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Abstract. This work proposes a metric for the analysis and benchmar&ing
checkpointing algorithms through simulation; the resuwtstained show that
the metric is a good checkpoint overhead indicator. The imé&trimplemented
by ChkSim, a simulator that has been used to compare 18 quasit®nous
checkpointing algorithms. A survey of previous analysetietkpointing shows
our study to be the most comprehensive comparison carriedotar. Chk-
Sim is easy to use and guarantees that the algorithms arly fadmpared by
subjecting all of them to exactly the same simulation evenht® information
summarized here can certainly be used to guide the congiruof practical
guasi-synchronous checkpoint-restart toolkits for modgusters.

1. Introduction

The process of recording the state of a distributed apjdicas calledtaking a global
snapshatIf the states of the global snapshot are made persistenétioeding is termed
taking a global checkpoinmdr simply checkpointing The difficulty of checkpointing for
applications implemented atop of an asynchronous dig&tbaystem is the selection of
checkpoints, one per process, to composeaningfulglobal checkpoint, that is, one that
does not violate causality. Global checkpoints that retspegsality are calledonsistent
global checkpoints Checkpointing requires the coordinated execution of atldaree
different algorithms: an algorithm to select the local dtpints of processes, an algo-
rithm to move them to a monitor and a monitoring algorithm éonbine the checkpoints
into a consistent global checkpoint; further details altbetcheckpointing process can be
found in [Elnozahy et al. 1996]. In this paper, the tedistributed checkpointingheans
the algorithm executed by each of the processes of theldigdd application to select
checkpoints.

Algorithms for distributed checkpointing have been exierly studied because
they represent a relevant theoretical problem and becaeyeate the central supporting
mechanism of rollback-recovery, an effective mechanisedus tolerate partial failures
of hardware components of distributed systems. Recen#fiirjlslited checkpointing has
gained a new impulse as large clusters of computers aredsudh economical solution
for the execution of long-running distributed applicaBom recent example of a large
cluster is BlueGene from IBM. According to the Top 30@ore than 60% of the Top
500 supercomputing clusters exceed 512 nodes. The rurimegf most of the applica-
tions executed in such clusters usually exceeds the meanbitween failures (MTBF)
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of a processing node, making the occurrence of failurestaiogy. In this context, bench-
marks for checkpointing become important guides to impletoes seeking cost-effective
rollback-recovery mechanisms.

In this paper, we select a metric for the analysis and bendtingpof checkpoint-
ing algorithms through simulation and provide evidence thi is an effective indicator
of the overhead imposed by the checkpointing algorithm stributed applications. Our
metric requires the definition of a computational model foplecations instrumented for
checkpointing-recovery that addresses the key factoestafig the behavior of the appli-
cations and, consequently, of the checkpointing algosth®ur computational model is
implemented by ChkSim, a simulator that has been used to aerifajuasi-synchronous
checkpointing algorithms; to our knowledge, the most cahpnsive assessment carried
out so far. Based on a survey of previous comparison studliglsezkpointing algorithms
we are able to say that ChkSim is the first tool that can easilydegl to compare in a
fair manner a large number of checkpointing algorithms bseat subjects all of them
to exactly the same simulation conditions. ChkSim is freefilable allowing others to
not only check what we have done but also to modify and explamdet of checkpoint-
ing algorithms and scenarios available. The results pteddmere certainly can help the
construction of practical checkpoint-restart toolkits fieodern clusters.

This work is structured as follows. Section 2 defines the rmadeomputa-
tion used in the simulation of checkpointing algorithms.ct@s 3 is a brief introduc-
tion to checkpointing; included for the sake of the selfteaimment. Section 4 contains
the keystones of comparative studies on checkpointingrigthgas. Sections 5 to 8 dis-
cuss the metric we have defined and its use to analyze and rharichwo classes of
guasi-synchronous checkpointing algorithms. Sectionrirsarizes our contributions
and poses new research questions concerning the relapobstween simulation and
execution-based benchmarks.

2. Model of Computation

A distributed applications a set{po, p1, - - . , pn—1} Of n SEequentiaprocessethat cooper-
ate to execute an application. The processes of the disdl@pplication are autonomous,
do not share memory or a global clock, and communicate ombutih the exchange of
messages over@mmunication networkl he message exchange mechanism guarantees
that messages are not corrupted, but does not impose boarmsronunication delays
and allows messages to be delivered in any order. Each grbessts execution modeled
as a finite sequence of events, whefeepresents thé-th event executed by process

¢) is the initial event of;. The events are classified as internal events and commiamcat
events. The communication events aemdmessage areceivemessage, all other events
are internal events. Each process maintains a set of lodalblas that forms itstate
ando? denotes the state of processafter the execution of evenf.

