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Abstract. It is expected that future wireless systems will consist of several dis-
tinct radio access technologies, forming a multiaccess system offering voice and
multimedia services. Previous works have shown that the combined capacity re-
gion of such systems depends on the service allocation policy that assigns user
sessions to the subsystems. Current policies typically operate off-line, implying
that the service mix is known a priori. In this paper we consider the on-line
problem where sessions arrive one after the other and no assumptions on the
service mix can be made. We study the performance of four on-line bin-packing
algorithms by simulation and show that the algorithm termed LessVoice pro-
vided the best performance in terms of blocking probabilities and throughput.

1. Introduction

We expect that future wireless systems will consist of several distinct radio access tech-
nologies, such as WCDMA/HSDPA, GSM/EDGE/GPRS, WLAN and others, forming a
multiaccess system offering advanced multimedia services. Users can take advantage of
such systems by using terminals equipped with multiple interfaces in such a way that
any terminal can connect to the available subsystems. Thus, these grouped subsystems
together establish multiaccess, multiservice capacity regions [4], [5], [6].

On top of multiaccess multiservice systems, Always Best Connected (ABC) Net-
works can be seen as a concept that allows users to not only be always connected but to
do so while meeting some quality of service (QoS), cost or other criteria [9], [7]. In order
to realize the ABC concept, a common radio resource management (CRRM) component
must be employed that considers the available subsystems as a whole, rather than treating
the accesses separately. The improvement of the performance of multiaccess systems was
evaluated by simulation in [13]. The results were promising since they showed that when
common operation of the subsystems is considered, the “trunking gain” increases when
more systems are integrated into the multiaccess system. Although both conversational
and packet data services were evaluated, they were considered separately; that is, only a
single-service multiaccess scenario was considered.

∗This work was supported by the Research and Development Centre, Ericsson Telecomunicações S.A.,
Brazil.



Recent studies showed that if the capacity region of individual subsystems are
different, the combined capacity region for the multiservice systems varies according to
the strategy used to assign users to subsystems [4], [5]. These papers show the existence
of allocation strategies that maximize the total number of users that can be accommodated
by the multiaccess system under some QoS constraints. The off-line allocation strategies
in these papers assume that either a set of sessions can be allocated at the same time or
in-progress sessions can be re-allocated.

Koo et al. [10] studied the combined capacity of multiaccess systems considering
multiservice systems in a dynamic environment and provided upper and lower bounds for
the gains, expressed in terms of their Erlang capacity. They also obtained an “assignment
gain” when user services are taken into consideration in the assignment process. Con-
sidering specific settings for GSM and WCDMA-like subsystems, they presented gains
ranging from 15% to 60% depending upon how users are assigned to subsystems and also
upon the input traffic mix. Along another line, it was shown in [1] that for a scenario with
a single radio access technology and multiple services including voice and elastic data
traffic, the blocking probability can be made arbitrarily small by sufficiently reducing the
bit rate of elastic applications, under certain conditions for their arrival rate.

It is clear that well thought access selection techniques play a crucial role in these
dynamic environments in order to maximize the network capacity region and balance the
applications over the subsystems, while satisfying the applications requirements. As rec-
ognized in [4], online algorithms have the advantage over off-line algorithms that sessions
are allocated one by one and in-progress sessions do not need to be reallocated.

In order to deal with the problem of allocating user services onto a set of resources
offered by several cooperating networks, we draw a parallel with the bin packing problem
[8], [2]. This approach is similar to the one in [14] where the authors consider “FirstFit”
as the base access selection algorithm to a pool of different access subsystems. The main
focus of that paper was on reducing power consumption of user terminals while respecting
access preferences, which must be defined a priori by the users for each application class.
In that work, the authors considered a single-service (data flows) scenario and elastic
applications were not taken into consideration.

The main contribution of this paper is the analysis of on-line algorithms for access
selection in multi-access, multi-service systems with elastic traffic and the mapping to the
binpacking problem. In this paper we examine the impact of these algorithms in terms of
blocking probabilities and session throughputs. We take into consideration real time and
elastic user sessions that arrive dynamically and leave the system after some residency
time. We model the problem of access selection as the classical online variable-size bin
packing problem, where applications are the objects to be packed and subsystems are
the bins. Then, we adapt approximation algorithms that solve the bin packing problem
and additionally propose a resource sharing algorithm. We show that in addition to the
gains obtained from the presence of elastic applications, additional ones can be reached
depending upon the access selection algorithm used.

