
A Model for CORBA Communications in
Ad hoc Networks

Luiz Lima Jr. and Alcides Calsavara
Pontifical Catholic University of Paraná, Brazil
Post-Graduate Program on Applied Computing

{laplima,alcides}@ppgia.pucpr.br

Abstract. The increasing popularity of wireless-enabled PDAs, laptops
and smart mobile phones, in addition to a continuos explosion in the number
of mobile services and networks, has made it indispensable the construction
of frameworks to aid the development of distributed applications in ad hoc
environments. Since CORBA is a mature and largely used architecture for
distributed heterogeneous systems and because of OMG’s recent move
towards interoperation in wireless mobile environments, it seems appropri-
ate to extend CORBA’s interoperability model so that it can be used in ad hoc
networks as well. This paper focuses on this issue raising architectural
requirements for adapting CORBA’s interoperability model to transparently
deal with communication in ad hoc wireless networks. An architecture, based
on federations of specialized name servers is proposed and a strategy for
routing GIOP messages in such an architecture is defined. Finally, some
implementation issues and performance considerations are discussed.

1. Introduction

Wireless-enabled PDAs and smart mobile phones are becoming increasingly popular. As
a result, a continuous explosion in the number of mobile services and networks has been
recently observed. Wireless networks with static access points as well as ad hoc net-
works of PDAs, laptops and smart mobile phones are required in order to implement a
whole set of new applications that range from collaborative work (during meetings and
conferences, for instance) to extreme scenarios like disaster relief or battlefield environ-
ments. Other examples of applications are context-aware systems that update their
behavior according to its operating environment [1] and sensor networks used in teleme-
try. The potential market of such mobile wireless applications is evidently raising the
interest of business directors, technology managers, solution developers, service provid-
ers, software vendors and mobile devices vendors.

The development that has been achieved in the last years in the area of distributed
systems in static networks makes it inconceivable not to take advantage of the well
established solutions while adapting them to new contexts. One of the most mature plat-
forms that gather a wide range of solutions is the Common Object Request Broker Archi-
tecture (CORBA) from the Object Management Group (OMG). Though OMG has
recently adopted new standards regarding wireless access and terminal mobility [2], very
few implementations are currently available [3]. This is due certainly to the complexity
of wireless network protocols, interoperation details and also because the wireless tech-
nology field is still controversial, a battlefield with each vendor trying to enforce its own
solution to the market. Besides that, the OMG’s adopted standard only contemplates

CORBA communication between terminals and wired networks (the terminal may con-
tain either server or client CORBA objects). There is no mention whatsoever to the pos-
sibility of the application of the concepts in wireless ad hoc networks. Therefore, we
understand, a new architecture for supporting ad hoc CORBA network is necessary.

This paper looks into the problem of communication among CORBA objects located
on ad hoc networks and proposes an architecture and implementation to deal with it. The
model is built upon well-known research topics deliberately avoiding details about
underlying wireless protocols or specific routing algorithms for ad hoc networks. It is
organized as follows. Section 2 gives an overview of CORBA’s interoperability model
and terminal mobility specification in order to establish common grounds upon which to
define the proposed solution. The general model is presented in Section 3 and detailed in
Section 4 (federations of specialized Name Servers - ah-NSs). Section 5 shows how mes-
sages are routed in the networks using CORBA communication mechanisms and the
implementation framework of the prototype developed together with some performance
considerations are discussed in Section 6. In Section 7, some related works are com-
mented and conclusions are drawn in Section 8.

2. Overview of Interoperability and Terminal Mobility in CORBA

A deeper look into some relevant features of CORBA is essential at this point in order to
lay the foundations for the proposed ad hoc communication architecture. The following
sections highlight some of these features.

2.1. CORBA

CORBA aims basically to provide interoperability among distributed objects (possibly
located in heterogeneous environments) and additional useful distributed services (e.g.
Naming Service, Trading and so on). This powerful combination of interoperability and
services greatly aids the development of portable distributed applications by removing
the developer’s necessity of being concerned with low-level communication details.

