
A method for predicting packet losses with
applications to continuous media streaming∗

Fernando Silveira Filho Edmundo de Souza e Silva

Programa de Engenharia de Sistemas e Computação – COPPE/UFRJ
Caixa Postal: 68.511 – 21941-972 – Rio de Janeiro, RJ – Brasil

{fernando,edmundo}@land.ufrj.br

Abstract. There is a number of applications that can benefit from the estimation
of packet loss statistics. For instance, suppose that the loss process character-
istics in an end-to-end path can be well approximated in advance. Then, a real
time audio or video streaming application could adapt its transmission rate and
choose the appropriate packet loss recovery strategy in order to deliver data
with an acceptable quality. Adaptive mechanisms should be sufficiently accu-
rate to capture the relevant loss measures and yet simple enough to be used in
a real time protocol. In this paper, we evaluate different hidden Markov chain
based models as predictors of short-term loss statistics. We propose an adap-
tive algorithm to estimate near future losses based on recent measurements and
compare the accuracy of different underlying models.

1 Introduction

There has been a growing interest in adaptive network protocols for tasks such as multi-
media traffic rate control, path-switching and packet loss recovery mechanisms to name
a few. Such mechanisms must be capable of inferring future packet losses and self-
adjust their behavior in order to cope with the variability in the network conditions aim-
ing at achieving some given performance goals ([Bolot et al. 1999], [Duarte et al. 2003],
[Karol et al. 2004], [Tao and Guerin 2004], [Tao et al. 2005]). These control mechanisms
often rely on packet loss models that need to be accurate and yet simple enough for real-
time analysis. Unfortunately, the exact dynamics of packet loss processes in the Internet
can be exceptionally different both across space - i.e. across different end-to-end paths
- and in time, within the same path ([Zhang et al. 2000]), which adds to the difficulty of
inferring losses.

Differences in traffic demands and capacities across links amount for the Internet’s
complex and unpredictable nature. The more recent emergence of wireless technologies
add to this scenario the inherent unreliability of its transmission medium, where bit error
rates are ordinarily many times higher than those seen on wires. In addition, it is not
uncommon to find measurements that exhibit some sort of non-stationary phenomena
like long-term periodicity or trends in the average loss rate which are difficult to model
and even worse to track in real-time. However, what is perhaps most noteworthy is the
fact that, even on channels whose statistics remain stationary over time, one can find
indications of significant correlation between packets that are separated by up to a second
([Yajnik et al. 1999], [Duarte et al. 2003]).
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For those reasons, it is of major importance not only to build simple and flexible
packet loss models, but also to design strategies that allow an adaptive protocol to accu-
rately predict future packet loss statistics while accounting for the effects of recent losses.
By simple, we mean that a model should be computationally tractable to be usable by
the application. Flexibility, on the other hand, implies that a model should do its best to
fit a reasonable set of observed features from the real process. More importantly for our
purposes, a model should be able to adapt to changes in the loss process overtime and
predict future performance, conditioned on these local effects.

Probably the most applied models for packet loss processes are the Bernoulli pro-
cess and the 2-state Markov chain, usually referred to as Gilbert model. Recently, the
more general hidden Markov models (HMMs) have also emerged in the context of loss
modeling ([Salamatian and Vaton 2001]). Evaluating the accuracy of these models to pre-
dict losses is one of the central issues discussed in this paper.

We attempt to explore further the use of hidden Markov models as a tool to pre-
dict losses. We develop a novel recursive algorithm that evaluates the distribution of the
number of packets lost in a time window in the future given the recent history. We assess
the goodness of such predictions using different hidden Markov models. We also propose
a variation of the basic HMM approach, by constraining the model structure. Our model
structure has two nice properties. First, by restricting the model we aim at reducing the
total number of parameters to be estimated, thus lowering the overall complexity of the
model estimation phase. Second, by assuming such specific patterns in the set of pa-
rameters, we attempt to capture the short-term dependencies in packet loss events with a
Gilbert model while the longer-term dynamics is governed by a hidden Markov chain.

We survey the related literature and review some basic concepts in section 2. In
section 3 we present the measurement experiment performed in order to collect packet
loss data. Section 4 introduces the proposed prediction algorithm and the methodology
used in our experiments. In section 5, we present qualitative results of the method applied
to models. We then propose a new model, in section 6, which we consider better suited
to handle the task of packet loss prediction and present, in section 7, its performance
using the aforementioned algorithm. Section 8 develops on the computational costs of the
prediction task. Finally, section 9 concludes the paper by summarizing our results and
discussing the future directions for this research.