The remainder of this paper is organized as follows. Section 2. gives some in-
sights into the bin packing problem, the algorithms used for access selection and their
mapping onto access selection in ABC networks. The scenario settings and results for the



performance analysis of access selection algorithms are shown in Section 3., with results
for the scenario with non-elastic applications being discussed in Section 3.1., and the case
for elastic applications in Section 3.2.. The impact of load of data applications and data
elasticity in the blocking probability of voice calls and number of applications served by
the network is discussed in Section 3.2.1. and the behaviour of the algorithms dealing
with a worst-case input traffic mix is discussed in Section 3.3.. Section 4. presents the
concluding remarks and discusses some proposals for future works in the area.

2. Access Selection and the Bin Packing Problem
2.1. Modeling Subsystems and Applications
The classical bin packing problem is a well studied optimization problem [2, 12, 8, 11]:
given n objects with sizes a1, ..., an ∈ (0, 1], find a packing in unit-sized bins that min-
imizes the number of bins used. In the off-line version of this problem, it is possible to
consider all the objects and choose the order of assignment. In the online version how-
ever, each object must be assigned in turn, without knowledge of the next objects. That
is, given n − 1 already packed objects with sizes a1, ...an−1 ∈ (0, 1], the new object n
with size an ∈ (0, 1] must be packed in such a manner that the number of used bins is
minimized [11]. It is worth mentioning that the problem of finding an optimal packing is
known to be NP-Hard [8]. We say that an online bin packing problem is bounded space if
the number of available bins at any one time is predefined [2]. In the variable-size version
of the online bin packing problem the bins can have different capacities [12], and the goal
now becomes minimizing the sum of the capacities of the used bins.

In this work we consider a multiaccess, multiservice system (henceforth men-
tioned network) N consisting of s cells (henceforth mentioned subsystems). Just like
in [4], each subsystem s ∈ N is associated with an access technology T supporting a
set K of bearer services (or application classes). The subsystems are assumed to have
the same coverage area, and the terminal capabilities are assumed to be such that any
multimode terminal can connect to any subsystem. A number of application instances
A = {a1, a2, ...}, each one associated with an application class k ∈ K, arrive to be allo-
cated in N . We denote Cap(s) > 0 as the capacity of the subsystem s, measured in bits
per second (b/s), which is determined by the access technology associated with s (e.g.
GSM/EDGE, WCDMA, ...). Hence, it is possible to have Cap(i) 6= Cap(j), i 6= j.

Applications arrive one after the other and there is no a priori knowledge on the
next arriving applications. We denote Class(a) as the application class associated with
the application instance a ∈ A and Size(a) as the bandwidth requirement of a, mea-
sured in b/s. It is important to note that for a given application instance a, Size(a)
is determined by each subsystem, in such a way that Size(a, s) is used to denote the
bandwidth resource that a would take from s if s was selected to hold a. Assuming
A(s) as the set of application instances already allocated to subsystem s, we define
Free(s) = Cap(s) − ∑

a∈A(s) Size(a, s) as the available resources in s. Thus, an ap-
plication a can be allocated to a selected subsystem s if Size(a, s) ≤ Free(s), being
otherwise rejected (blocked). If successfully allocated, application a consumes Size(a, s)
resource units from Cap(s) under its residency time, freeing the resources upon leaving.

Access selection is formulated as the problem of finding the best way of allocat-
ing applications in subsystems while minimizing blocking probability and maximizing



system capacity. Given the dynamic nature of this problem, it is clear that online algo-
rithms are the most appropriate to deal with it. Thus, we map the problem of access
selection onto the bounded space variable-size online bin packing problem where objects
are applications arriving and bins are subsystems where applications should be packed.

Unlike in classical bin packing where the object size is known before packing is
performed, in our problem the size of a given application can not be determined a priori,
since it depends on the subsystem that will hold it. Hence, without loss of generality, we
adapt existing algorithms to consider the actual size of the objects as the one it would
have if packed to a specific target bin. That is, the algorithms always consider Size(a, s)
to know the amount of space object a would take from bin s. A second adaptation made
refers to working in a dynamic environment, that is, applications arrive, hold part of
network resources for a while and frees them upon leaving the network. Therefore, any
access selection decision must consider the current network state to make a decision.

2.2. Algorithms for Access Selection

We consider three well-known approximation algorithms for the online bin packing prob-
lem: FirstFit, BestFit and WorstFit [2]. In addition, we devise two others, named LessVoice
and Random. Each algorithm makes a decision based on the current state of the network
and the application that needs to be allocated. Next, these algorithms are described.