A CORBA object, which is a “virtual” entity, is “incarnated” by a servant that imple-
ments the object’s operations in a specific programming language. Servants exist within
a server application. Clients issue requests to CORBA objects and receive replies from
them through the ORB core that basically provides interoperability. In order to receive
requests, CORBA objects must define their interfaces in a specific language called IDL
(Interface Definition Language) so that all other components of the system become capa-
ble of understanding and, therefore, capable of using these interfaces. Additionally,
CORBA objects that implement these IDL interfaces must somehow publish their refer-
ences in order to be accessed by clients. These object references are analogous to C++
class instance pointers, except for the fact that they may denote distributed objects.
These references:

• identify each one exactly one object;
• can be nil;
• can dangle (i.e. they may become invalid over time for they propagate in an uncon-

trolled way, from the perspective of the server);
• are opaque (i.e. they may carry standardized components as well as proprietary

information);
• are strongly typed and support late binding (of derived types - IDL supports inher-

itance);
• are interoperable (i.e. used by different ORB vendors - this is still a consequence of

being opaque).
References are published and therefore acquired either from files (containing string-

fied forms of it), or from well-known services (such as Naming Service or Trading Ser-
vice), or from another object that may return it, or from some other way in which the
reference can be sent (e.g. E-mail, web page, etc.).

When a client receives an object reference, it instantiates a proxy object (called stub)
that is responsible for supplying the same interface as the target object. This way, the cli-
ent invokes operations on the proxy’s interface which, in its turn, sends a corresponding
message to the remote servant. On the server’s side, another proxy (called skeleton)
receives the messages sent by the client and performs the calls to the actual servants.
Replies follow the same (reversed) path. Messages among ORBs are coded using the
General Inter-ORB Protocol (GIOP), generally mapped into the Internet Inter-ORB Pro-
tocol (IIOP). However, in order to support inter-ORB communication in wireless net-
works GIOP tunneling is required, so that GIOP messages are mapped into messages of
the actual wireless protocol.

2.2. Interoperability

Though GIOP is the basic interoperability framework of CORBA, it is not a concrete
protocol. It only describes how specific protocols can be created in order to meet the
architecture requirements (IIOP is a concrete realization of GIOP, for instance). The
GIOP specification makes the following assumptions about the underlying transport that
is used to carry messages [4]:

• it is connection-oriented;
• connections are full-duplex and symmetric;
• it is reliable;
• it provides a byte-stream abstraction (i.e. neither receiver, nor sender have to be

concerned about issues like message fragmentation, duplication, etc. - they both
see the connection as a continuous stream of bytes);

• the transport indicates disorderly disconnection.
Any transport that do not meet these requirements needs an additional “adaptation”

layer in order to emulate them. GIOP has basically eight message types, namely:

• Request;
• Reply;
• CancelRequest;
• LocateRequest;
• LocateReply;
• CloseConnection;
• MessageError;
• Fragment1.

However, only Request (originated by clients) and Reply (originated by servers)
messages are of interest here, since these two implement the basic RPC mechanism. The
structure of a GIOP message is composed of a 12-byte GIOP message header (containing
GIOP version, message type, etc.) and a variable-length GIOP message body. The GIOP
message body contains itself a header and body which is specific to each message type.
The main components of the header of the Request and Reply messages are shown in
Figure 1 (in IDL). Note that both Request and Reply messages carry a variable-length
(sequence) service context field that can be used to silently embed additional data to
each request. Service contexts are mainly used to propagate information required by
ORB services such as Transaction or Security.

IIOP is an “instantiation” of GIOP over TCP/IP. IIOP basically defines the encoding
of the Interoperable Object References (IORs). In other words, it specifies how to repre-
sent TCP/IP addressing information inside an IOR, in such a way that a client will be
able to establish a connection to the server to send a request. Therefore, the endpoint
information contained in the IOR in this case is composed of the host name and listening
port number of the server.

The structure of an IOR is represented in Figure 2. The Repository ID is a string
that identifies the most derived IDL type. The Endpoint Info field contains the infor-
mation required in order to establish a physical connection to the server implementing
the object, and the Object Key uniquely identifies the target object (generally, it is
formed by the composition of the name of the Portable Object Adapter (POA) and object
identifier, but each CORBA implementation may use different information).

The important aspect here is that multiple profiles can be embedded into the IOR so
that it may efficiently support more than one protocol and transport. Each profile (whose
type is TaggedProfile) contains a tag field (TAG_INTERNET_IOP in the case of IIOP

1. Only in GIOP version 1.1 and 1.2.

module GIOP {
typedef unsigned long ServiceId;
struct ServiceContext {

ServiceId context_id;
sequence<octet> context_data;

};
typedef sequence <ServiceContext> ServiceContextList;

struct RequestHeader {
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence<octet> object_key;
string operation;
// ...

};
enum ReplyStatusType { NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION,

LOCATION_FORWARD };
struct ReplyHeader {

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

};
};

Figure 1. IDL specification of GIOP Request and Reply message headers

1.1) and a profile_data member (version, host, port number, object key, etc. in case
of IIOP). New user-defined profiles may be appended to an IOR without affecting its
validity in systems that are not able to interpret and deal with these profiles. IORs are
opaque.