2 Related Work and Background
A simple and largely applied tool for modeling packet loss is the 2-state Markov chain,
usually referred in the literature as a Gilbert or Gilbert-Elliot model ([Elliott 1965]). More
recently, [Su et al. 2004] developed an iteration for the Gilbert model that allows the eval-
uation of the probability of observing i errors out of j transmissions, P (i, j), conditioned
on loss rate feedback from the channel. In our paper, we present an algorithm that com-
putes the P (i, j) conditioned on recent measurements for general hidden Markov models.
Although our procedure can be applied to Gilbert models as well, it is unrelated to that of
[Su et al. 2004].

Despite its usefulness, the 2-state Markov chain is known to have very limited abil-
ity to model long-term dependencies ([Yajnik et al. 1999]). In [Yajnik et al. 1999], a k-th
order Markov model was used to capture these long term correlations. However, because



of the exponential state space complexity of these models they are less attractive for on-
line use. In [Salamatian and Vaton 2001], it was shown that a hidden Markov model with
few states was capable of fitting those same packet loss traces from [Yajnik et al. 1999].

An issue of great relevance for modeling and predicting a time series from data is
that of stationarity. Perceiving sharp variations in the statistics of interest or even deter-
ministic phenomena such as long-term periodicity and linear trends can be some of the
most challenging tasks in operations research ([Brockwell and Davis 2002]). The work in
[Zhang et al. 2001] presented a comprehensive treatment of different stationarity criteria
applied to measurements of real Internet end-to-end paths.

[Tao and Guerin 2004] developed a layered model for predicting end-to-end loss
performance across two different time scales. Their model tries to predict the long-term
loss rates and the percentage of loss bursts shorter than 3 packets, displaying small pre-
diction error in the former while failing to perform well in the latter.

Even though these works recommend the use of models to predict packet loss
performance, they do so by considering steady state measures. If network conditions
are exceedingly variable on relatively short time scales, this assumption could lead to
significant errors as we show in the following sections.

In [Duarte et al. 2003], the authors considered a model which aggregates the total
number of lost packets in a sequence of δ attempted transmissions. The model employs re-
stricted hidden state transitions and the prediction is applied towards selecting the proper
FEC scheme for loss recovery in a VoIP tool.

In this work we persist on the idea that packet loss statistics can be reasonably well
predicted if one takes care of managing the effects of non-stationarities. We support that
this can be achieved by covering two important aspects of the prediction process. First,
one needs a prediction mechanism with parameters capable of sensing non-stationarity
quickly as it builds up. Second, but not least important, this algorithm should be coupled
with a model that can structure measured data in a time scale that is appropriate to develop
such sensing ability. We also strive for efficiency which is essential for any real time
network control mechanism.

A more comprehensive reference on HMMs can be found in [Rabiner 1989]. Be-
low, we present briefly the material needed for the paper. We consider models that are
discrete in time, as well as in both hidden and observable states. A hidden Markov model
is composed of two coupled stochastic processes. The first is a Markov chain and the
other is an observation process whose distribution at any given time is fully determined
by the current state of the chain.

Let {Yt} denote the underlying n-state Markov chain. The initial state distribution
is given by the n-dimensional vector π, with πi = P (Y1 = i). The state transition
probabilities are controlled by the n×nmatrix A = {aij}, where aij = P (Yt = j|Yt−1 =
i). The observation process {Xt} has m states and is governed by the n × m matrix
B = {bij}, i.e., bij = P (Xt = j|Yt = i). We refer to the parameter set for the model as the
triple λ = (π,A,B) and, given their probabilistic meanings, the constraints:

∑n
i=1 πi =

1,
∑n

j=1 aij = 1 and
∑m

j=1 bij = 1 must hold.

A first problem in creating a new model lies in specifying the state spaces over



which {Xt} and {Yt} are defined. Since {Xt} is the observation process, its states are
usually determined by what is being modeled. Characterizing {Yt} on the other hand,
may be a bit more abstract. In packet loss modeling, the hidden states may be regarded as
“network states”, comprising information about the packet loss statistics at a given mo-
ment. The most straightforward way to model packet loss is to represent each individual
packet with a binary symbol. We consider 1 as an indicator of a loss, and 0 to mean that
a packet is successfully delivered. The work in [Duarte et al. 2003] considers a differ-
ent observation model consisting of 51 symbols in order to represent the total number of
packet losses in a group of 50 packets. Both these approaches will be considered later in
our experiments for packet loss prediction.

