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Abstract – Different integer linear programming (ILP) formulations have been 
proposed for the routing and wavelength assignment (RWA) problem in WDM 
networks. An important goal in the design of WDM networks is to use the 
minimum number of converters to serve communication needs, because this is 
cost effective. In this paper, we study the problem of allocating the minimum 
number of converters in a network for solving the RWA problem. 
Furthermore, our formulation allows any kind (partial or full, sparse or 
ubiquitous) of wavelength conversion in the network.  We also propose an 
experimental comparison of the heuristic from [Swaminathan and Sivarajan 
2002] with a K-shortest path heuristic with limited number of converters, for a 
large network. 

1. Introduction 

The design of an optical network involves three closely related tasks: dimensioning, 
routing, and wavelength assignment. Given is a physical topology of the network as 
well as, for every pair of nodes, a demand for a number of lightpaths to be established 
between these nodes [Koster and Zymolka 2005], [Subramaniam, S. and Azizoglu, M., 
1996] 

Optical networks design draws an increasing amount of attention nowadays. The 
Wavelength Division Multiplexing (WDM) technique splits the large bandwidth 
available in optical fibers into multiple channels, each one operating at different 
wavelengths and at specific data rates (up to 40Gbps). The lightpaths are logical 
channels which provide an end-to-end connectivity in the all optical network 
[Ramaswami and Sivarajan 1998]. The performance of the WDM networks can be 
improved by allowing wavelength translation (conversion) at the routing nodes 
[Swaminathan and Sivarajan 2002], [Ramaswami and Sasaki 1998], [Ramamurthy and 
Mukherjee 1998]. The key issue in the all-optical network design process once the 
physical realization has been achieved, is to properly dimension the network with 
respect to wavelength numbers and to determine a wavelength allocation plan 
[Swaminathan and Sivarajan 2002], [Murty and Gurusamy 2002]. 



  

For circuit switched lightpath service on an optical network, each lightpath will carry 
traffic related to only one source-destination pair. A session is a set of connections 
between a source-destination pair. For example (A,B:1), (B,C:2) are sessions wherein 
the number of connections required from node A to node B is one and from node B to 
node C is two. 

A wavelength-convertible network, which supports complete conversion at all nodes, 
is functionally equivalent to a circuit-switched network, i.e., lightpath requests are 
blocked only when there is no available capacity on the path. Moreover, in most cases, 
it may be uneconomic to deploy wavelength conversion capability at all nodes, but 
having a few nodes with wavelength conversion capabilities may be desirable [Murthy 
and Gurusamy 2002]. Then the questions are (1) How many nodes in a network should 
have conversion capability? (2) How many converters should a node have?  

In this paper we extend a heuristic from [Assis and Waldman 2004] and focus on 
question (2). In order to provide an answer, the key point is the formulation of the well-
known Routing and Wavelength Assignment-RWA problem in networks with small 
number of converters per node, as a matter of fact: while previous literature considers 
conversion with limitless/large number of converters in nodes [Swaminathan and 
Sivarajan 2002], [Ramaswami and Sivarajan 1995]; our strategy considers 
modifications in RWA problem to allow allocation of a limited number of converters in 
a node of the network. It is important because this number, if small, is cost effective. 
Furthermore, our linear formulation  and K-shortest path heuristic allow any kind 
(partial or full, sparse or ubiquitous) of wavelength conversion in network.  

The paper is organized as follows. Section 2 defines the traditional RWA problem, 
extending an auxiliary graph approach for a limited number of converters, and we 
discuss our results for a ring topology. Section 3, we discuss our results for a mesh 
topology and explain over the computational complexity. In section 4,  we propose a 
heuristic with limited number of converters for large networks. The heuristic is 
executed on a random mesh National Science Foundation Network (NSFNET) and the 
performance is compared with K-shortest path heuristic without limited number of 
converters from [Swaminathan and Sivarajan 2002]. Finally, section 5 presents our 
conclusions. 