Checkpoints are persistent states of a process. The set dfphints of a dis-
tributed application together with the set of communicagvents form &heckpoint and
communication patter(CCP). For a given process, spy 7% represents itg-th check-
point, associated with state, such that: < [ ande! is an internal event. Each process of
an application associates its initial and final events withakpoints. Acheckpoint inter-
val A¥ is composed by the states of procgsbetween a checkpoiat® and its immediate



successofF !, includings* and excludings¥*!. A global checkpointy) is a set ofn
local checkpoints, one per process, specified by a set aferdéc;, ¢;,...,c,_,}, thatis
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A global checkpoint is consistent if it represents the baumdf a consistent
cut [Manivannan and Singhal 1999]. The consistency camtis expressed in terms of
the causal precedence relatien)[Lamport 1978] in the following way: a global check-
point is consistent if and only if:

Vi,j:0<i,j<n-—1:6{+d;.

If the selection of checkpoints is arbitrary, it may not besgible for a given
checkpoints to be part of a set of causally unrelated checkpoints. Thasvas first
observed in the context of rollback-recovery and can leadutyf computation to the
domino effecfRandell 1975]. The domino effect exists due to a dependeglagion be-
tween checkpoints calleigzag pattor z-path[Netzer and Xu 1995]. If two checkpoints
are causally related, there iszgpath connecting them, however, the converse is not true.
A non causak-path occurs when there is apath between two checkpoint$ andc};,
butst /£ gj A setS of checkpoints can participate of some consistent globatkgoint
if and only if there is not &-path between any of the checkpoints in the $efThe re-
lation defined by the-path is reflexive, thug can have a-path to itself. In this case,
considering the set = {4}, thens cannot be part of any consistent global checkpoint.
It is said thatr is in az-cycleand that this checkpoint isseless

3. Quasi-Synchronous Checkpointing

Checkpointing algorithms are organized in three clasasgnchronoussynchronousnd
guasi-synchronoufManivannan and Singhal 1999]. Asynchronous checkpaintaiso
known asuncoordinateccheckpointing, can very often lead to the domino effectifoy
the application to discard many of its checkpoints. Alduris for synchronous, aro-
ordinated checkpointing halt the operation of the application while processes work
to obtain a global checkpoint. This interruption stops thessage flow and guarantees
that all local checkpoints are concurrent and the resulgjiadpal checkpoint is consis-
tent. Consistency is guaranteed at the expense of the freefitve application processes
to choose when checkpoints should take place. The algoptiopmosed by Chandy and
Lamport [Chandy and Lamport 1985] is the best known algorithhis class and is of-
ten used as a reference against which others algorithmssessed.

As the name implies, quasi-synchronousgommunication inducea@heckpoint-
ing is a compromise between the freedom given to processsslé¢ct checkpoints and
the requirement for consistency of the global checkpointguiasi-synchronous check-
pointing the processes of the application can freely chtlosenoment to take a check-
point, calledbasic but may be required to take additional checkpoints, caiteded
if instructed to do so by the checkpointing algorithm. Moregsely, the checkpoint-
ing algorithms of this class rely on control information gypacked in every message
to decide whether or not to force a checkpoint when the messageceived but before
it is delivered. These actions are trigged by events geeeray the distsributed appli-
cation, configuring quasi-synchronous checkpointing ag&al event-driven, reactive



distributed algorithm. The checkpoint patterns generdeduasi-synchronous check-
pointing have different attributes that affect the behawbthe monitor when building

consistent global checkpoints [Garcia and Buzato 1999]riatfans of these attributes
determine two classes of domino-effect free algorithmsriMannan and Singhal 1999]:

ZPF (z-path free): This pattern is free of non causapaths not duplicated by a causal
path. Manivannan and Singhal [Manivannan and Singhal 1889 shown that
algorithms that respect this pattern also respect the RDIIbé&ck dependency
trackability) property. RDT compliance guarantees thhtlapendencies among
checkpoints can be tracked during execution using logioa.t

ZCF (z-cyclefree): This pattern is free ot-cycles, only assuring the nonexistence of
useless checkpoints. The algorithms known to respect #tisnqm are very simple
and efficient and are calleddex-basedEInozahy et al. 1996, Vieira et al. 2001].