Consider a vector of T values for the observation process, x = [x1, . . . , xT ].
Whenever there is no ambiguity, we will be using the abbreviated form Xi:j (and ac-
cordingly Yi:j) to denote the compound event that every variable Xt (Yt) in the range
t = i, . . . , j assumes the value xt (yt). In the particular case where i = j, we will simply
be writing Xi (or equivalently Yi). On the other hand, we will use X (and Y) when the
subindices span the full range 1, . . . , T , i.e., X1:T (Y1:T ). We also define the following
probability measures using the notation from [Rabiner 1989]:

αt(i) = P (X1:t, Yt = i|λ) • βt(i) = P (Xt+1:T |Yt = i, λ)
γt(i) = P (Yt = i|X, λ) • ξt(i, j) = P (Yt = i, Yt+1 = j|X, λ)

(1)

Using these measures, the estimation formulae for HMMs are given as:

πi = γ1(i) • aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

• bij =

∑T
t=1 11{xt = j}γt(i)∑T

t=1 γt(i)
(2)

3 Packet Loss Measurements
In our experiments, we had at our disposal, an extensive set of end-to-end measurements
performed between four academic sites - two of these located in Brazil and two in the
United States. These measurements display a large variety of network conditions, rang-
ing from hours with no packet loss to complete link outages. In all measurements per-
formed, CBR traffic was generated using the tools available in the Tangram-II package
[de Souza e Silva and Leão 2000].

Each traffic generation session lasted for an hour and a total of 998 sessions were
performed at different periods in the years of 2001, 2002 and 2004. In any given day
of experiments, the sessions were conducted at three different times, usually centered
around the peak of usage in many of the links transversed, taking into account the time
differences between the end points. The traffic pattern was chosen to emulate the behavior
of a simplified Voice over IP (VoIP) tool, sending 50 packets per second. Each packet has
324 bytes, to account for 160 samples of 16-bit PCM audio plus 4 bytes of application
level header. From our packet traces we produce a binary sequence {xi}Ti=1, where xi is
1 in order to indicate a loss or 0 otherwise.

Many of the 998 collected traces exhibit packet loss statistics that are not interest-
ing for our experimental purposes. These include statistics that are too simple to predict,
such as measurements of extremely low average loss rates. We selected 194 traces whose



loss rates are between 1% and 30% and whose consecutive loss periods last no more than
30 seconds. In section 7 we present quantitative results on predicting packet loss rates for
these traces.

Among the traces we considered interesting to analyze quantitatively, we also
selected 3 to be discussed in more detail. These traces are specially representative of
network characteristics which are hard to predict. Trace 1 has a 4% loss fraction and
exhibits regular spikes in its short-term loss rates with a period of 3700 packets. These
heavy loss periods last approximately 1300 packets. In [Zhang et al. 2000], the authors
report that routing changes can be the cause of periodic losses episodes. Our second trace
has a considerable overall loss fraction of 14% with some degree of variability. Trace 3,
on the other hand, displays a large number of higher short-term peaks of losses with a
smaller overall loss fraction of 10%. Figure 1 shows the loss rate in the first 30 minutes
of measurement of these traces. In this figure, the loss rate was evaluated at each interval
of 5 seconds.
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Figure 1. Loss rates of 5 second intervals in the first half hour of traces 1, 2, 3.

4 Prediction Algorithm
Steady state measures provide only a long-term average of the loss process being ob-
served. One of our goals is to estimate a model’s ability to predict loss statistics in the
short-term. To achieve this goal, we calculate estimates for the loss rate from recent
packet loss measures.

Estimating the short-term fraction of lost packets in the channel can be extremely
important, specially if this measurement converges slowly towards steady state. Given
a fixed window of f time units, the short-term loss fraction from a trace is simply the
fraction of the number of loss events in this window by the number of packets transmitted
in that window. Similarly to the works of [Elliott 1963] and [Su et al. 2004] we compute
the exact distribution of i errors out of j transmissions. Our work is more general than that
in these references since it computes this measure for any hidden Markov model while
those works apply only to the Gilbert-Elliot channel. Also, our distribution for the number
of losses is conditioned on the outcome of recent packet measurements. The following
algorithm is an original contribution of this paper.