• FirstFit (FF): a subsystem s is randomly selected with equal probability among N .
Application instance a is allocated to s if Size(a, s) ≤ Free(s) holds. Otherwise,
the next subsystem is selected in a round robin fashion until a new subsystem s in
which a fits is found. If no subsystem is found, a is rejected.

• BestFit (BF): a subsystem s is selected if there is enough space available for ap-
plication a and if it has less available resources s compared to the others.

• WorstFit (WF): a subsystem s is selected if there is enough space available for
application a and if it has more available resources compared to the others.

• LessVoice (LV): We present an algorithm that allocates application a into a sub-
system s where its expected resource cost Size(a, s) relative to Size(voice, s)
for the application class in question is the smallest. This idea was proposed in
[4] (see Section 3.). LessVoice computes r(a, s) = Size(a, s)/Size(voice, s) for
each s ∈ N and selects the subsystem s with smallest r(a, s). If there is more
than one subsystem with the same minimum r(s), the subsystem with the smallest
Size(voice, s) among these is selected. If even though a tie remains, the subsys-
tem having more free resources is chosen among the tied ones.

• Random (RN): a subsystem s is randomly selected with equal probability among
N . Application a is allocated to s if Size(a, s) ≤ Free(s) and rejected otherwise.
This algorithm is used as a worst case reference.

Regarding the time complexity of algorithms, we have: O(nm) for FirstFit, Best-
Fit, WorstFit and LessVoice; and O(n log m) for Random, assuming n as the number of
applications submitted for allocation and m as the number of available subsystems.

3. Performance Analysis
We consider two dynamic scenarios in which applications of two classes, voice call and
data applications, arrive to be allocated in the network. For both scenarios, we assume the
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Figure 1. Capacity regions for GSM, WCDMA and combined GSM+WCDMA.

presence of two different subsystems, namely, WCDMA and GSM/EDGE. Without loss
of generality, both subsystems are assumed to have linear capacity regions and a single
cell of each. Both application classes are assumed to arrive in a common coverage region
for both subsystems, in such a manner that any subsystems may be chosen.

Capacity regions for voice and data bearer services for a multiaccess system com-
prising GSM/EDGE and WCDMA access technologies are assumed as in [4] (see also
detailed discussion in [6, Section 9.1, Table 5]). The QoS requirements include a bit
error rate (BER) that yields acceptable voice quality for the voice bearers and a max-
imum perceived throughput of 150kb/s for the data bearers, assuming 10MHz worth
of spectrum being available to both subsystems. We define Q(s, k) as the maximum
number of single-service applications k that a subsystem s can hold and, based on the
characteristics assumed for GSM and WCDMA, we obtain: Q(GSM, voice) = 125,
Q(GSM, data) = 30, Q(WCDMA, voice) = 150 and Q(WCDMA, data) = 80 [4].
Since GSM/EDGE can bare 125 voice applications or 30 data applications, there is a
1:4.17 ratio between voice and data applications classes (it can hold 4.17 voice appli-
cations for every data application). WCDMA, on the other hand, can handle 150 voice
applications or 80 data applications, giving a 1:1.875 ratio.

We define the combined capacity region as the set of expected number of appli-
cations of each class that can be accommodated by all subsystems under common op-
eration, while maintaining acceptable quality [6]. Thus, as discussed in [4], we have
Q(Combined, voice) = 275 and Q(Combined, data) = 110. Figure 1 shows the capac-
ity regions, measured in number of applications, for GSM/EDGE, WCDMA and for them
both combined. The curves depicted impose limits on all the possible combinations of
voice and data applications.

We assume that applications of class k arrive following a Poisson process with
λ(k) = 1/460ms, for k = {voice, data}. If the application is successfully allocated,
it remains in the system for an exponentially distributed holding time with mean µ(k),
where µ(voice) = 120s and µ(data) is defined by the time it takes to transmit 120kB,
that is, µ(data) = 6.4s. These parameters result in reasonable blocking probabilities and
are applicable to compare access selection algorithms.



The results were obtained by simulation, using a discrete event simulator devel-
oped in C++. All curves shown in the graphics are an average of 45,000 replications
and the adopted confidence level for the mean was 95%. Each replication represents a
simulation of 800 seconds of operation of the network, the necessary time to reach the
steady state of the network for all adopted metrics, except for blocking probability; in this
case, we simulated a longer operation period of 4000 seconds, since its convergence was
slower. The samples for the chosen metrics were collected once every second and each
algorithm received exactly the same amount of applications to be allocated, in the same
order and at the same time instant. The following subsections discuss the results.