2.3. Wireless Access and Terminal Mobility

Generally speaking, mobility may be supported at different levels [5]. The link level is an
adequate level to treat the issue only when the mobility is inside one single link technol-
ogy, location area and administrative domain, which is too restrictive in an heteroge-
neous world. Dealing with mobility at the mobile IP (IPv6) level is enough if micro-
mobility is taken care of on the link level and mobility between administrative domains
does not need any special arrangements. However, the middleware level is the best place
for dealing with mobility between administrative or service provisioning domains.

OMG standards for wireless access and terminal mobility in CORBA [2] are based on
the assumption that no modifications should be applied to a non-mobile ORB in order for
it to interoperate with client or server objects running on a mobile terminal. This ratio-
nale led to the architecture shown in Figure 3.

The Home Domain is the mobile terminal’s administrative home (the organization
that the terminal belongs to). The Home Location Agent (HLA) is responsible for track-
ing the location of each terminal belonging to the domain and for providing additional
special CORBA services. Homeless mobile terminals have no Home Domain. The HLA
provides operations (defined in IDL) for querying terminal locations.

The Terminal Domain comprises everything on the mobile terminal. The outside
interface is the Terminal Bridge (TB). All CORBA invocations whose endpoint is on the
mobile terminal go through the Terminal Bridge.

The Visited Domain contains the Access Bridge (AB), the counterpart of the Terminal
Bridge. The Access Bridge is the passive side contacted by the Terminal Bridge. Both

Repository ID
(stardardized)

Endpoint Info
(stardardized)

ObjectKey
(proprietary)

profile 1 profile 2

...

Figure 2. The structure of an Interoperable Object Reference.

Terminal Domain Visited Domain

Home Domain

HLA

GIOP Tunnelling
Protocol

TB AB

Figure 3. OMG’s architecture for terminal mobility in CORBA

HLA and Access Bridge interfaces are specified in IDL. These interfaces include opera-
tions to:

• query locations of mobile terminals;
• update locations as objects move around from one Access Bridge to another;
• perform hand-off (only the Access Bridge).
The specification includes initial reference operations in both the HLA and Access

Bridge so that objects may register themselves with well-known Name Servers [2]. The
references for servers located in terminals are called Mobile IORs (MIORs) which hide
mobility from clients and even from the ORB that clients run on. Besides the default
IIOP Profile (TAG_INTERNET_IOP), an MIOR contains a Mobile Terminal Profile
(TAG_MOBILE_TERMINAL) defined in IDL in Figure 4. Instead of containing the host

and port number of the actual object, the default IIOP Profile of an MIOR contain rather
the endpoint (host and port number) of the terminal’s HLA (or Access Bridge, in case of
a homeless terminal). The Mobile Terminal Profile component contains information used
by the HLA and Access Bridge to provide mobility transparency of server objects in
mobile terminals.

One of the components in the Mobile Terminal Profile can be of type
HomeLocationInfo which identifies the HLA of the terminal on which the MIOR was
created. Section 5 will show that another specific profile will be needed to route ad hoc
network requests.

When the HLA receives an invocation intended for objects located on known mobile
terminals, it reads the Terminal Profile and sends a LOCATION_FORWARD response to
redirect the invocation to the current Access Bridge.

Once the Access Bridge receives an invocation, it determines the target object and
sends the invocation through the tunnel connecting itself to the Terminal Bridge. If the
terminal is not any more connected to that Access Bridge, it can either respond with a

module MobileTerminal {
typedef sequence<octet> TerminalId;
typedef sequence<octet> TerminalObjectKey;

struct Version {
octet major;
octet minor;

};

struct ProfileBody {
Version mior_version;
octet reserved;
TerminalId terminal_id;
TerminalObjectKey terminal_object_key;
sequence<IOP::TaggedComponent> components;

};

struct HomeLocationInfo {
HomeLocationAgent home_location_agent;

};
};

Figure 4. IDL definition of the Mobile IOR

LOCATION_FORWARD exception (if it knows about the terminal’s current location) or
OBJECT_NOT_EXIST (which should cause the client to retry the invocation at the HLA).

Mobile Object Keys are used to identify objects in mobile terminals. This allows the
HLA and Access Bridge to route invocations to the mobile terminal object in the same
way it is done with Mobile Terminal Profiles.