Let Rf
t be the random variable denoting the total number of loss events that in the

next f time units beginning with the t-th observation. In other words, Rf
t is the sum of

each of the f observation values, from t to t+ f − 1:

Rf
t =

f∑
i=1

Xt+i−1 (3)



The following results can be applied to any model in which the observations repre-
sent the number of losses in a unit time, being the 0-1 model a special case. For instance,
our results also apply to the hidden Markov model presented in [Duarte et al. 2003],
where the observations can range from 0 to 50 losses observed in a second. Observations
then lie in the range of integers from 0 to some given maximum r. As a consequence, our
random variable Rf

t will span from 0 to rf .

We want to calculate the distribution of Rf
t given the h most recent past obser-

vations, Xt−h:t−1. This is the basis for our predictor of the short-term loss rate in the
channel. We begin by conditioning on the hidden state of the first predicted observation:

P (Rf
t = j|Xt−h:t−1) =

∑

∀yt

P (Rf
t = j|Yt)P (Yt|Xt−h:t−1) (4)

First, we notice that this problem, as most of those related to forecasting hidden
Markov models, can be broken in two steps: (a) predict the hidden state at the beginning
of the future window conditioned on past observations and (b) calculate the distribution
of the metric in the future conditioned on the current state.

Define rf,h
t as the probability mass vector for Rf

t given the past history, and Rf

as a matrix whose ij-th element is P (Rf
t = j|Yt = i). Since a hidden Markov model is

a time homogeneous stochastic process, P (Rf
t = j|Yt = i) is the same measure for all t.

Let πt,h(i) = P (Yt = i|Xt−h:t−1), i.e. πt,h is the probability vector for the hidden states at
t given the past observation. We can rewrite equation (4) as:

rf,h
t = πt,hR

f (5)

The state distribution πt,h can be easily calculated from the forward variable αt(i),
as defined in section 2, but measured only on the set of observationsXt−h:t−1. If we denote
by αt the vector whose i-th element is αt(i), then:

πt,h =
αt−1A

P (Xt−h:t−1)
(6)

In order to devise a recursion that evaluates Rf , one should note that P (R1
t =

j|Yt = i) = P (Xt = j|Yt = i) = bij . Hence, matrix R1 is the observation matrix B.
Conditioning on the value of the subsequent observation, Xt, we can write each element
of Rf as:

P (Rf
t = j|Yt = i) =

∑

∀xt


 ∑

∀yt+1

P (Rf−1
t+1 = j − xt|Yt+1)aiyt+1


 bixt (7)

We can rewrite (7) in matrix form as:

Rk =





B , k = 1∑

∀xt

B(xt)ARk−1If (xt) , 2 ≤ k ≤ f (8)



Where B(xt) = diag{bixt} and If (xt) is a (1+rf−r)× (1+rf) matrix identical
to an (1 + rf − r)× (1 + rf − r) identity matrix shifted xt columns to the right and with
zeros on all the remaining elements. The steps in our algorithm are:

Initialization
{
πt,h ← αt−1A
R1 ← B

Main loop
{

for 2 ≤ k ≤ f do:
Rk ←∑

∀xt
B(xt)ARk−1Ik(xt)

Result
{

rf,h
t ← πt,hR

f

(9)

4.1 Adaptive Prediction Mechanism

We now develop an adaptive prediction mechanism for training the HMM and evaluating
the measure predictor. Figure 2 provides a general picture of our methodology in two
layers. In the model training layer, model parameters are periodically re-estimated every
τ time units. In each training, only samples from the latest T time slots are used for
the parameter estimation procedure. Every training epoch is also divided in prediction
intervals of length ψ, as shown in the measure prediction layer. Each individual prediction
can be conditioned on the packet samples from the h most recent time slots. We also have
a parameter f that specifies the size of the prediction window, i.e., the maximum number
of packets that can be lost.

Measure Prediction Layer

Model Training Layer Individual Training

Individual Prediction

t - T t - 1 t

t - h t - 1 t t + f - 1

Training
Sample

History
Sample

Prediction
Window

τ τ τ

ψ ψ ψ ψ ψ

Figure 2. Prediction mechanism layers

Through experimentation, we have found that each of these parameters can have
different impacts on the quality of prediction. The values of T and h, for instance, play
important roles in perceiving the effects of recent changes in channel statistics. If either
one is set too high, predictions are much smoother, basically reflecting the steady state
measures. Values that are too low, on the other hand, will fail to include enough informa-
tion to allow the model to correctly estimate its parameters or perform accurate prediction.
Clearly, in a real scenario, one would like to have the values of τ and ψ as large as pos-
sible to minimize application overhead. Nevertheless, there is a trade-off between this
overhead and the accuracy of prediction.