4. Related Work

This section contains results of the survey we have perfdraeyather data on metrics
and benchmarks for checkpointing algorithms. Space liioitgprecludes us from writing

a specific commentary for each of the studies surveyed,adsiee present our findings
with the help of Tables 1 and 2. Table 2 specifies more metnas those used in Table 1;
this reflects the fact that several metrics have been propogelifferent researchers but
only a few have actually been used. The following text reterthe contents of Table 1
by citing the name of its column in boldface.

] Study | Type | Topol. (Scale)] Random Var.| #Alg. (Class)| Benchmark| Metric |
[Xu and Netzer 1993] E * (16) na,# 2 (ZCF) AC 7
[Baldoni etal. 1997]| SS *, 0, (6) ns,# 2 (ZPF) FDAS 5
[Baldoni et al. 1998]| SS * (8) ns,= 2 (ZCF) BCS 5

[Zambonelli 1998] SL * (16) ns,# 4 (ZPF, ZCF) FDAS 5
[Baldoni etal. 1999]| SS * (8) v,= 3 (ZCF) BCS 5
[Alvisi et al. 1999] SS * (4) €,7 3 (ZCF) BCS 15
[Garcia etal. 2001] | SS * (2-20) v, # 3 (ZPF) FDAS 5
[Vieira et al. 2001] SS * (2-20) v, = 5(ZCF) BCS 5
[Agbaria et al. 2003]| A * (8) €, # 4 (SB, SNB, na 1,2
ZPF, ZCF)
[Schulz etal. 2004] | E * (64-256) na,#£ 1(SB) CL 1,2

Table 1. Summary of Checkpointing Comparative Studies.

The Type of studies found in the literature show that simulation oéckpoint-
ing has been the most frequently adopted strategy to askes&pminting algorithms.
The reason is that simulation is simpler than execution. Wk of [Schulz et al. 2004]
describes several of the hurdles found during the instrdatiem of applications and of
LAM/MPI toolkits for checkpointing. Simulation, by consg does not require the in-
strumentation of real applications and allows researcteeeasily vary parameters such
as checkpointing interval, number of processes, processggvents priorities, etc. The
survey shows that there are two possibilities for the sitmutaof checkpointing. One
possibility is based on the generation of a computatiorohydtom a checkpointing com-
putation model, that is, the computation history can be peced, for example, with the
help of a random number generator. The other possibilitgsedn computation histories



analytical model ZPF  z-path free

execution-based benchmark SB synchronous blocking checkpointing
simulation-based benchmark, generated SNB  synchronous non-blocking checkpointing
simulation-based benchmark, log-basedq AC  asynchronous checkpointing
client-server communication FDAS fixed dependency after send

group communication BCS  Briatico-Ciuffoletti-Simoncini

all-to-all (complete communication graph) CL Chandy-Lamport

normal distribution Metrics

execution time

recovery time

control information (complexity)
#control messages (complexity)
number of forced checkpoints
checkpoint storage space
#checkpoints discarded during recovery

exponential distribution

uniform distribution

different distributions per process

all processes have same distribution
not specified

not applicable

ZCF z-cycle free

2althensxo ]l 2Om>
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Table 2. Abbreviations used in Table 1

that come from logs of the execution of real applicationsounopinion, the combination
of these two forms of simulation offers the best option fa gudy of checkpointing be-
cause it is simpler to instrument an application to write@dd events than to instrument
it for full checkpoint-recovery.

[Agbaria et al. 2003] defines the behavior of processes, asmcation channels
and checkpointing through the use of random variables witargain probability distri-
bution. This work adopts exponential distributions for #ents of the computational
model. Validation of an analytical model requires the esticm of data from actual appli-
cation executions to verify whether the model is a good axipration of reality or not.
Despite this, Agbaria’s study offers a very detailed arnialg$ the various costs incurred
during checkpointing.

Execution of a set of applications on a cluster and the measemt of the overhead
caused by checkpointing in failure-free and in failuresgraouns is possibly the definitive
way to benchmark checkpointing algorithms. As pointed gufXu and Netzer 1993]
and [Schulz et al. 2004] setting up the experiment requinesatvailability of a cluster,
access to the source code of the applications, instrumemtdbgging of events, and
summarization of the results. These difficulties and thd laicknowledge on quasi-
synchronous algorithms explain why most of the practic@lementations of checkpoint-
recovery are based on Chandy-Lamport, a synchronous dlgoeasier to understand
and to interface with distributed applications. It also neyplain why the number of
checkpointing algorithms compared is very small in the syed works.