3.1. Access Selection for Voice and Non-Elastic Data Applications
In this section we consider a multiaccess network offering two different services in a dy-
namic environment. Subsystems and applications are configured as described in Section
3., in which both voice and data applications bandwidth do not vary once allocated in the
network. We assume Size(data) = 150kb/s and Size(voice) = ϕkb/s, where ϕ is a
constant determined by the subsystem holding voice applications. According to [6, 4], we
are using ϕ = 36kb/s for GSM and ϕ = 80kb/s for WCDMA.
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Figure 2. (a) Blocking probability obtained by each algorithm in a scenario with
voice and non-elastic applications; (b) The network population obtained by each
algorithm in the scenario with voice and non-elastic applications.

Figure 2(a) shows the blocking probability obtained by each access selection al-
gorithm. Under the configured offered load, the algorithms LessVoice, BestFit, FirstFit,
WorstFit and Random (in this order) obtained the best results. Figure 2(b) shows the in-
stantaneous network population, measured as the total number of applications served by
the network at a specific point in time. Except for Random, all the algorithms performed
fairly equally, although towards the end LessVoice and BestFit outperformed the others,
allocating approximately 255 applications. FirstFit and WorstFit allocate approximately
252 applications whereas Random allocated only 242 applications.

We introduce the concept of “utilization”, which measures, in percentile, how
much resources from a subsystem is occupied at a given instant. Then, we define the
“load balance of the network” (balance, for short) as the standard deviation of the uti-
lization of the subsystems, in such a way that it compares utilization of the subsystems
during the access selection process. For example, considering two subsystems, if the uti-
lization for one subsystem is 100% and the utilization for the other one is 0%, the balance
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Figure 3. The balance of the network, as obtained by each algorithm in a scenario
with voice and non-elastic applications.

reaches its maximum value of 50. If the utilizations are equal, the balance will be zero
and when these are close, the balance will have a low value. In other words, lower values
indicate better balancing among subsystems and, in general, this happens when the access
selection algorithm used has no or little preference for a specific subsystem.

Figure 3 shows the balance obtained by the algorithms for the analyzed network
and applications configuration. One can note that the balance is different for the al-
gorithms at the beginning of simulations when the network show low utilization. As
the utilization grows for the subsystems, all algorithms tend to stabilize. After approxi-
mately 400 seconds, they maintain their values until the end of the simulation. Random,
LessVoice, BestFit, FirstFit and WorstFit algorithms (in this order) obtain the best balance
for the network under this scenario, with values ranging from 3.17 for Random to 1.22 for
WorstFit. These low values indicate that the subsystems were used (nearly) equally.

Although considering the population all algorithms performed fairly equal, the
blocking probabilities were different and actually determined the best algorithm, in this
case LessVoice. This was somewhat expected, as LessVoice measures the resource con-
sumption of each application class, giving a better estimation of the best subsystem.

3.2. Access Selection for Voice and Elastic Data Applications
In this section we discuss the dynamic scenario when elastic applications are present.
We maintain the same parameters for subsystems and applications, except that in this
scenario, applications can be slowed down (that is, its throughput can be reduced) to
their minimum operational requirements when needed. It is expected that the subsystems
and consequently the network populations will increase and the blocking probability will
decrease as discussed in [1, 10]. In this scenario, we analyze the relationship between the
network population gain and reduction of blocking probability, and the amount by which
applications need to be slowed down in order to serve more applications.

It is now assumed that an application a has attributes Min(a) and Max(a), rep-
resenting its minimum and maximum bandwidth requirement, respectively. The actual
bandwidth that must be assigned by the network to a, defined as Size(a), can be any
value respecting Min(a) ≤ Size(a) ≤ Max(a). When application a arrives, its alloca-



Algorithm 1 Allocation_Policy(a, N)

1. // Goal: Choose from N a subsystem to allocate application a using a specific
access selection algorithm. If there is no space for a, applies a bandwidth sharing
policy to redistribute resources

2. C = {s ∈ N | Max(a) ≤ Free(s)}
3. if ( C == Ø ) {
4. // Shrinking is necessary.
5. N ′ = ®
6. for each s ∈ N | Max(a) ≤ MaxFree(s) do {
7. Create an empty subsystem s′

8. Cap(s′) = MaxFree(s)
9. N ′ = N ′ ⋃ s′

10. }
11. s′ = SELECTION(a, N ′)
12. let s be the correspondent in N for s′ in N ′

13. BWSHAREPOLICY(a, s)
14. } else {
15. // No need to shrink.
16. s = SELECTION(a, C)
17. Allocate application a in subsystem s
18. }

tion will be controlled by an "allocation policy", which allocates application a according
to its maximum required bandwidth Max(a) only if the network has that resource avail-
able, without changing the actual bandwidth of any A(s). Otherwise, it must somehow
"shrink" applications already allocated and also a, in order to allocate it. In such case, a
new Size(ai) must be reassigned to each ai ∈ A(s) ∪ {a} in the chosen subsystem s.