The packet loss information used for conditioning the prediction statistics is, in
practice, not available to the sender immediately after they occur. Since the sender must
wait a round-trip-time until prediction can be performed, some part of the predicted statis-
tics will be useless in taking control decisions. Because of this, in the loss rate prediction



mechanism, the value of f should not be chosen too small in relation to the estimated
RTT. On the other hand, it is easy to see that if one makes f → ∞, the predicted loss
rate will be independent of the history given by h and converge to the steady state loss
probability. In our experiments we have tried a number of different variations for all of
these parameters. Since an extensive presentation of these comparisons is out the scope of
this paper, in the next section we present results based on parameter values that we have
found to work well in practice.

5 Experimental Results

We now compare the accuracy of two different models to predict the short term loss rate
using the method presented in the previous section. In this section, our analysis is focused
on the three traces selected in section 3 which we consider hard to predict. In section 7,
we present quantitative results for the larger set of 194 traces.

The first model we consider is a hidden Markov model with binary observations
and 10 hidden states, which models individual packet loss events, and for such we refer
to it as a Packet-HMM. The second model is another HMM, also with 10 hidden states,
although its observation measure is the total number of losses in a sequence of 50 packets,
which for our traffic specification corresponds to an interval of 1 second. We denote this
last model the Aggregate-HMM.

For all models, we apply the algorithm from section 4 in order to calculate the
distribution for the number of losses in the next f = 5 seconds, given the outcomes of
the packet losses in the last h = 10 seconds. These prediction estimates are updated
every ψ = 5 seconds. Model parameters are re-estimated every τ = 3 minutes using the
information from the latest T = 3 minutes.

Once the distribution for the loss rate is evaluated for a model, we use its expected
value as a predictor statistic and take its absolute difference to the real measure obtained
from the trace as a prediction distance. We consider as an accurate prediction, one in
which such distances are as small as possible most of the time. Thus, we compare the
expected value obtained from the algorithm to the actual number of losses observed in
the corresponding segment of the trace. We also experimented, for each model, using the
long-term loss probability given the current parameters as an estimator of the packet loss
rate in the next f time slots. This predictor does not make use of the algorithm in (9).

We present the performance of each model in predicting the loss rate using two
different metrics. In the first one, we simulate a contest where at any given prediction
instant, each of the competing models uses as its score the distance measure defined in
the previous paragraph. The model with the lowest score is the winner in that round. We
then evaluate, for the entire trace, which model has won the most rounds.

The second measure of accuracy we consider is the mean squared error (MSE),
that is, the average of the squares of the prediction distances. The MSE can be misleading
for comparisons since a single bad prediction will cause the entire measure to look bad.
We recognize that there is no single measure that is good enough to reflect the accuracy
of a predictor. For this reason, we do not compare the MSE for each model, but instead
we display its value only for the one that wins the prediction distance competition that we
defined above.



Trace Packet-HMM Aggregate-HMM MSE of Best Model
1 47.10% 52.90% 0.00484
2 58.54% 41.46% 0.00654
3 45.97% 54.03% 0.01411

Table 1. Fraction of time each model provides the closest prediction.

For the traces discussed in section 3 the results of our metrics are displayed in
table 1 for the transient predictors of loss rate in each model. Except for the second
trace, the Packet-HMM was not as good as the Aggregate-HMM. This happens because
in the Packet-HMM, the channel statistics may change after each packet transmitted. As a
consequence, steady state will be reached much faster than that for the Aggregate-HMM,
in which hidden state transitions occur at a longer time scale.

Figure 3 illustrates these characteristics in more detail. It shows the prediction
performance of each model in the first 30 minutes of trace 3. In the left plot, it can
be noticed that the Packet-HMM was not capable of reproducing the variations of the
loss rate in the short-time scales. In fact the only variations that are visually evident
occur in large steps, every τ = 3 minutes, when the model parameters are re-estimated.
The Aggregate-HMM, on the right, better predicts the intensity of variations that occur
between the training epochs.
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Figure 3. Prediction results in trace 3.

We also found that, in all traces, the transient prediction of loss rates provided
by our algorithm is consistently better than the steady state alternative, since the latter
simply ignores any variations in recent statistics and predicts the same outcome for an
entire training epoch.