 

2. Routing and Wavelength Assignment Problem 

The physical topology network is represented as G(N,E,W), in which N represents the 
sets of nodes, E represents the set of directional fibers, and W represents the set of 
wavelengths on each link. The physical topology and the traffic matrix are given as 
input for the problem. Our objective is maximize the number of lightpaths to be 
established from the traffic matrix. Since we try to maximize connections in a given 
session or traffic matrix, for a fixed set of wavelengths, it is called Max-RWA problem 
[Swaminathan and Sivarajan 2002], [Ramaswami and Sivarajan 1995]. The algorithm 
that solves the above problem in general should: a) Maximize the number of lightpaths 
established using the minimum number of wavelengths. In addition, our formulation 
tries to maximize the number of lightpaths established using the minimum number of 
converters (If conversion is available). The following assumptions are made in our 
RWA problem: a) the number of wavelengths in each link of the fiber is assumed to be 



  

same b) each call requires a full wavelength on each link of its path c) simplex 
connections are considered. 

2.1 Linear Program 

We formulate the Max-RWA problem as a Mixed Integer Linear Program (MILP). In 
the formulation the paths for a connection are not specified before hand, the linear 
program solver is allowed to choose any possible path and any possible wavelength for 
a source–destination pair. Thus the logical topology design and wavelength assignment 
are inbuilt in the formulation itself, which is not in the formulations presented in 
[Ramaswami and Sivarajan 1996], but is similar to the presented in [Swaminathan and 
Sivarajan 2002]. The constraints involve the edges or arcs of the network. By this 
approach the solution for the RWA problem tends to optimality. 

2.2 Definitions 

We use the following notation: i  and j denote originating and terminating node of a 
lightpath, respectively; m and n denote endpoints of a physical link. 

The parameters of the formulation are: N = Number of nodes in the network. K= The 
traffic matrix , i.e., Kij is the number of connections that are to be established between 
node i and j. Pmn denotes the existence of a link in the physical topology. Here, Pmn = 1, 
then there is only a fiber link  between  nodes m and n, otherwise Pmn = 0. W denotes the 
number of wavelengths the fiber can support. ( )ςlC : set of the wavelengths into which ς 
can be converted in node l. ( )ςlD : set of the wavelengths that can be converted to ς in 

node l. The variables of the formulation are: bij  denotes the number of lightpaths 
established between node i and node j, taking positive integral values. The p ij

mn  variable 

denotes the number of lightpaths between nodes i and j being routed through fiber link 
m-n. L is the maximum number of wavelength channels supported per fiber; ςijc  is the 

number of lightpaths between node i and node j that start in the wavelength ς; for ς 
=1,2,3,...,W; ςijd is the number of lightpaths between node i and node j that finish in the 

wavelength ς; for ς =1,2,3,...,W. Furthermore,  p ij
mnς = 1, if the lightpath  between node i 

and j uses wavelength ς through physical link m-n. 

2.3 Max-RWA: Original Mathematical Formulation 
 

Objective: 

Maximize: ∑∑
j

ij
i

b  (1)

Remark: The objective here is to maximize the number of connections to be established
from the given traffic matrix 
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Remark: These constraints ensure that demand at origin and destination node for a 

source-destination pair (i,j) is satisfied. 

On coloring lightpaths with conversion resources: 
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Remark: These constraints allow a lightpath to be started in wavelength ς, and  finished in 
another wavelength. 
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Remark: conversion in intermediate nodes, explained later.  
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Remark: Constraints (12) guarantees that the number of wavelengths present in each 
physical link is equal to the number of lightpaths traversing it. In (13) we assure that there is 
no wavelength clash at physical link.  

Int  bij, p ij
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2.3.1 Explanantion of (10) and (11) 
 

In a node with resources of conversion, equations (10) and (11) guarantee that a 
wavelength that arrives in node l in color ς  can be converted to another wavelength in 
accordance with definition of the ( )ςlC  and ( )ςlD  sets. Notice that if  conversion is  not 

allowed (fig. 1b) in node l=4, then: 

( )ςlC = ( )ςlD  = {ς}, ∀ς 

Therefore, for ς = ς1,ς2, ς3 : 
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Figure. 1. (a) Optional physical links that arrive and leave 
node 4 for a lightpath from node i to node j, (b) no conversion, 
(c) partial conversion. 