Since there are many different ways to find values for Size(ai), we adopted the
term "Bandwidth Sharing Policy" to describe a particular mechanism used to accomplish
the task by reassigning adequate values for their actual bandwidth share. In summary,
the algorithm that implements the Allocation Policy must decide when applications must
be slowed down (shrunk) and use a specific Bandwidth Sharing Policy (among a set of
existing ones) to decide how they must be shrunk and how the resources from the network
must be shared among them. We observe that only Elastic applications can be slowed
down while voice calls always maintain their required bandwidth.

In this section we assume that Size(data) can vary between Max(data) = 150kb/s
and Min(data) = 37.5kb/s. In order for a shrinking algorithm to be effective, the Band-
width Sharing Policy should be work conserving. This means that applications should be
shrunk as little as necessary to accommodate new applications in the system and be able
to complete their task as early as possible. This also implies that, when any application
leaves the network, the freed bandwidth must be redistributed (shared) among the others
currently using that subsystem. Algorithm 1 describes how this approach is implemented.

In line 6 of Algorithm 1, MaxFree(s) denotes the available space on subsystem
s if all applications inside s were shrunk to their minimum required bandwidth. The idea



Algorithm 2 Brotherhood( a, s )
1. // Goal: Allocates the application a in subsystem s after shrink applications
2. X = A(s)

⋃
a

3. MinReqRes(s) =
∑

x∈X Min(x)
4. MaxFree(s) = Cap(s)−MinReqRes(s)
5. if( MaxFree(s) ≥ 0 ) {
6. MaxContrib(s) =

∑
x∈X (Max(x)−Min(x))

7. for each application x ∈ X do {
8. Share(x) = Max(x)−Min(x)

9. ShareIdx = Share(x)
MaxContrib(s)

10. Size(x) = Min(x) + MaxFree(s) ∗ ShareIdx
11. Size(x) = Min{Max(x), Size(x)}
12. }
13. Insert application a in subsystem s
14. } else {
15. Reject application a
16. }

behind lines 5-10 is to create a “virtual” network N ′ based on the original N , in which
the free space for its subsystems reflects the free space that would be have in the original
subsystems if applications were shrunk, that is, MaxFree(s). Thus, the access selec-
tion algorithms do not need to be modified to work with elastic applications. In line 11,
SELECTION(.) represents the access selection algorithm being used, which makes its
decision based on the virtual network N ′. In line 12, this decision is mapped back to
the original network. In line 13, BWSHAREPOLICY(.) represents the algorithm that
implements the actual bandwidth sharing policy, whose function is shrink applications
already in subsystem s and also to insert the new application a in s. Both BWSHARE-
POLICY(.) and SELECTION(.) can be any defined algorithm. In this work we evaluate
the algorithms discussed in section 2.2. as access selection algorithms.

For the bandwidth sharing policy, we adopt the "Brotherhood" algorithm, de-
scribed in Algorithm 2. Its name comes from the idea of sharing the available bandwidth
in an equal manner, but proportional to the amount of resources that each application is
about to share with other applications. The basic idea is that any excess bandwidth that
would be needed by inserting a new application with its maximum requirements must be
subtracted from all applications currently in the subsystem and also from a. The sum of
the subtracted bandwidths is the required bandwidth and the amount subtracted from each
application is proportional to the amount each application can contribute. In other words,
it is assumed that Share(a) = Max(a)−Min(a) is the amount of resources that an ap-
plication a is willing to share. Then, the application will always receive from the network
the minimum it requires plus an amount that is proportional to the value Share(a). The
update method used when any application leaves is based on the same mechanism.