Tunneling and Forwarding in Wireless Networks

GTP (GIOP Tunneling Protocol) is the communication protocol between the Terminal
Bridge and the Access Bridge, and it has the same reliability requirements as the GIOP.
GTP is designed to be mapped into concrete transport protocols (e.g. Bluetooth). The
components of the GTP architecture are shown in Figure 5. The Access Bridge is respon-
sible for converting GTP into IIOP and back into GTP.

GTP Adaptation Layers are required because generally the transport layers do not pro-
vide all the GIOP (and GTP) requirements such as reliability or orderly message delivery
as mentioned above. This way, the Adaptation Layer is provided as the specification of a
concrete tunneling protocol. Therefore, this layer needs only to define how the transport
is to be used and the format of the transport endpoint.

GTP is composed of seventeen message types, most of which comprising Request-
Reply pairs distributed in four main categories, namely: tunnel management, GIOP con-
nection usage, GTP forwarding and specific purpose messages. There are two messages
out of those that concern us the most: GIOPData and GIOPForward. GIOPData mes-
sages encapsulate GIOP messages (that will contain the routing information in ad hoc
networks, as it will be seen in Section 3). GIOPForward messages are used to forward
GIOP messages to another Access Bridge in case the target terminal is no longer con-
nected to the Access Bridge specified.

OMG’s specification [2] also defines in detail some handoff procedures divided into
two different types, namely: handoff (when a terminal changes its access point) and
access recovery (when a connection is re-established after a sudden loss). Since this
topic is out of the scope of our consideration we will not get into it more deeply.

3. Ad hoc Model for CORBA Communications

Having briefly considered the main points regarding CORBA’s interoperability frame-
work and OMG’s specification for wireless access and mobility, now we move on to the
conceptual ideas behind ad hoc CORBA communications.

CORBA Object

GIOP Layer

GTP Layer

GTP Adaptation Layer

Transport Layer

CORBA Object

GIOP Layer

GTP Layer

GTP Adaptation Layer

Transport Layer

IIOP Layer

TCP Layer

IIOP Layer

TCP Layer

Terminal ORB Access Bridge ORB Network ORB

CORBA Invocations

GIOP Messages

GTP
Messages

Figure 5. GTP architecture in wCORBA

First, each terminal must contain a specialized naming server called ah-NS, so that
local objects may publish their services and local clients may be able to search for suit-
able server objects. If a required service is not found locally, the search is propagated to a
peer ah-NS, as it will be seen in detail in Section 4. Each ah-NS must be reachable at a
well-known endpoint so that it can be easily found by other ah-NSs and a federation can
be readily established. This network of ah-NSs has many similarities to a P2P network
[6]. Inquiry operations are generally used to discover neighboring terminals. In order to
protect individual ah-NSs from unauthorized service access or overloading, name service
contexts and federation contracts can be used as it will be seen in Section 4. The general
architecture is depicted in Figure 6, where the ah-TBs are the terminal bridges described
in the following.

ah-NSs are of key importance in the architecture since they are responsible for the
two main tasks in the distributed system: service publishing and finding (as mentioned
above) and construction of Routing IORs (RIORs) that contain information about
request and reply routing.

A traditional IOR contains all the information needed to establish an end-to-end com-
munication channel between client and server (interface type and communication end-
point). However, in ad hoc networks routing information is also needed since a client
may not be able to establish a direct connection to a server. Therefore, RIORs must carry
additional information for this purpose. As seen in Section 2, the IOR may be composed
of several customized tagged profiles that are ignored by ORBs that do not know how to
deal with them. The idea is to add a new profile - the Routing Profile - which encapsu-
lates information of each terminal in the request/reply path. This profile is gradually built
by each ah-NS participating in a successful service resolution. The RIOR is an IOR
embedding a Routing Profile (to be described in detail in Section 4).

Figure 7 shows how the Routing Profile is constructed by each ah-NS in the service
path. Performing a distributed Breadth First Search (BFS) [7] in the ad hoc network
graph (in order to minimize hop count), each ah-NS appends to the routing profile list the
information needed so that the request would follow the same routing used in the suc-
cessful service discovery. In this case performance is measured in terms of hop counting
(though other metrics could be defined) and the nearer the service is, the faster it is found

ahTBahNS

CORBA
objects

client

ORB

Terminal_1 Terminal_2

Terminal_3

ahTB ahNS

ORB

ahTB ahNS

ORB

Figure 6. General architecture for ad hoc interoperability using CORBA

and the faster requests are routed to it. That is why an efficient searching algorithm is
needed, and, in this case, the distributed Breadth First Search was chosen.