 

This last equality expresses a flow conservation of ς-colored paths through node l 
that is valid when conversion is not allowed. Now, with partial conversion at node l=4, 
as illustrated for the fig 1c. Then, C4(ς1)={ς1,ς2}, D4(ς1)={ς1,ς3} and C4(ς2)={ς2,ς3}, 
D4(ς2)={ς1,ς2} and C4(ς3)={ς1,ς3}, D4(ς3)={ς2,ς3}. Applying 10 and 11, we get: 

⇒ ijp 114ς + ijp 124ς + ijp 134ς  = ijp 145ς + ijp 146ς + ijp 147ς + ijp 245ς + ijp 246ς + ijp 247ς  

⇒ ijp 214ς + ijp 224ς + ijp 234ς =  ijp 245ς + ijp 246ς + ijp 247ς + ijp 345ς + ijp 346ς + ijp 347ς  

⇒ ijp 314ς + ijp 324ς + ijp 334ς  =  ijp 145ς + ijp 146ς + ijp 147ς + ijp 345ς + ijp 346ς + ijp 347ς  

 
Through the example above we evidence that the definition of the sets ( )ςlC  and ( )ςlD  

allows any kind of conversion in network: partial, full, sparse, ubiquitous etc. 

2.4 Number of converters 
 

In fig. 2, in order to allow the specification of a limited number of converters, a node 
with resources of conversion is split into two auxiliary nodes a and b. After, it is created 
one unidirectional arc a-b. If we would like to have one converter, it is created one more 
auxiliary node c1 and two more auxiliary arcs a-c1 and c1-b. If we would like to have 
two converters, it is created one more auxiliary node c2 and two more auxiliary arcs a-c2 
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and c2 –b and so on. Note that in auxiliary graph constraints arcs “from” or “to” ci have 
load L=1 and arcs from a to b don’t have traditional clash constraints. Therefore (5) and 
(13) must be replaced by two other equations to guarantee the success of the strategy. 
These two new equations will be shown in the next subsection. 

 

Figure. 2. (a) The original graph with black nodes (with resources of 
conversion) and bi-directional arcs. (b) Black node is splitting in two nodes 
(a and b), (c) A auxiliary graph with auxiliary nodes a, b and c: a is incoming 
of arcs, b is out of arcs and c is an auxiliary node that represents a 
converter. 

2.4.1 Auxiliar Graph (New formulation) 

In fig. 2, a, b and ci denote nodes from the auxiliary graph (for established number of 
converters Nc with i=1,2....Nc ). Therefore, if the auxiliary graph is made, i.e., there is 
the specification of a limited number of converters. Thus, we replace constraints (5) and 
(13) by the following more restrictive equations and in addition, we define the Nc. 

for (link m-n) ≠  (link a-ci) or ≠ (link ci-b) 

(14)











≤∑
1

. mn

ij

ij
mn

PL

p

   
for (link m-n) = (link a-ci) or=  (link ci-b) 
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  for (link m-n) ≠ (link a-b)  (15)

2.4.2 Complexity 

 

In the formulation with auxiliary graph, based in the strategy of fig. 2, with sparse 
conversion in one node, the number of nodes grows from N to N+2, for 1 converter. 
From N to N+3 for 2 converters and so on. Therefore, the number of nodes grows from 
N to N+Nc+1 nodes, when Nc converters are put in one node of network. Similarly, the 
number of links E grows from E to E+3, for 1 converter, from E to E+5 for 2 converters 
and so on. Therefore the number of links grows from E to E+1+2.Nc when Nc 
converters are put in one node of the network.  If the same number of converters are put 
in all N nodes of network, then the number of nodes in formulation grows from N to 
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2N+(N.Nc) and the number of links grow from E to E+(1+2.Nc).N. Issues, like the 
number of routing variables O(N2.E.W), where there are W wavelengths, will become 
critical in analyzing scalability. However, in the network practical design the cost is 
minimized when the minimum number of converters is used [Yiming and Oliver 2003], 
[Assis and Waldman 2004]. 

2.4.3 The simple example (Nc is the number of converters in one node with 
conversion resources) 

 

 

Figure. 3. (a) Nr=6 and (b) Nr=1: two unidirectional rings (clockwise 
direction). Black nodes-conversion. Clear nodes-no conversion, (c) 
Traffic matrix (12 connections). 

 

 

Notice that with the application in formulation/strategy with Nc=2 in one node, fig. 
3b, we will obtain 12 connections, what proves the efficiency and cost saving of the 
formulation. Notice in table 1, that in auxiliary graph, the computational cost increases, 
see previous subsection, and is given by: Node cost = N+Nr.(1+Nc), Link cost: = 
E+Nr.(1+2.Nc), where  Nr is the number of nodes with conversion resources. 