Table 1 shows the results for all algorithms for the configured scenario with elastic
data applications. In Table 1, Population refers to the average instantaneous population
(higher is better) and Balance refers to the average balance of the network (les is bet-
ter). Blocking refers to the average blocking probability (in percentile) considering both



Algorithm
Metric BF WF FF LV RN
Population 270.00 271.97 270.29 272.00 262.22
Balance 0.72 0.65 0.36 1.49 0.67
Blocking (%) 7.18 5.46 7.04 4.79 8.41
Slow down (%) 53.63 44.89 52.37 37.49 44.49
Throughput (kB/s) 8.69 10.33 8.93 11.72 10.41

Table 1. Average results obtained by each algorithm in the scenario with voice
and elastic applications after 4000 seconds

voice calls and data applications. Slowdown refers to the amount of bandwidth reduced
by each algorithm from the maximum required by each data application, measured in per-
centile. The slowdown has a direct impact on the values shown for Throughput of elastic
applications and, as shown in Table 1, the lower the slowdown, the higher the throughput.
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Figure 4. (a) The throughput variation forced by each algorithm over the elastic
applications; (b) Blocking probability obtained by each algorithm in a scenario
with voice and elastic applications.

Figure 4(a) shows the evolution of the throughput of data applications consider-
ing the time. In the beginning of the network operation data applications are admitted
in the network and receives the maximum required bandwidth, since there are resouces
available. As time goes on, new applications and voice calls are admitted, the network
becomes saturated and data applications are slowed down in order to accommodate the
new sessions. It can be seen that algorithms BestFit and FirstFit achieved similar perfor-
mance in terms of throughput, and the same can be observed for algorithms Random and
WorstFit. Algorithm LessVoice forced less slow down over the applications and achieved
the highest throughput among all the algorithms.

Figure 4(b) shows the blocking probability obtained by each access selection al-
gorithm. Under the configured offered load, the algorithms LessVoice, WorstFit, FirstFit,
BestFit and Random (in this order) obtained the best results. Comparing these results with
those depicted in figure 2(a) (for non-elastic applications) it is clear that WorstFit outper-
formed both BestFit and FirstFit when elastic applications are considered. In general, the
slow down forced over the elastic applications explains the blocking probabilities decreas-



ing for all algorithms. Despite that, when only voice calls are considered, the blocking
probability actually increased for every algorithm except for LessVoice, as can be seen in
Figure 5(a). It is worth mentioning that Random obtained higher throughput than FirstFit
and BestFit and similar one to WorstFit, but this fact must not lead us to think on Random
as a better algorithm, because it obtained actually the higher blocking probability, as can
be seen in Table 1 and figure 4(b). Hence, the higher throughput achieved by Random was
obtained by rejecting a higher number of aplications, that is, admitting a lesser number of
applications and distributing higher amount of resources among them.
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Figure 5. (a) Difference B − A for blocking probability of voice calls obtained
by each algorithm, where B is the scenario with elastic applications and A is
the scenario with non-elastic applications; (b) Relative difference 100(B − A)/A
for the balance obtained by each algorithm, where B is the scenario with elastic
applications and A is the scenario with non-elastic applications.
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Figure 6. (a) Relative difference 100(B−A)/A for the network population obtained
by each algorithm (in percentiles), where B is the scenario with elastic applica-
tions and A is the scenario with non-elastic applications; (b) Relative difference
100(B − A)/A from blocking probability where B is the scenario with elastic ap-
plications and A is the scenario with non-elastic applications.

Compared to the scenario with non-elastic applications described in section 3.1.,
all algorithms performed better due to application slowdown. As can be seen in figures
6(a), 6(b) and 5(b), population size, blocking probability and balance were improved:
population increase ranged from approximately 6% to 9%, blocking probabilities decrease



ranged between 40% and 75% and with the exception of the Random algorithm, balance
decrease ranged between 45% and 85%.

The bandwidth sharing policy “adjusted” the allocation scheme used by each al-
gorithm, yielding better performance for all of them and the better the allocation scheme,
the less the algorithm needed to resort to sharing. It is clear from these results that the
presence of elastic applications definitely increases the network capacity, in spite of elas-
tic applications remaining allocated for a longer period, as observed in [1]; but from the
results we obtained, the access selection algorithm used can bring additional benefits.

The small difference between the algorithms is interesting from a network point
of view, because it wouldn’t matter which algorithm was chosen in order to achieve a
high population size and a low blocking probability, but from the user point of view this
is problematic, since applications can end up using more or less bandwidth, depending on
the chosen algorithm. As QoS is taken into account in the bandwidth sharing policy, the
chosen algorithm (or algorithms) becomes an issue for best-effort elastic applications and
in this context, the LessVoice algorithm is the best choice.