The majority of the studies consider tAepology of the distributed system to
be a complete graph, in this topology every pair of proces$éise system is connected
directly by a bidirectional communication channel. Theseal®s consider ideal FIFO
communication channels. Ti&sale of the system, in number of processes, shows that
the scales considered are usually small and fixed. Schulaly $s concerned with scal-
ability because they assess the execution of real applicatt the Lawrence Livermore
Laboratory with focus on reliabilityRandom Variables offers a very concise view of the
probability distributions used to generate the eventsefiistributed computation used in
the simulation. Our survey shows that the studies do notamnex common set of random



variables; this implies that it is very difficult to compakesults across studies. In addtion,
the definition of a checkpoint interval is made in two inconipa ways: either the num-
ber of communication events or the elapsed time between tmeecutive checkpoints.
All studies indicate that measuring the checkpoint intelvaery important because the
smaller the length of these intervals, larger will be thejfrency of basic checkpoints. If
the number of basic checkpoints grows then the number ofildes®rced checkpoints
necessary to guarantee the usefulness of the basic chatkpa{so grows. However, the
larger these intervals are, the larger is the probabiliag the causal information of a basic
checkpoint reaches a larger number of processes beforesttiecheckpoint, increasing
the possibility of creating-paths and-cycles. Another factor unearthed by our survey is
the fact that most of the simulations consider scenariogevaikthe processes events are
generated from exactly the same probability distributibaf is, they have the same sym-
metric behavior. Process asymmetry is relevant becaugepomore active processes,
communicating with less active processes, create a largeuof basic checkpoints
that can subsequently favor the formationzgbaths and:-cycles, increasing once again
the number of forced checkpoints. The only two studies thasitler asymmetric process
behavior are the studies by [Baldoni et al. 1999] and [Vieiral. 2001].

Algorithms shows the number of algorithms compared in each study and the
checkpointing classes. Itis worth to observe that the ei@tbased studies consider only
one ([Schulz et al. 2004]) and two ([Xu and Netzer 1993]) élp@inting algorithms. The
studies based on simulation have the number of algorithmgaced varying from 2 to
5, but comparing their results, as already pointed out, @amisleading because of their
different assumptions regarding the computational moddlrandom variablesBench-
mark contains, for each study, what checkpointing algorithm basn chosen as the
benchmark, that is, the algorithm against which all otheegadged. What this informa-
tion shows is a lack of agreement on what algorithm to usén®cbomparions and implies
the practical absence ofteenckmark TheMetrics used in each study are listed in this
column. Studies based on execution and analysis have thwoetrics that indicate the
overhead in terms of the costs paid by an application wheasitt recover from a failure.
As already pointed out, a combination of the checkpoint @edvery overhead is proba-
bly the best overall indicator to use, but it is costly botliérms of implementation effort
and of resources. In contrast, simulation is cheaper anglsnrbut requires the defin-
tion of a good metric, that is, a metric that is both direct#ated with the checkpointing
overhead and discriminating.

A Simulation Metric for Checkpointing Algorithms This Section has placed the ef-
forts to compare checkpointing algorithms in perspectind affered evidence that al-
lows us to conclude the following: (i) the computational amtiulation models adopted
in these studies are heterogeneous enough to make any ésompamong the results
obtained so far very difficult, (ii) the scale, checkpointeirval length and symmetry are
the factors used in these studies to create experimentasos that closely approximate
the behavior of real distributed applications, and (iii¢ thumber of forced checkpoints
induced by a checkpointing algorithm is directly affectgctiee parameters mentioned in
(i), indicating that this number correlates applicaticghavior with checkpointing over-

head and that it is discriminating. So, the number of fordeeck&points is the simulation

metric of our choice.



5. ChkSim

To simulate checkpoint-enabled distributed applicatioveshave built a simulator called
ChkSim. This tool has to interpret the model of computatiofingel in Sections 2 and 3.
The reactive nature of checkpointing algorithms and therimptoposed imply that the
only factor affecting the algorithms is the order of the @gan the communication and
checkpoint pattern (CCP). In real executions what defines éodéhe events in the CCP
is the relative communication and processing delays of Hacels and processes, re-
spectively. All orderings in real executions are causatipgistent by construction, thus
the simulator has to generate CCPs that have exactly this dasn@oteristic.