Upon receipt of the RIOR from the server object, clients are now able to issue
requests and receive replies. The routing of each message is in fact supported by embed-
ding the path information required into the message’s context that is available in the stan-
dard GIOP specification (as seen in Section 2.2). The ad hoc Terminal Bridge (ah-TB in
Figure 6) is an specialized Terminal Bridge responsible for including and extracting this
routing information into and from the message’s context, transparently forwarding mes-
sages that are not destined to it. Some changes in the ORBs implementation may be
needed in order to carry other application-specific context information and to avoid any
conflicts. The underlying GIOP adaptation layer can be the same used by wireless tun-
nelling (Section 2.3).

Of course, many details are involved in such a scenario, namely, the establishment of
ah-NS federations, routing of GIOP messages and implementation and performance
issues.

4. Federations of ah-Name Servers and the Construction of Routing Profiles

Ad hoc networks are typically formed by terminals that issue regular inquiry operations
in order to detect reachable neighbors. Once a neighboring terminal is identified (and all
the security policies are checked out) the communication channel (the GIOP tunnel) then
is established. At each side of the channel lies an ah-TB responsible, among other things,
to initiate the negotiation of ah-NS federation contracts leading eventually either to a
federation establishment or to a disconnection. The establishment of ah-NS federations is
mandatory in our model. They are essential to support interoperability between clients
and remote servers. That is to say that one of the first steps in setting up the ad hoc mid-
dleware model is to bind ah-NSs together so they form something similar to a P2P net-
work in which federations contracts determine the level and the rules of the interactions.
For instance, only a subset of known services may be made available to a peer ah-NS and
these policies can be determined in a peer basis. The network of ah-NSs is formed by
inquiry operations and it is, therefore, equivalent to the physical ad hoc network (this is
generally not true about wired P2P networks). The same protocols used in establishing
the P2P networks (e.g. JXTA [6]) can be used to create ah-NS federations, provided that
the differences above are considered.

objx?
objx?

objx?

objx?

objx?
[TEP

7]

objx?

objx

1

2

3

4

5

6

TEP1

TEP2

TEP3

TEP4

TEP6

TEP5

TEP7

TEP = Terminal Endpoint (ahORB)

[TEP3,TEP7]

Figure 7. Building the Routing Profile while searching for objx

Even before the establishment of an ah-NS federation, servers can publish their ser-
vices locally making them, of course, available only to local clients. However, once the
federation in established, any server can potentially be reached by any client (although
some ah-NS may impose restrictions, as we have said).

The search algorithm follows a distributed BFS [7] pattern since the nearer the suit-
able service is found, the better the system overall performance and scalability is. Begin-
ning locally, the search goes on the closest neighbors going up to the most distant
terminals or till it finds a suitable reference (Figure 8).

Since for some applications the number of hops may be critical, a new
resolve_bounded operation was introduced to limit the search ray. If no suitable
server is found within that ray, a OBJECT_NOT_FOUND exception is thrown. The well-
known resolve operation is meant to find the service no matter how far it is. Bind and
rebind operations concern the local ah-NS only, since there is no point in advertising
remote services (i.e. services of other terminals) when a naming federation exists and
when remote services may not be reachable. The main components of the IDL interface
for an ah-NS are shown in Figure 9.

When a server is found, each ah-NS in the successful path to the server must add its
terminal endpoint to the RIOR’s Routing Profile. This way, the final RIOR returned to
the client will also contain the routing information to reach the server object. This Rout-
ing Profile is transparent to ORBs that are not aware of the ad hoc network, just as it hap-
pens to Mobile Profiles (Section 2.3). The structure of the Routing Profile shown in
Figure 10 follows the same pattern used by the Mobile IOR profile (Figure 4). A Routing
Profile is an IOP::TaggedProfile with tag value of TAG_AH_IOP and profile data
defined by the structure AHTerminal::ProfileBody. A Routing Profile may contain
several TAG_AH_TERMINAL_INFO tagged components, each one identifying one termi-
nal in the routing path to the server object. If the server is found locally or in the direct
neighboring terminals, no TAG_AH_TERMINAL_INFO component is required. Otherwise,
a new component is added to the Routing Profile by each ah-NS as described above. Fig-
ure 11 depicts the structure of an RIOR. T1 through T5 correspond to the identifiers of
the ah-Terminal Bridges in the message routing path.

Though the construction of an RIOR is carried out by the federation of cooperating
ah-NSs, the routing itself of GIOP messages (especially in the presence of mobility)
requires an additional mechanism.