To emphasize the impact of the slow converge towards steady state for predicting
loss rates, we compare the prediction done in two different ways: (a) using the Aggregate-
HMM that had the best performance for trace 3 in figure 3 and; (b) using the steady state
results of the same model for each prediction interval. Figure 4 shows the results for the
steady state predictor. One can observe that, as expected, the algorithm fails to predict the
trace variability during each prediction interval. This contrasts with the plot on the right
of figure 3 where transient measures were used and so the algorithm was able to track
reasonably close the variability of the loss rate during the interval of length ψ.
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Figure 4. Results of using the steady state measure as a predictor in trace 3.

Finally, we have studied the sensitivity of the prediction with parameter τ . For
instance, if τ is set to 1 minute, the Packet-HMM will be able to update its predictions
as fast as the Aggregate-HMM has done for τ = 3 minutes. However, while the aggre-
gate model is adapting its forecasts in these three minutes based only on the prediction
algorithm, the Packet-HMM’s improvement in performance is just due to the fact that its
parameters are now being updated more frequently than before. If, on the other hand, τ is
increased to 5 minutes, then the Aggregate-HMM becomes less accurate than for τ = 3
minutes, whenever a large change in the loss rate occurs.

6 Proposed Model

In this section we propose a hierarchical hidden Markov model that has lower computa-
tional complexity than those described in previous sections. The computational savings
are based on the premise that the statistics changing in short time scales can be reasonably
well predicted with simple models. We also discuss how the prediction algorithm from
section 4 can be adapted for the proposed model.

Suppose that transitions between hidden states occur only every S observations.
Another way to think of this process is to assume that, once it enters a hidden state, it
emits a batch of S packet transmission outcomes. For this reason, we refer to this as
batch-observations model. Clearly, the case of S = 1 is equivalent to an “ordinary”
hidden Markov model.

This process can be modeled by a HMM in which a state can emit one of the
2S possible observation symbols, i. e. one for each possible sample path for S packets.
However, this model would be unmanageable even for moderate values of S. In our
approach, we restrict the distribution of observations within a batch by assuming that it
is generated by a simplified Gilbert model, i.e., a 2-state Markov chain. The reasoning
behind our model is that short-term correlations could be captured by a simple process,
while the dynamics at larger time scales would be governed by the hidden Markov chain.
Computational savings are achieved by considering a batch of S measurements as a single
observation, and computing the joint probability of the entire batch from the distribution
of the generating process in each state.

We consider that packet measurements are segmented in sets of size S. More
specifically, let the measurement symbols xt denote a vector of measures [xt,1, . . . , xt,S]



representing the outcome for each of the individual packets grouped in the t-th batch.
Accordingly we redefine observation variables Xt as vectors of variables [Xt,1, . . . , Xt,S].

For each hidden state we have the parameters for the 2-state Markov chain. Namely:

ri = P (Xt,1 = 1|Yt = i) (10a)
pi = P (Xt,s = 1|Xt,s−1 = 0, Yt = i), s > 1 (10b)
qi = P (Xt,s = 0|Xt,s−1 = 1, Yt = i), s > 1 (10c)

We refer to the model as the tuple λ = (π,A, r,p,q), where r,p,q are vectors containing
the respective parameters ri, pi, qi, for each state i.

The first advantage of our model is the lower computational complexity than the
previous models presented. This is true since, in order to evaluate the likelihood of a
sample, one does not need to record the individual packet measurements. It is enough to
keep track of the sufficient statistics1 denoted, in each batch of measures xt, as:

xt,1 = outcome of the first packet in xt (11a)

Sij
xt

= number of transitions from i to j in xt, i, j ∈ {0, 1} (11b)

Given an instance of xt, we are be interested in computing the probability that Xt = xt,
given the hidden state yt in the t-th batch. Using the statistics defined above, we have:

byt,xt =

{
ryt(pyt)

S01
xt (1− pyt)

S00
xt (qyt)

S10
xt (1− qyt)

S11
xt , if xt,1 = 1

(1− ryt)(pyt)
S01

xt (1− pyt)
S00

xt (qyt)
S10

xt (1− qyt)
S11

xt , if xt,1 = 0
(12)

We present a theorem that allows us to efficiently compute the parameters given
by equations (10).
Theorem 1. If restrictions are added to either one of the subsets of parameters π, A or B,
in addition to those mentioned in section 2, the re-estimation formulae will change only
for those variables upon which the new restrictions apply, as long as the new restrictions
do not involve parameters in different subsets.