 

Table 1: Computational cost for auxiliary graph 

Ring Nc Node cost Link cost computational 
1 8 9
2 9 11
3 10 13

(b) Nr=1 

4 11 15
1 18 24
2 24 36
3 30 48

(a) 

Nr=6 
4 36 60

3. Simulations 
 
 
An exhaustive approach that enumerates all the possible ways of converter number 

placement and choosing the best one is not efficient for moderate large networks. In this 
section, we propose simulations in the following way: 
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1. To allow full conversion in all nodes of the network in the original graph, to 
apply the traditional formulation and to get the maximum number of 
established connections. This way, the RWA suppose that all node has 
limitless or great number of converters in each node of the network, in 
agreement with the physical-out-degree of this node.  For example, in a node 
with physical-out-degree δp and W wavelengths, the number of converters Nc 
will allow Nc = W.δp (as it is applied for all nodes, we have ubiquitous 
conversion). This step serves only for comparison. 

2. Using the auxiliary graph (proposed strategy), to place Nc=1 in all nodes of 
the network.  To apply the modified formulation and to verify the established 
number of connections. 

3. If the number of established connections in previous step is not same the 
number obtained in step one, return to the auxiliary graph (step 2) with Nc=2, 
and so on. 

Notice that when we use the auxiliary graph, the connections always have their 
origin in auxiliary nodes “b” and always finish in  auxiliary nodes “a”. For example 
(fig. 4b), connections that are initiated in node “1” in the original graph, are initiated in 
the node “b” in auxiliary graph and connections which are finished in node “1” in 
original graph,  are finished in the node “a” in auxiliary graph. 

are finished in the node “a” in auxiliary graph. 

Table 2. Traffic matrix for 6 node mesh network 

 

 

Figures. 4.: (a) 6 node-mesh topology  (b) auxiliary graph for 6 node-mesh topology. 
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3.1 Numerical Results for 6 node-mesh topology 

Simulations have been carried out to investigate the performance of the proposed 
strategy with auxiliary graph over an 6-node mesh topology (Fig.4). The traffic matrix 
used by this network is shown in table 2. The total number of connections to be set up is 
29. The results with Linear Program are tabulated in table 3 for the cases of No 
conversion/original graph. Full conversion with Nc=1/auxiliary graph and Sparse 
conversion/auxiliary graph with one or two nodes with Nc=1. 

In table 3, the number of connections obtained with Nc = 1 in all nodes is same to the 
number obtained with ubiquitous conversion with Nc limitless, for all wavelength plans; 
therefore, the latter is not shown and the step 2 is run only one time for each plan. 
However, a more effective strategy is to put converters only in one/some (sparse 
conversion) nodes of the network; in this case the placement order of converters is the 
following: first, one converter is put on node 1; if the number of established connections 
is less than in the case of ubiquitous conversion with Nc=1, then another converter is 
put on node 2, and so on. In table 3 with sparse conversion, for W=2, W=3 and W=6 
with only one converter in node 1 we will establish the same number of connections 
from Nc=1 in all nodes, and for W=4 and W=5  with 2 converters: one converter in node 
1 and one converter in node 2 we will also establish the number of the connections from 
Nc =1 in all nodes. However, for W=4 and W=5, if  we just one converter in node 1, we 
will establish 21 and 26 connections, respectively; so the total number of connections 
can not be established. Therefore the strategy proposed can be used to guide the 
placement of converters at the design of a network with RWA using the minimum 
number of converters, as seen in the figure 5. 

 

  

Table 3. Lightpaths established x Wavelength 

Number of lightpaths established 
No Conversion Conversion Sparse Conversion W 

Nc=0, for all Nc=1,for all Node 1 2 3 4 5 6 
Nc 1 0 0 0 0 0 2 10 11 

11
Nc 1 0 0 0 0 0 3 15 16 

16 
Nc 1 1 0 0 0 0 4 20 22 

22 
Nc 1 1 0 0 0 0 5 25 27 

27 
Nc 1 0 0 0 0 0 6 28 29 

29 
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Figure. 5. Results for 6-node mesh Network. Total number 
of converters (Nt). Nt = ∑Nc for established connections 
from table III in function of wavelength plan. In ubiquitous 
conversion, W.δp,  for each node. 

