dessen, and P. ey Mitochondrial Diseases
Preferentially Involve Proteins With Prokaryote Homolegun Comptes Rendus De
L'academie Des Sciences-Biologi&27, pp. 1095-1101, 2004.

[17] P.K. Vargas and |. C. Dutra and V. D. do Nascimento and LSASantos and L. C.
da Silva and C. F. R. Geyer and B. Schulze, Hierarchical Ssdion in a Grid En-
vironment.Proc. of the 3rd ACM Int. workshop on Middleware for grid cartipg,
December 2005, France.