Real applications can define any of its blocks of instructiaa an internal event,
however to the operation of quasi-synchronous algorithithns only internal events that
are relevant are basic checkpoints. Due to the deternamestictive behavior of quasi-
synchronous algorithms, it is possible to subject all ohtite the same CCP. This way,
simulation results for each algorithm are guaranteed toalty fcomparable, with the
certainty that we have computed the metric for a given CCP feneaigorithm simulated.

Our simulation is based on a pseudo-randomly generatecgseqwf communi-
cation events (send, receive) and basic checkpoints. Tezgeences define basic com-
putations and associated CCPs that are independent from asyraiat beyond those
imposed by causality. However, it wouldn’t be of much ingt® generate patterns that
are causally consistent but do not approximate real diggibcomputations. Our simula-
tions use the parameters observed in the survey to congtea®CPs generated: topology
and relative priorities of processes and events. The cornration network is defined by
a directed graph, where each vertex represents a proceks)essages can only be sent
from p; to p; if there is an edge connecting to p;. Communication events always re-
flect a message transversing those edges. The prioritiée @vents of each process and
of each event inside a process are associated to an integeind a weighted uniform
probability distribution. These priorities are, indepenty of time, the basis for different
orderings of events for CCPs.

ChkSim is implemented in Java and can be run in any platforrnitha a Java
Virtual Machine available. It was developed with two goalsmind: correctness and
reproducibility. To attain correctness, the design of tha tvas made simple and many
aspects of its implementation, including the algorithnie,\&rified by a comprehensive
test suite. Reproducibility is guaranteed by a completelgdninistic simulation model.
These two characteristics are unique to ChkSim, consideiingimulation studies pre-
sented in Section 4. ChkSim is free software and can be dodetb&rom its project
pagé, where instructions on how to replicate the results preskhere are also available.

In ChkSim, the checkpointing algorithms are implementedaas tlasses that
have to adhere to a standard event-based simulation io¢erfehese events are mapped
directly to the ones defined in our simulation model, and aesgnted to the algorithm
as higher level abstractions. This allows for simple an@é®sible implementations even
when complex data structures are used. The checkpointgayitdims under simulation
are all subject to the same simulation event sequence gdrégtChkSim from an XML
coded specification of the model of computation, includimg directed graph that rep-
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resents the communication network and the process and pxernties. In addition of
being capable of generating CCPs, ChkSim can receive as itsanpevent log obtained
from thereal executiorof a distributed application, as long as it represents aistard
run of the distributed application.

ChkSim can process multiple event sequences, applying tbearsét of check-
pointing algorithms. This feature of ChkSim is used to creaty comprehensive bench-
marks where various network topologies and relative presiof processes and events
can be used to compare the algorithms. The metric valuesnebitare guaranteed to
represent fair, comparable values due to the deterministheoimulation model. We
couldn’t find such guarantees in the other simulation ssudgted in our survey (Sec-
tion 4). For more information about ChkSim, its software @extture and how to use it,
the interested reader is invited to consult the ChkSim majMiira 2005].

6. Simulation Experiments

The combination of the parameters mentioned in Sectionagstength of and similar-
ity of checkpoint interval) allows practically any CCP to beaeted and, in our view,
represent a powerful abstraction to generate simulatienaos that mimic very closely
the behavior of distributed applications. Using the fldipiof ChkSim we created five
simulation scenarios that cover important patterns of CCPgifasi-synchronous check-
pointing algorithms:

SP: Symmetric processes with data collected as a functitmeafumber of processes
in the system. All processes have checkpoint intervals anthverage of 40 com-
munication events and the measurements were made witlcapphis composed
from 3 to 60 processes.

Sl: Symmetric processes with data collected as a functidhefaverage checkpoint
interval length. The system in this scenario is composed pyo6esses and the
measurements were made with checkpoint intervals comgos®ad! to 118 com-
munication events.

VA: Asymmetric processes with data collected as a functibtine asymmetry differ-
ence. The system is composed by 6 processes and the measisr@mase made
changing the checkpoint interval length of only one appiacaprocess. The data
Is a function of the difference of the average checkpoirdrivdl length of this pro-
cess with respect to the interval length of the other praeesEhe processes have
an average of 44 communication events in each interval amdntierval length
difference ranges from 2 to 40 communication events.

AP: Asymmetric processes with data collected as a functiotih@® number of pro-
cesses in the system. The processes have checkpoint Iateintla an average
of 44 communication events, except a single process withvarage of only 14
communication events in each checkpoint interval. The oreagents were made
with applications composed from 3 to 60 processes.