R,1

R,1

R,1

R,1

R,1

A,1

A,1

R,2

R,2

A,1

A,2

A,2

A,2

A,1

First-level search Second-level search

Figure 8. BFS search in the federation of ah-NSs. Ri = requests; Ai = answers

Figure 9. Main parts of the IDL specification for the ah-NS interface

#include <CosNaming.idl>
module AHSystem {

interface AHNS : CosNaming::NamingContext{
// Exceptions
exception RayReached {}; // indicates

//resolve ray has been reached
// and the service was not
// found

// Federation operations
void setupPeer (in AHNS peer);

// NS operations
void bind (in CosNaming::Name name, in Object obj) raises (...);
void rebind (in CosNaming::Name name, in Object obj) raises(...);

Object resolve_bounded (in CosNaming::Name name, in short ray)
raises (RayReached, ...);

Object resolve (in CosNaming::Name name) raises (...);

void unbind (in CosNaming::Name name) raises (...);
//...

};
};

Figure 10. IDL definition of the Routing Profile

module AHTerminal {

struct Version {
octet major;
octet minor;

};

struct ProfileBody {
Version rior_version;
octet reserved;
MobileTerminal::TerminalId final_terminal_id;
MobileTerminal::TerminalObjectKeyterminal_object_key;
sequence<IOP::TaggedComponent> components;

};

struct AHTerminalInfo {
MobileTerminal::TerminalId terminal_id;
long distance; // distance to server in hops

};
};

TypeId IIOP profile
(required)

Routing Profile (TAG_AH_IOP)

T1 T2 T3 T4 T5

TAG_AH_TERMINAL_INFO
tagged components

RIOR

Figure 11. Structure of an RIOR

5. Routing of GIOP Messages

Once a client receives an RIOR, all the information needed to route the request to the tar-
get object is at hand. However, differently from the wired static network, routing is not
automatically performed by the underlying protocols. Therefore, routing information
must be embedded into the normal request so that the message is forwarded from termi-
nal to terminal till it reaches the appropriate target. Embedding the routing information is
straightforward since request/reply GIOP messages may carry context information. This
context is a structure composed of an id and data of type sequence <octect> (see
Figure 1). This means that a context may contain data of any type, and particularly, our
routing information. Nodes that do not know the meaning of the routing context simply
pass it on (normally to the target object it contains), while ah-TB-enabled terminals
extract information from it in order to forward the request to another peer terminal.

An important aspect to point out here is what happens when the message path changes
due to terminal mobility. In this case, if a peer terminal to which the message should be
forwarded is not anymore reachable, then the current ah-TB in the path must issue
another service request lookup though its local ah-NS interface in order to establish a
new (alternative) route to the server or back to the client (if the message is a reply, the
search should be for the client’s terminal, i.e. the client’s ah-TB). Doing so, the original
routing context path can be updated. The structure of a routing context is defined in Fig-
ure 12. If the server (or client) is not reachable anymore, a queue is created to hold the
message and possibly other messages that may arrive (in the case the server is unreach-
able) and a monitoring thread is started to perform regular tries to find the message target
until a time out is reached. In this case, the terminal is supposed to be permanently
unreachable and an OBJECT_NOT_FOUND exception is thrown in the client (server mes-
sages are silently discarded). Each ah-TB in the message path is also equipped with time-
out mechanisms so that long waited replies become OBJECT_NOT_FOUND exceptions as
well. The definition of these time out values clearly has a great impact on the system
overall performance.

When it comes to implementation, CORBA fortunately provides standardized meta-
programming mechanisms that support inclusion of context information in request/reply
messages in a way transparent to clients and servers [8][9]. These mechanisms in addi-
tion to CORBA’s message forwarding techniques used in the prototype implemented are
described in the following.

6. Implementation Issues and Meta-Programing Mechanisms

Mobile applications in ad hoc networks require two fundamental mechanisms in order to
deal with the problems that arise in such contexts. Namely, message forwarding mecha-
nisms and transparent (from the point of view of the programmer) attachment of addi-
tional information to the original message.

struct RoutingContext {
TerminalId originating_terminal; // client’s terminal
sequence<TerminalId> path;// terminal ids for the msg path till target
long current_terminal; // # of the current terminal (dealing with msg)

};

Figure 12. Routing Context structure

CORBA originally provides an efficient mechanism for forwarding messages through
a GIOP reply exception called LOCATION_FORWARD (see Figure 1). When a server
receives a request that it cannot, for some reason, deal with, it can send back to the caller
a LOCATION_FORWARD exception with a new object reference which the request should
be sent to. Upon receipt of a LOCATION_FORWARD exception, client ORBs transparently
retry invoking the operation connecting to the new location. This mechanism is widely
used in CORBA, especially in indirect binding through the Implementation Repository.
LOCATION_FORWARD exceptions may be thrown by interceptors or by servant managers
registered within the POA. Servant managers were used in the prototype implementation
due to its simplicity and because much information about the request that is needed is
readily available at that level (which is not always the case with portable interceptors).