We omit the proof of Theorem 1 for space restrictions. In our methodology we
develop a new restriction on the observation parameters B. The estimation formulae for
π and A remain unchanged nevertheless.

Using the results of Theorem 1 and applying the restrictions in (12) on the obser-
vations parameters bij , it is possible to obtain the new re-estimation formulae:

ri =
PT

t=1 11{xt,1=1}γt(i)PT
t=1 γt(i)

• pi =
PT

t=1 S01
xt

γt(i)PT
t=1(S

01
xt

+S00
xt

)γt(i)
• qi =

PT
t=1 S10

xt
γt(i)PT

t=1(S
10
xt

+S11
xt

)γt(i)
(13)

The computational advantage of our model is evident from equations (13), since
each training iteration depends only on the statistics defined in (11). Each training iter-
ation is therefore faster by a factor of S. Since the measurements used in training are
usually done at the receiving side of the transmission and need to be sent back to the

1A statistics Γ(x) is a sufficient statistic for θ if the distribution of the sample X given the value of Γ(x)
does not depends on θ.



transmitter, there is also a smaller overhead in application payload due to these out-of-
band data.

We now show how to calculate the distribution of Rf
t in our batch observation

models. We restrict our analysis to the simpler case where both t and f are multiples of
the batch size S, i.e., t = t′S and f = f ′S for some integers t′ and f ′. The general case
is notationally intensive and it is omitted for conciseness.

Separating the number of losses from each batch of observations, equation (3) can
be rewritten as:

Rf
t =

f ′−1∑
i=0

RS
t+iS =

f ′−1∑
i=0

S∑
j=1

Xt+iS+j (14)

Note that, conditioning on the same hidden state, each of the terms RS
t+iS is in-

dependent and identically distributed. We can then create an aggregate hidden Markov
model that counts the number of losses in each batch, similarly to the one we considered
in the experiments of the previous section.

Once matrix B is evaluated for the aggregate model, one can merely apply the
algorithm given by (9) in order to obtain the distribution for Rf

t . Each row bi of the
aggregate observation matrix B is defined as the probability distribution for the number
of losses in a batch of size S, generated by the 2-state Markov chain model contained in
the corresponding state i. It is interesting to notice that, in order to evaluate bi in this
case, one can apply the algorithm given by (9) with some minor simplifications.

7 Additional Experimental Results

We report the performance of our prediction algorithm when used together with the batch-
observations model. The model used for the experiments has 10 hidden states and S =
50 packet outcomes between state transitions. This is equivalent to 1 second of packet
transmissions for our packet traces that emulate a voice application. We refer to our new
model as the Batch-HMM.

In order to quantify the advantage of the Batch-HMM over the Packet and Ag-
gregate HMMs as a predictor we consider another metric - the sample cross-correlation
between predicted and real loss rates - which should be as large as possible to indicate a
good prediction. Namely, if a predictor is coherent with the fluctuations in the loss rate,
its predictions should correlate well with the real measurements.

Figure 5 shows the sample correlations obtained for the prediction of each model
against our 194 traces. Each of the three curves corresponds to one of the models we
are comparing. The traces are arbitrarily sorted in the x axis so as to make the curve
corresponding to the Batch-HMM non-decreasing.

It is evident from the plot in Figure 5 that most of time, the correlations from the
Packet-HMM and the Aggregate-HMM fall below the reference curve from the Batch-
HMM. In fact, the Batch-HMM provides the highest correlation in 49% of the traces,
while the Packet and Aggregate models do so, respectively, in 40% and 11% of the traces.
Also, in the traces where the Batch-HMM failed to provide the highest correlation, the
difference to the best model was never larger to 0.18.
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Figure 5. Correlations between prediction and real loss rates in the 194 traces.

Trace Wins against Packet-HMM Wins against Aggregate-HMM
1 57.43% 51.20%
2 56.46% 61.37%
3 58.42% 57.28%
4 66.34% 57.28%

Table 2. Fractions of time the Batch-HMM provides the closest prediction against
the Packet and Aggregate models.

In table 2, we compare the performances of the Batch-HMM with that of the best
models for each trace considered in the experiments of section 5 (shown in table 1). As
in that section, the comparison measure is the fraction of time a model provided the best
prediction among all the considered models.