Al: Asymmetric processes with data collected as a functicth® average checkpoint
interval length. The system is composed by 6 processesaugitigle process with
an average of 30 communication events less in each chec¢kpterval than the
others. The measurements were made with checkpoint indeswenposed from 4
to 118 communication events.



All the scenarios described above share common ChkSim gettithe commu-
nication network is complete and the channels do not logepgbor change the order of
the messages sent. The message receive event has prightlydarger than the message
send event. This way we model a system where the latency ofdssages is very small
compared to the time span of a checkpoint interval. The tetajth of the computation
Is determined by a fixed number of communication events pEogss.

The proposed synthetic basic computations have some stiteggoroperties. For
SP and AP, as the total length of the computation is given ametibn of the process
number, the total processing done by the distributed systemneases as we add more
processes. If the total number of events were kept congtastwould reflect the unrea-
sonable supposition that the basic computation could Heqi®rparallelized indefinitely.
Although there exists problems that exhibit this propeng, decided to concentrate on
computations that scale by increasing the total procegsihg done. Weather forecast-
ing is one such application, where extra nodes are used tease the precision of the
weather model. In SI, VA and Al the data points represent agatpns with increasing
basic checkpoint interval. The total number of basic cheals in one such computation
is given bynC'/I, wheren is the number of processes,is the number of communication
events per process arids the checkpoint interval length in number of events.r&$is
constant, this represent a decreasing total number of blsitkpoints. Moreover, for our
synthetic computations, it is important to note that astiberval length increases linearly
the number of basic checkpoints is inversely proportiodatreasing sharply for small
values of].

We tested 18 quasi-synchronous checkpointing algorithitistive following pa-
rameters. Each one of the experimental points was obtaindaebaverage of 10 execu-
tions of each algorithm with a random pattern of messagedanit checkpoints. Each
execution spanned 12000 communication events per proeesall experimental points
the standard deviation for the 10 executions was alwaysess4% of the average. Due
to space limitations, we have reproduced and comment sefartonly 8 of the more
representative algorithms in the next sections.

7. ZPF Algorithms

Checkpointing algorithms that generate a ZPF checkpointepatvere one of the first
algorithms able to avoid the domino effect. This patternwshinteresting properties
that make it useful not only to rollback-recovery [Schmitlak 2005] but also to other
applications, such as debugging [Wang 1997]. Four algosthre representative of the
techniqgues commonly employed by algorithms in this claBA%, RDT-Partner, BHMR,
and RDT-Minimal.

The FDAS (Fixed-Dependency-After-Send) algorithm corabia vector clock to
track the causal dependency and the observation that a msalegpath is only formed
after a message in sent. Thus, this algorithm breaks pdiths, except those causally du-
plicated in the current interval, generating a ZPF patt&varig 1997]. The RDT-Partner
algorithm [Garcia et al. 2001] makes use of the fact that wagwocesy; receives a
message from a process after sending message’ only top;, it only needs to break a
z-path formed bym andm’ if this z-path causes the formation ofzecycle. This small
optimization, when combined with the FDAS algorithm, cawidvsome forced check-



points, specially if the processes exchange messages questresponse pattern.

In the attempt to avoid the unnecessary break of causallyicdipd z-paths,
the BHMR algorithm [Baldoni et al. 1997] uses all the caugalformation available
to decide if it will force or not a checkpoint. To do so, thigyatithm propagates a
boolean matrix carrying all causal history of the messagadgoeeceived, similar to a
matrix clock. Using this information the algorithm tries discover if the non causal
z-path being formed is causally duplicated. It was later gihdiat it was possible to
implement the exactly same behavior of BHMR piggybackingy dwo boolean vec-
tors, creating the RDT-Minimal algorithm [Garcia and Buza004]. Both algorithms
induce aminimalnumber of forced checkpoints under the strong property efajonal
RDT [Garcia and Buzato 2004], but not th@nimumnumber of forced checkpoints to
guarantee a ZPF pattern, and even not necessarily lessttiemweaker conditions, such
as the one employed by RDT-Partner. The data collected d@hese algorithms are rep-
resented in Figures 1 and 2.
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Figure 1. ZPF algorithms - 1.