On the other hand, meta-programming improves adaptability of distributed applica-
tions allowing behavior changes with a minimum (if any) impact on the existing soft-
ware. Therefore, they can be used in the context of ah hoc communications to deal with
routing and re-routing requirements. In our case, we used standardized portable intercep-
tors that are called at specific points in the operation invocation chain both on the client
and on the server sides. On the client side, the send_request interception point adds
RIOR routing information into the context of the requests. On the server side, we used
the receive_request_service_contexts interception point to extract the context
information and determine if the request is to be forwarded to the next terminal or pro-
cessed locally. More details on using interceptors and interception points can be found in
[8].

6.1. Prototype framework and performance considerations

Using servant managers for request forwarding and portable interceptors for adding the
information needed, a prototype framework for mobility simulation using the ad hoc
model proposed was implemented. This framework is depicted in Figure 13.

In order to preserve connectivity, the prototype implemented assumes the presence of
a network of backbone terminals (the backbone tree). Dealing with messages addressed
to disconnected terminals (with asynchronous communication mechanisms, for instance)
is out of the scope of this paper. Each backbone terminal define a terminal context.
Floating terminals can move across terminal contexts and they are all connected

floating terminal

terminal context

backbone terminal

backbone tree

Figure 13. Prototype framework

(directly or indirectly through a peer connection) to a backbone terminal. Our simulation
involved communication between randomly moving floating terminals going from one
terminal context to another (typically, terminals only move to neighboring terminal con-
texts).

Using the resolve operation, clients obtain appropriate server RIORs from their local
ah-NSs. With that RIOR, they send messages (operation calls) to the server through all
intermediate ah-TBs in the routing path. If a server moves from one terminal context to
another, a new routing profile is computed (using again the resolve operation) and a
LOCATION_FORWARD exception is sent back to client with the newly computed RIOR.
When a client moves while waiting for a reply, the only way it can be found is by broad-
casting its new location.

The implementation showed good scalability due to the intrinsic distribution of the
model and the use of low level message interception points and factory pattern design. A
time interval is defined for each floating terminal, at the end of which it moves to another
terminal context. Of course, the higher the mobility of a floating terminal is, the lower
the system performance is. This performance degradation occurs because of the need of
re-locating the service and updating the routing profile by intermediate terminals, in
addition to the normal message routing.

The use of a distributed BFS algorithm in the ah-NS federation also has the effect of
improving significantly the system performance, since closest terminals require less
routing effort.

7. Related Work

This section describes some current works in associated areas and discusses how they
relate to the research proposed.

In [10], the authors point out that most of the ad hoc routing algorithms are complex
demanding substantial resources (memory, CPU time, network bandwidth, etc.) just to
maintain the routing information. They then suggest that, for most of collaborative sys-
tems, simply broadcasting messages to peer terminals is enough to do routing. However,
despite of its simplicity and low cost, the strategy is certainly not scalable. The service
searching phase is not avoided by this mechanism and maintaining routing information is
only too much costly if the system is extremely dynamic. In such dynamic systems, the
solution proposed can be easily adapted to do broadcasting. Just the ah-TB interceptors
need to be changed.

Scalability is one of the main problems faced by ad hoc middleware solutions. Paper
[9] introduces the paradigm of group management for ah hoc networks that allows better
management of failures by assembling mobile nodes in groups that meet functional and
non-functional requirements. Group initialization, member discovery and message
broadcasting strategies defined can be used in the scope of service discovery in the feder-
ation of ah-NSs and GIOP routing. Scalability can be improved this way.

Typically object-based distributed systems assume that the connection between client
and server object is long-lasting. Therefore, the possibility of disconnection is not
addressed. The SOMA (Secure and Open Mobile Objects) project [12] and ORB/OS
Task Force [13] strategy is to combine the paradigm of mobile agents with distributed

object systems using CORBA to address scalability and interoperability. However, in
order to locate service objects, a centralized server is needed. Some extensions allow
objects to maintain references when clients move, but this is not generalizable to a
mobile ad hoc environment.