Figure 6 shows the performance of the Batch-HMM in predicting the first 30 min-
utes of data in trace 3. If we compare Figure 6 against 3, we observe that our model
better adapts the prediction of the loss rate to the large variations that occur in the trace
than the other models considered. Similarly to the Aggregate-HMM, the Batch model
converges to steady state at a slower pace than the Packet-HMM. On the other hand, the
Batch-HMM has fewer parameters values to be estimated than the Aggregate-HMM and
therefore these can be estimated more efficiently and potentially more accurately.
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Figure 6. Prediction results for the Batch-HMM in trace 3.



As observed in section 3, the loss rate of trace 1 contains periodic spikes at every
74 seconds. Figure 7 shows a 10 minutes zoom over the first trace plot of Figure 1,
together with the prediction made by our algorithm when using the Aggregate-HMM
(on the left) and Batch-HMM (on the right). The figure clearly indicates that our model
better adapts to the temporary loss rate sharp changes. As an example application, this
predicting capability can be of great value for a VoIP tool that selects dynamically, in
real-time, a FEC scheme to mitigate the harmful effects of these loss rates spikes in the
perceived voice quality.
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Figure 7. Prediction results for the Aggregate and Batch HMMs in trace 1.

Figure 8 shows the predicting performance of our algorithm when applied to trace
2 using the Packet-HMM and the Batch-HMM. The figure shows that the algorithm better
predicts short term loss rate variations when the Batch-HMM is used. Nevertheless, even
the Batch-HMM algorithm has difficulties to perceive very sharp changes. This is evident
by the “step-like” shape of the prediction trace. We attribute the prediction errors to the
fact that trace 2, as reported in section 3, has a very small sample autocorrelation in all
time lags when compared to those of the other traces. Evidently, any prediction is limited
by the amount of temporal correlations in a trace. The smaller the temporal correlations
the harder is the prediction task.
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Figure 8. Prediction results for the Packet and Batch HMMs in trace 2.



8 Computational Costs
We evaluate the the efficiency of the Packet, Aggregate and Batch HMMs when used in
conjunction with the methodology described in section 4.1. We consider models with N
hidden states, that can aggregate r packets per time slot, evaluating the distribution for the
number of losses in the next f time slots.

Concerning the model training step, each iteration of the training procedure of
HMMs has its complexity dominated by the forward-backward recursions. For a training
sample of size T , the Packet-HMM performs a number of computations in the order of
N2T . In both Aggregate and Batch models, packet loss information from the training
sample is described in the form of sufficient statistics measured over portions of the sam-
ple of size S. Therefore, the complexity of the forward-backward steps is reduced by a
factor of S in these models.

As for the measure prediction algorithm in (9), the number of operations that need
to be taken to evaluate the matrix Rf is approximately given by:

C(N, r, f) = N2

[
(r2 + r)(f − 1)f

2
+
r(f − 2)(f + 1)

2
+ 2(f − 1)

]
(15)

For the experiments we have reported in sections 5 and 7, the Aggregate and
Batch models execute 3 times less operations than the Packet-HMM. This is a significant
improvement for a real time predictor.

9 Conclusions and Future Work
In this paper we devise a novel online prediction algorithm for packet losses. We also
proposed a hierarchical loss model aimed at capturing short-term variations. This model,
when used with the prediction algorithm is sufficiently accurate to predict error rates
within a reasonable time frame in the future. The parameter estimation procedure for the
proposed model uses new equations that we developed for this work. We showed that
these equations lead to significant computational savings for the prediction algorithm, in
contrast with the same algorithm using other models in the literature.

We evaluated the prediction algorithm using three different loss models and over
a number of traces collected in the Internet. We also discussed in more detail the results
from three of these traces. These correspond to loss processes that are hard to predict as
argued in the paper. Our results have shown that our proposed model is significantly more
efficient in terms of parameter estimation and also outperforms the others in most cases.
It is therefore the model of choice for our algorithm.

We also conclude that the short-term loss rate can not be well approximated by
the steady state loss probability, since this can result in poor predictions. In addition,
our findings also show that the short-term predictions of the algorithm when the Packet-
HMM is employed do not capture high variations in the loss rate. This is true because
these models reach steady state within a short interval. We show that both the Aggregate-
HMM and the Batch-HMM are more adequate to model these transient effects than the
other two models.

It is clear that the accuracy of prediction is limited by the amount of temporal



correlations in the packet loss process. Traces with relatively small time dependencies
reduce our model’s ability to predict short-term packet loss rates.

The prediction algorithm seems to be of value when applied to a real time stream-
ing applications such as VoIP and video-conferencing, or even other applications that can
benefit from foreseeing error rates. We have plans to incorporate the algorithm as part of
an adaptive control protocol in the future.
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