3.2.1. The impact of load and data elasticity on voice blocking and on the number of
applications served
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Figure 7. (a) Impact of data load and data elasticity in the blocking probability
of voice calls; (b) Impact of data load and data elasticity in the total number of
applications served by the network

Since LessVoice has achieved the best results in the previous experiments, it is
worth analysing its performance under different conditions. The previous results were
obtained using arbitrarily picked values for voice and data arrival rate and minimum band-
width size for elastic applications. In this section we vary these parameters to study the
behavior of the LessVoice algorithm, in terms of voice call blocking probabilities and the
total number of applications served by the network.

For this scenario, we maintain λ(voice) = 1/532ms and observe the blocking
probability obtained for voice calls when two parameters are compared at the same time.
The first parameter is the minimum bandwidth required by data applications, which varies
from 18.75kB/s to 1.875kB/s (that is, from 150kb/s to 15kb/s), while the maximum



bandwidth required is kept in 18.75kB/s. The second parameter is λ(data), which varies
from 1/252ms to 1/238ms in 15 steps. These values result in blocking probabilites for
voice calls between 1.8% and 2.2% when no bandwidth sharing is employed.

As shown in the Figure 7(a), when the data applications arrive faster, voice calls
have a greater blocking probability. This result is coherent since a low data arriving in-
terval generates more data applications to compete with voice calls for the subsystems
resources. Similar behaviour is observed as the minimum bandwidth requirement as-
sumes greater values, meaning that when data applications are less elastic, they force an
increasing in the blocking probability of voice calls (althought not shown here, it also
occurs an increasing in the blocking probability of data applications as well). That is, the
lower the minimum bandwidth requirement is, the smaller the resources the data appli-
cations consume, since the bandwidth sharing policy forces a slow down over the data
application when needed.

The interesting about this comparison is to observe the relationship among data
load, data elasticity and blocking probability of voice calls: linear variation in the data
load have linear impact over blocking probability of voice calls. However, linear variation
on data elasticity causes a non-linear variation in the probability of voice calls.

Figure 7(b) shows the number of applications served by the network (including
voice calls and data applications), considering the same parameters variation discussed
for Figure 7(a). One can observe that the number of applications served is inversely
proportional to the data inter-arrival time and to minimum bandwidth requirement. In
other words, the slower the data applications arrive and the smaller the required mini-
mum bandwidth, the greater the number of applications served by the network. This is
expected, since when data applications can be slowed down, more new applications can
be accommodated in the subsystems.

However, it can be observed from Figure 7(b) that the number of applications
served decreased when the minimum bandwidth requirement decreased from about 4kB/s
to 2kB/s and, despite this sounds counterintuitive, this is in fact correct. The explanation
is that this suggests the existence of a limit from which reducing the minimum bandwidth
requirement of data applications does not lead to more applications being served, since
data applications will spend excessive time inside the network.

3.3. Worst-case Analysis for specific input mixes
In the experiments conducted so far, applications arrived assuming equal input mix and ac-
cording to a randomly interlaced sequence. Now, we change the way applications arrive in
order to analyze the algorithms’ behavior under a worst-case arrival pattern. We consider
the maximum single-service applications for the network, that is, Q(Combined, voice) =
275 and Q(Combined, data) = 110. Then we submit Q(Combined, k1) applications of
class k1, followed by αQ(Combined, k2) applications of class k2, where α ∈ {0.1, 0.2, ..., 1},
in such a way that the offered load to the network grows with α. Then, we use k1 = voice,
k2 = data in a first experiment and use k1 = data, k2 = voice in a second one and ob-
serve the blocking probabilities obtained by each algorithm. Both voice and data have
exponentially distributed holding time with mean µ(data) = µ(voice) = 120s.

Figure 8(a) shows the blocking probability obtained by the algorithms when all
voice applications arrive before data ones. Algorithm Random obtained the worst perfor-
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Figure 8. (a) Blocking probability obtained when 275 voice calls arrive before a
fraction α of 110 data applications; (b) Blocking probability obtained when 110
data applications arrive before a fraction α of 275 voice calls.

mance, while LessVoice and BestFit shared equal best performances. In fact, when voice
applications arrive, they are all allocated to GSM by both algorithms. BestFit allocates
voice to GSM because it has less capacity and will leave less free space left after allo-
cating the arriving voice call. LessVoice does the same because Size(voice, GSM) <
Size(voice, WCDMA), as discussed before. Next, all data applications are allocated to
WCDMA by both algorithms, which explains the obtained results.