The data regarding the SP and AP scenarios (Figures 1(a) (@pdshow that
the more elaborate algorithms outperform FDAS for systerith & small number of
processes, but all algorithms worsen their performanceale $s increased. This effect
is caused by the type of clock (a vector clock) used by thagarigthms and by the fact
that in our experiments the communication model is unifofine RDT-Partner, BHMR
and RDT-Minimal algorithms explore very particular pattein the message exchange,
patterns that are less frequent in a uniform setting. In @enario, small number of
processes can also mean that communication is restrictadstdset of all processes.
So, we expect to observe less forced checkpoints in largersgswith communication
clustered in small process groups.

The ZPF algorithms are not affected by the length of the cbeick interval nor
by the asymmetry of the system, as can be observed in the gdpghe scenarios Sl,
Al and VA (Figures 1(b), 2(c) and 2(a)). We observed only alsaecrease in forced
checkpoints for very small intervals, because a checkpomtver forced in intervals with
less than 2 communication events. The constant number oédacheckpoints in these
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Figure 2. ZPF algorithms - 2.

scenarios for ZPF algorithms is noteworthy because the eumibbasic checkpoints is
always decreasing. It means that the behavior of theseithigois dominated by message
exchange and not by the basic checkpoint pattern. Morease¢he SP and AP scenarios
suggest, the number of processes exchanging messagesmidetethe fairly constant
number of forced checkpoints.

We observed that in our experimental environment the BHM&RDT-Minimal
algorithms have not shown a considerable gain over the R&er algorithm, even
though they use a stronger condition to detect causallyichipdz-path. This data indi-
cates that probably the occurrence of the patterns exployd@HMR and RDT-Minimal
is less frequent than the occurrence of those explored bREREPartner algorithm, even
for very local computations. However, as the communicatieerhead of RDT-Minimal
is comparable to RDT-Partner, it is well worth the cost evignst a few forced check-
points are avoided. Based in the collected data, it seerhghian&DT-Minimal algorithm
IS more appropriate for applications with few processed@mndore clustered communi-
cation. For larger applications and for situations wherdbst of a local checkpoint is



very low, the smaller communication overhead of the FDAS®®AtgmM makes it a better
choice.

8. ZCF Algorithms

Algorithms that generate ZCF checkpoint patterns forceiggs rules over the applica-
tion than the algorithms that generate ZPF patterns. As satprence of this less intrusive
behavior, these algorithms tend to be simpler and to prdpdgas control information.
However, depending on the communication pattern of thegs®es, it may not be possi-
ble to build the most recent consistent global checkpoiatrfiza and Buzato 1999]. The
majority of the ZCF algorithms use only a single integer as ec&point identifier and
control information, thus they are known as index-basedrétlyms. The first algorithm
proposed in this class was BCS [Briatico et al. 1984] thahaalgh simple, exhibit all
main characteristics of algorithms in this class.

The BCS algorithm uses the causal precedence relation towdise/hen it should
force a checkpoint. To do so, the algorithm propagates a&bgilock very similar to
the one proposed by [Lamport 1978], with the only differeticat the counter is only
incremented after a basic checkpoint. When a message ivedcdi it brings a bigger
clock than the current one, that is, causal information &laomew checkpoint in some
other process, a checkpoint is forced. This behavior géeera ZCF pattern and we
can observe, intuitively, why it is so. A messagecarrying causal information of some
checkpoints is never received in the same checkpoint interval where asages.’ that
could precede causalbyis sent. Thus, alt-cycles are broken.

A way to explore the message pattern to avoid the occurrehé@raed check-
points in an index-based algorithm comes from the followosbgervation: it is the incre-
ment of the index when a basic checkpoint is taken that cggedriforced checkpoints
in other processes. Naturally, the index increment is whatrgntees the correctness of
the algorithm, but there are situations where a basic clamokgan be stored without
requiring an increment of the index. The Lazy-BCS algorithfiefra et al. 2001] uses a
very simple condition to avoid increasing its index: onlyssages from processes with
indexes strictly smaller than the current index were res@ifBaldoni et al. 1999]. Intu-
itively, this lazy behavior of the indexes still guarantéles absence of-cycles because,
if a process only received messages with strictly small@exes, then the last checkpoint
was not taken to breakacycle and the next checkpoint can use the same index.

The techniques used by the algorithms FDAS and RDT-Pararebe combined
with the strategy adopted by the Lazy-BCS algorithm, genegatew algorithms from
these combinations. We then have the Lazy-BCS-Afterserairp/et al. 2001] and Lazy-
BCS-Partner algorithms, which are algorithms that try atsame time to save forced
checkpoints and to avoid to increase the checkpoint indeiXesse simple combinations
create two very simple and efficient algorithms. The graphthese algorithms are in
Figures 3 and 4.