3.1.2 Some comments 

Integer Linear Programming models are popular in the literature as they provide 
formal descriptions of the problem. In practice, however, scalability to networks with at 
least 10´s of nodes, with 100´s of demands is required. In many cases all but trivial 
instances of theses ILP´s are computationally difficult with current state-of-the-art 
software. The complexity of our formulation grows as demonstrated in sub-section 
(2.1.4.2). In our 6-node mesh network, on average our strategy run be the optimization 
software CPLEX© [ILOG CPLEX 2003] took around five seconds on an Intel Pentium 
IV/1.6Ghz. However, in a large network as the National Science Foundation Network  - 
NSFNET, with matrix of traffic given for [Swaminathan and Sivarajan 1998], and Nc=1 
for all nodes, our strategy exceeded the CPU memory restriction. Thus, in next 
subsection a heuristic will be developed to find solutions to problems with size typically 
found in practice.  

4. K shortest path  Heuristic with limited number of converters (KSPNc) 
 

Here we present a computationally less intensive heuristic algorithm based on K 
shortest paths for solving the Max-RWA problem with limited number of converters. 

Assuming that in the lightpath request matrix, the largest lightpath request between 
any source-destination pair is m, we find the K shortest  paths, wherein K is greater than 
m. The algorithm proceeds in following steps: 

Step 1: Fiding K shortest paths in terms of hop-length between all source-destination 
pairs in traffic matrix: 



  

The K shortest paths are store in lightpaths1, lightpaths2,…, lightpathsK arrays. 
Consider the first shortest path array i.e., lightpaths1 for processing and go to Step2. 

Step 2: Wavelength assignment to the lightpaths: 

For the lightpath which is not wavelength assigned in  the traffic matrix, choose the 
path for that from the chosen K shortest path array. A typical lightpath between nodes 
(1) and (N) is represented as node[1], node[2],…,node[Q],…,node[N]; where nodes 
node[2],…, node[Q] are nodes along the lightpath. The physical fiber links of the 
lightpath (node[1], node[2]) labeled  as link 1, (node[2], node[ 3]) as link 2 and the last 
link (node[N-1], node [N]) as link N-1. The first physical link of the lightpath (here 
node[1], node[2]) is taken and scanned for a free wavelength. If a wavelength ςj is free, 
then we try to find in all links of that lightpath for the availability of the wavelength ςj. 
Then the algorithm proceeds further, differently for the following cases: 

i. For the case of no conversion of wavelength along the lightpath, if the wavelength 
ςj is available in all physical links along the lightpath, then we allocate that 
wavelength  for the lighpath. If the continuity of the wavelength ςj along the links 
in the ligthpath is not possible then, we scan for the next free wavelength ςj on the 
link (node[1],node[2]). As before the availability of the wavelength ςj on all the 
physical links on the ligthpat is checked, if the wavelength is available then it is 
assigned, else we scan for the next free wavelength on the link (node[1], node[2]) 
and the above procedure for wavelength assignment is repeated till the lightpath is 
wavelength assigned ot the wavelength in the link (node[1], node[2]) is exhausted. 

ii. For the case of limited wavelength conversion, if wavelength ςj   is blocked on any 
link”n”, then go back one physical link towards the source node of the lighpath “n-
1” and try to obtain a free wavelength by wavelength conversion. If wavelength 
conversion is not available go back further one link “n-2” and try to obtain a free 
wavelength by wavelength conversion. Repeat the above procedure till a free 
wavelength is obtained or link 2 is reched on the lightpath. If a free wavelength is 
not available at link 2 then go to link 1 and choose a new free wavelength and 
traverse the physical links of the lightpath towards the destination node assigning 
wavelengths with or without conversion. While back tracking for a free wavelength 
if at any intermediate link if we get a free wavelength after conversion, then 
traverse from that link towards the destination node assigning wavelength with or 
without conversion. The wavelength conversion allowed at any node depends on 
the degree of conversion allowed and number of converters Nc allowed. 

Step 3: Repeat the step 2 till all the lightpaths in the chosen array are exhausted. 

Step 4: If any of the lightpaths in given traffic matrix is not wavelength assigned, 
then choose the next of the K shortest path arrays and go to step 2. If all the 
lightpaths are wavelength assigned or all the K shortest path arrays are exausted, then 
stop the algorithm. 

 

 

 
 



  

4.1 Numerical Results 
 

The NSFNET shown in figure 6 is a 14 node network  with 21 edges. In this network 
each edge represents a pair of fibers, one in each direction. 