Figure 8(b) shows the blocking probability obtained by the access selection al-
gorithms when all data applications arrives before voice. The algorithms LessVoice,
WorstFit, FirstFit and Random obtained lower blocking rates, in this order. Both WorstFit
and LessVoice performed similarly with almost no blocking until α = 0.5, when LessVoice
becomes better. This can be explained by the fact that when data applications arrives first,
they are allocated to WCDMA by both algorithms: WorstFit selects it because there will
be more free space left after allocating the latest arriving data application, while LessVoice
selects it because the computed r (see section 2.2.) is smaller. When the amount of free
space left by both subsystems becomes roughly the same, WorstFit starts selecting them
in an alternate fashion, although there is still space left in WCDMA. LessVoice only starts
selecting GSM when there is no more space left in WCDMA. This analysis reforced the
assumption that algorithms that measure resource consumption yield better near-optimal
packing with lower blocking probabilities, as the results from section 3.1. already inferred.

Now, we turn our attention to consider the same worst case arrival scenarios, but
taking into account the presence of voice calls and elastic applications. When elastic
applications were considered, it was observed that the blocking probability droped to
zero for all algorithms, except Random. The fact that Random algorithm had not reduced
the blocking probability like the others also shows that applying some intelligence to the
access selection algorithm is also an important issue in order to obtain additional gains in
multiaccess, multiservice networks in the presence of elastic applications.

4. Conclusion and Future Research
This paper presents a performance analysis of different access selection algorithms for
ABC networks, which were modeled as a bounded space, variable-size online bin packing



problem. A dynamic environment was considered with the presence of both voice calls
and data applications, in two scenarios: non-elastic and elastic data applications. Further,
an algorithm was proposed to accomplish the task of sharing network resources among
elastic applications in a work conserving way.

It becomes clear from the results that the presence of elastic applications increases
the network capacity, even if they remain in the network for a longer period of time, which
is in line with previous analytical results [1]. However, for the studied scenarios, our
simulations indicated that there is a limit from which reducing the minimum bandwidth
requirement of data applications does not lead to more applications being served by the
network, since data applications will spend excessive time inside the network. An inves-
tigation towards finding this limit analytically could be an interesting research activity.

We also verified that, considering a network composed by subsystems with dif-
ferent capacities in a dynamic environment, the access selection algorithm used makes
difference in terms of reducing blocking probability. Considering the scenarios evalu-
ated, we observed that:

• Algorithm LessVoice obtained best performance in terms of blocking probability
in the presence of both non-elastic and elastic applications.

• In the presence of voice calls and non-elastic applications, LessVoice obtained
0.075 of blocking probability. The relative increase from the others when com-
pared to LessVoice were +7%, +40%, +58% and +105% for algorithms BestFit,
FirstFit, WorstFit, and Random, respectively.

• In the presence of voice calls and elastic applications, LessVoice obtained 0.030
of blocking probability. The relative increase from the others when compared to
LessVoice were +7%, +22.5%, +22.6% and +75% for WorstFit, BestFit, FirstFit
and Random, respectively.

• The load balance of the network obtained for all algorithms were similar in the
presence of both non-elastic and elastic applications.

As expected, all algorithms obtained less blocking probability in the presence of elastic
traffic. When compared to the scenario with non-elastic applications, the observed re-
ductions were -70%, -59%, -55%, -43% and -40% for algorithms WorstFit, LessVoice,
FirstFit, Random and BestFit, respectively. Additionally, the blocking probability of all
algorithms becomes closer, since they all benefit from the slow down of elastic applica-
tions and the bandwidth sharing mechanism. Considering only voice applications, it was
noticed that the blocking probability increased for algorithms BestFit, FirstFit and Ran-
dom, maintained almost the same for WorstFit and decreased only for LessVoice. In our
studies this is shown to be dependent on four factors: a) the relative load for voice and
data applications; b) the bandwidth requirements for voice and data applications; c) the
maximum slow down rate allowed for data; and d) the access selection algorithm used.

We consider this work as an initial step and see interesting works ahead. In section
3.2. we adopted a bandwidth sharing policy that distributes the network resources among
elastic applications considering their minimum required bandwidth and, if possible, dis-
tributes a “bonus” proportional to the distance between their minimum and maximum
required bandwidth. In [3] the author proposes the “resource sharing with priority” pol-
icy, which establishes a sequence in which given classes of applications start being slowed



down before others. Therefore, comparing a set of different bandwidth sharing policies
could be an interesting investigation.
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