Paper [6] describes a middleware called “Expeerience” built on top of JXTA aiming
at improving functionality of P2P wired networks (that are generally static) so that they
can cope with intermittent connections thus increasing the potential of resource discov-
ery in wireless mobile ad hoc networks. The middleware is heavily based on JXTA tech-
nology and therefore tries to overcome many JXTA specific limitations regarding
mobility, some of those not present in the CORBA architecture (e.g. runtime message
forwarding). Moreover, terminals are seen as peers (as they are), but there seem to be no
distinction between the terminals and their internal components (that may be either cli-
ents or servers or even peers, as ah-NSs). Besides this, in Section 4, it was mentioned
that ah-NS federations form a P2P network with specific contractual regulations to
restrict access to undue services. It is not clear to us, however, whether Expeerience can
deal with such contractual restrictions or even if this is possible.

8. Conclusions and Future Work

The increasing popularity of wireless-enabled devices and emergence of new applica-
tions demands make the topic of middleware for ad hoc networks more relevant. How-
ever, the difficulties are many and range from heterogeneity and interoperability to
mobility.

This paper suggested extensions in CORBA, a well-known and widely used distrib-
uted platform, in order to deal with communication in an ad hoc environment. Service
discovery and object reference construction are coped by federations of specialized name
servers called ah-NS. To do so, a new reference format - the RIOR - was defined. Once a
client receives an RIOR, intermediate terminals need to deal with GIOP requests and
replies so that they are successfully routed to the target objects. This is carried out by
embedding routing information into the messages’ contexts using portable interceptors.
Our experiments showed that the model is viable and presents good scalability.

Evidently, many details have been left behind in our consideration and they are sub-
ject of our current work. They involve: communication across networks (where bridges
are needed); the inclusion of ah-Traders to the model (similarly to ah-NSs); deeper inves-
tigation of performance aspects and solutions in highly dynamic environments; use of
mobility event notifications [2] to improve the routing algorithm.

Also, no considerations have been made concerning the terminal’s limited resources.
Federations of Implementation and Interface Repositories are not considered either -
only static binding is taken into account.

References

[1] Musolesi. M. (2004) “Designing a context-aware middleware for asynchronous com-
munication in mobile ad hoc environments”, Proceedings of the 1st international doc-
toral symposium on Middleware.

[2] OMG (2003), “Wireless Access and Terminal Mobility in CORBA”, Version 1.0, for-
mal/03-03-64.

[3] wCORBA Research Project (2005) “MIWCO Wireless CORBA Support in MICO”,
University of Helsinki - http://www.cs.helsinki.fi/u/jkangash/miwco.

[4] Henning, M.; Vinoski, S. (1999) “Advanced CORBA Programming with C++”, Add-
ison-Wesley.

[5] Raatikainen, K. (2001) “Wireless Access and Terminal Mobility in CORBA”, White-
paper, Dep. Computer Science, Univ. of Helsinki.

[6] Bisignano, M. et al. (2003) “Expeerience: a Jxta middleware for mobile ad-hoc net-
works”, Proceedings of the 3rd International Conference on Peer-to-Peer Computing.

[7] Lynch, N. (1996) “Distributed Algorithms”, Morgan Kaufmann Publishers Inc.

[8] Wang, N. et al. (2001) “Evaluating Meta-Programming Mechanisms for ORB Mid-
dleware”, IEEE Communications Magazine, Volume 39, Number 10.

[9] Baldoni, R., C. Marchetti, and L. Verde (2003), “CORBA request portable intercep-
tors: analysis and applications”. Concurrency and Computation Practice & Experi-
ence, 15(6): p. 551-579.

[10] Hans-Peter Bischof, Alan Kaminsky, and Joseph Binder (2003) “A new framework
for building secure collaborative systems in ad hoc network” 2nd International Con-
ference on AD-HOC Networks and Wireless (ADHOC-NOW '03), Montreal, Canada.

[11] Liu, J., Saihan, F. (2005) “Group Management for Mobile Ad Hoc Networks:
Design, Implementation and Experiment”, Proc. of International Conference on
Mobile Data Management.

[12] Universitá di Bologna (2005), “SOMA”, http://www-lia.deis.unibo.it/Software/
SOMA.

[13] OMG, (2005) “ORB and Object Services Task Force”, http://orbos.omg.org.

	A Model for CORBA Communications in Ad hoc Networks
	1. Introduction
	2. Overview of Interoperability and Terminal Mobility in CORBA
	3. Ad hoc Model for CORBA Communications
	4. Federations of ah-Name Servers and the Construction of Routing Profiles
	5. Routing of GIOP Messages
	6. Implementation Issues and Meta-Programing Mechanisms
	7. Related Work
	8. Conclusions and Future Work
	References