The traffic matrix that has to be realized over the NSFNET is shown in the table V. 
We assumed that at most 3 multiple connections were permitted for a source-destination 
pair. The number of connections are chosen from 0,1,2,3 with equal probability for a 
source destination pair. The total number of connections to be set up is 268. For 
comparison with [Swaminathan and Sivarajan 2002], we assumed: 

i. All nodes in the network are equipped with wavelength converters with 
limited conversion capability. Therefore, only the case “ii” in step 2 from 
heuristic is considered. 

ii. The degree of conversion is 3. For help the reader, see fig.1b, it the degree of 
conversion is 2. 

First, we relax the integer constraints of mathematical formulation, as [Swaminathan 
and Sivarajan 2002]. For a given wavelength, we find LP upper bound. 

After, we executed the KPSH and KPSNc algorithm on the NSFNET network with 
the value of K=5. The greater the value of K, more will be number of connections 
realized, because there are more alternative paths available for wavelength assignment. 
The KPSNc results based on the number of converters are captured in table  along with 
results of LP (upper bound) and KPSH Heuristic with large Nc from [Swaminathan and 
Sivarajan 2002]. 

Comparing in table 5, we find that in terms of performance (Established 
Connections); LP (upper bound), KPSH, KPSNc with Nc=7 and KPSNc with Nc=5 
gives better performance in that order. In LP, this happens because of the relaxed 
integer constraints. In KSPH, this happens because of large number of converters. The 
KSPNc had limited number of converters, therefore the performance is less or the same 
from W=10 to W=20. However, in the network practical design the cost is minimized 
when the minimum number of converters is used.  Then, KSPNc is a heuristic cost-
effective. 

 

5. Conclusions 

In this paper, we presented ILP formulation and a K-shortest path heuristic approach 
for the limited number of converters and kinds of conversion in optical networks. 

The formulation/strategy proposed in this paper have a significant impact to the well 
known RWA problem. First, it can help understand the relationship between the number 
of wavelengths required and the number of converters. Second, it can be used to guide 
the placement of converters at the design of a network. Third, a new feature of the 
proposed formulation is that any kind of conversion can be made in each node of the 
network. This is obtained by the more general constraints (10) and (11).  

By recently developed heuristic technique advancements [Koster and Zymolka  
2005], the best known solution could be improved for more instances with minimum 
converter wavelength assignment, again proving optimatily. Besides further founding 



  

the benefit of our approach, this observation also indicates that the heuristic algorithm 
are still improvable.   
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Table 4. Session Matrix for NSFNET (268 connections) 

0 1 3 1 1 1 3 0 2 0 1 2 0 3 

0 0 0 2 2 2 1 1 1 2 1 0 1 3 

3 2 0 3 0 1 2 3 1 3 1 2 2 0 

3 1 0 0 1 1 2 3 2 2 1 2 1 3 

1 3 0 2 0 1 0 2 0 3 0 1 1 3 

1 2 1 3 2 0 1 3 3 1 0 1 1 2 

2 2 3 1 3 3 0 0 3 1 2 0 3 3 

3 1 2 3 1 0 1 0 0 3 2 0 3 0 

3 0 1 3 3 3 1 0 0 2 1 1 1 0 

0 0 0 1 2 0 2 0 1 0 1 0 0 3 

1 0 0 2 0 3 0 1 0 3 0 3 1 3 

2 3 1 1 3 2 3 2 2 2 2 0 1 3 

2 0 1 2 0 1 2 0 3 0 2 11 0 3 

1 1 0 2 1 0 1 3 0 1 2 1 3 0 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. NSFNET 



  

 

Table 5. Result obtained for NSFNET by LP formulation and heuristics 

Established Connections 
Heuristic 

KSPH KSPNc 

 
 

W 
Upper Bound 

(LP) 
              Nc=W.δp  Nc=7 Nc=5 

10 198 187 187 182 
11 208 196 196 191 
12 218 209 207 203 
13 228 220 218 214 
14 238 229 227 224 
15 248 238 236 233 
16 258 246 243 239 
17 263 252 247 247 
18 267 255 252 251 
19 268 258 256 258 
20 268 262 259 259 
21 268 264 261 260 
22 268 266 265 264 
23 268 267 267 267 
24 268 268 268 268 
25 268 268 268 268 
26 268 268 268 268 

 