Observing the SP and AP scenarios (Figures 3(a) and 4(b)aweatice that the
ZCF algorithms, even though they don't use a vector clock stilesensitive to the size
of the system, but not as much as the ZPF algorithms. Agameffect is caused by
the increased number of processes propagating new depsnotdormation, inducing
forced checkpoints in the other processes. However, for Zgérighms it is possible
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Figure 3. ZCF algorithms - 1.

for processes to spontaneously get “in sync” if they takachelseckpoints verifiable
causally unrelated (checkpoints with the same index). ima¢hse, a forced checkpoint
can be avoided and ZCF algorithms tend to force fewer cheokptian ZPF algorithms.
Moreover, for computations with clustered communicatiatigrns we expect to see even
fewer forced checkpoints.

In the Sl and Al scenarios (Figures 3(b) and 4(c)) we can eesewital informa-
tion about the BCS algorithm and its optimizations. The penénce of these algorithms
is heavily dependent upon the length of the checkpointwater We can notice in the
graphic that, for all algorithms, as the intervals incretts® number of forced check-
points decreases. This effect is a direct consequence chiekpoint pattern generated
by these algorithms; forced checkpoints are induced tokbtegycles created by basic
checkpoints. Bigger checkpoint intervals decrease thebenwf basic checkpoints taken
by the processes, reducing the number of forced checkpdihts is particularly interest-
ing in comparison with the ZPF algorithms. As shown in the/fmas section, using ZPF
algorithms the system designer can’t choose the globakgo@ating frequency through
the basic checkpoint frequency. On the other hand, for ZCerithgns it is possible to
influence the global number of checkpoints by changing baseckpoint policy.

The VA scenario (Figure 4(a)) shows another property oféhegorithms; their
performance is also affected by the asymmetry among theepses. This is another BCS
characteristic observed in all other algorithms. The asgtnynis caused by a process
taking basic checkpoints in a faster rate than the othergsss, inducing forced check-
points in them. In the VA scenario we have a combination of faciors: as one of
the processes accelerates, it produces smaller checkptentals and takes more basic
checkpoints. As a result, the chance for different procesget “in sync” spontaneously
decreases and we observe a sharp increase in the end of ttesl piderval. In the VA
scenario the Lazy-BCS optimizations and its variants she\tst relative performance.
In this scenario we have the combination of a fast processdakore basic checkpoints
than the rest of the system in increasing smaller checkpai@tvals. In this situation the
whole system will profit from the fast process refrainingrfrincreasing its indexes and
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the smaller intervals will allow this to occur.

We have found that the Lazy-BCS algorithm shows better perdoice in the sit-
uations where the BCS algorithm performance is impaired lyynasetry in the system
processes. However, this algorithm in isolation does nptaeg other ways to avoid un-
necessary forced checkpoints. We can compensate this bipynmgpthe combination
algorithms Lazy-BCS-Aftersend and Lazy-BCS-Partner, tihtlet the strong points of
both approaches, having a simple implementation and danfoymation with constant
size.

9. Conclusion

This work has presented evidence that the number of forcedkgioints induced by a
checkpointing algorithm is the best metric to use to asseadair manner a large number
of algorithms. Our result is backed up by evidence comingnfie survey of previous

comparative studies and from a comprehensive simulatiperaxent carried out using a
deterministic simulator that not only measures the metappsed but also allows a very



well controlled variation of the main parameters that aftbe behavior of checkpointing:
number of processes and process symmetry, and checkpgpinterval.

We recommend a two step procedure as the most sensible appoogain a good
understanding of the behavior of checkpointing algorithihsloes not matter whether
during the design of the algorithm or later as an aid for chaps cost effective algo-
rithm to match an application. Simulation, as indicatechis tvork, is the first step, but
our study has also shown that execution-based studieseatrgtimate test to validate the
real costs of checkpointing. This implies that the secoef ef the procedure is the actual
instrumentation of applications for checkpointing andrtheonitored execution. Unfor-
tunately, current programming environments for high-perfance cluster computing do
not include user-friendly libraries for checkpointing. tkre research on checkpointing
must go in the direction of creating checkpointing toolldtsy to instrument, adapt and
run. Only when such toolkits become available it is goingegbssible to create fair and
comprehensive comparisons using as indicators the rddlbae, amount of checkpoint
storage used, execution time, or message and control iafaron overhead.
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