
Distributed Checkpointing: Analysis and Benchmarks

Gustavo M. D. Vieira1∗, Luiz E. Buzato1

1Instituto de Computaç̃ao—Unicamp
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Abstract. This work proposes a metric for the analysis and benchmarkingof
checkpointing algorithms through simulation; the resultsobtained show that
the metric is a good checkpoint overhead indicator. The metric is implemented
by ChkSim, a simulator that has been used to compare 18 quasi-synchronous
checkpointing algorithms. A survey of previous analyses ofcheckpointing shows
our study to be the most comprehensive comparison carried out so far. Chk-
Sim is easy to use and guarantees that the algorithms are fairly compared by
subjecting all of them to exactly the same simulation events. The information
summarized here can certainly be used to guide the construction of practical
quasi-synchronous checkpoint-restart toolkits for modern clusters.

1. Introduction

The process of recording the state of a distributed application is calledtaking a global
snapshot. If the states of the global snapshot are made persistent therecording is termed
taking a global checkpointor simply checkpointing. The difficulty of checkpointing for
applications implemented atop of an asynchronous distributed system is the selection of
checkpoints, one per process, to compose ameaningfulglobal checkpoint, that is, one that
does not violate causality. Global checkpoints that respect causality are calledconsistent
global checkpoints. Checkpointing requires the coordinated execution of at least three
different algorithms: an algorithm to select the local checkpoints of processes, an algo-
rithm to move them to a monitor and a monitoring algorithm to combine the checkpoints
into a consistent global checkpoint; further details aboutthe checkpointing process can be
found in [Elnozahy et al. 1996]. In this paper, the termdistributed checkpointingmeans
the algorithm executed by each of the processes of the distributed application to select
checkpoints.

Algorithms for distributed checkpointing have been extensively studied because
they represent a relevant theoretical problem and because they are the central supporting
mechanism of rollback-recovery, an effective mechanism used to tolerate partial failures
of hardware components of distributed systems. Recently, distributed checkpointing has
gained a new impulse as large clusters of computers are builtas an economical solution
for the execution of long-running distributed applications. A recent example of a large
cluster is BlueGene from IBM. According to the Top 5001 more than 60% of the Top
500 supercomputing clusters exceed 512 nodes. The running time of most of the applica-
tions executed in such clusters usually exceeds the mean time between failures (MTBF)
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of a processing node, making the occurrence of failures a certainty. In this context, bench-
marks for checkpointing become important guides to implementors seeking cost-effective
rollback-recovery mechanisms.

In this paper, we select a metric for the analysis and benchmarking of checkpoint-
ing algorithms through simulation and provide evidence that this is an effective indicator
of the overhead imposed by the checkpointing algorithm on distributed applications. Our
metric requires the definition of a computational model for applications instrumented for
checkpointing-recovery that addresses the key factors affecting the behavior of the appli-
cations and, consequently, of the checkpointing algorithms. Our computational model is
implemented by ChkSim, a simulator that has been used to compare 18 quasi-synchronous
checkpointing algorithms; to our knowledge, the most comprehensive assessment carried
out so far. Based on a survey of previous comparison studies of checkpointing algorithms
we are able to say that ChkSim is the first tool that can easily beused to compare in a
fair manner a large number of checkpointing algorithms because it subjects all of them
to exactly the same simulation conditions. ChkSim is freely available allowing others to
not only check what we have done but also to modify and expand the set of checkpoint-
ing algorithms and scenarios available. The results presented here certainly can help the
construction of practical checkpoint-restart toolkits for modern clusters.

This work is structured as follows. Section 2 defines the model of computa-
tion used in the simulation of checkpointing algorithms. Section 3 is a brief introduc-
tion to checkpointing; included for the sake of the self-containment. Section 4 contains
the keystones of comparative studies on checkpointing algorithms. Sections 5 to 8 dis-
cuss the metric we have defined and its use to analyze and benchmark two classes of
quasi-synchronous checkpointing algorithms. Section 9 summarizes our contributions
and poses new research questions concerning the relationship between simulation and
execution-based benchmarks.

2. Model of Computation

A distributed applicationis a set{p0, p1, . . . , pn−1} of n sequentialprocessesthat cooper-
ate to execute an application. The processes of the distributed application are autonomous,
do not share memory or a global clock, and communicate only through the exchange of
messages over acommunication network. The message exchange mechanism guarantees
that messages are not corrupted, but does not impose bounds on communication delays
and allows messages to be delivered in any order. Each process has its execution modeled
as a finite sequence of events, whereek

i represents thek-th event executed by processpi,
e0

i is the initial event ofpi. The events are classified as internal events and communication
events. The communication events aresendmessage orreceivemessage, all other events
are internal events. Each process maintains a set of local variables that forms itsstate,
andσk

i denotes the state of processpi after the execution of eventek
i .

Checkpoints are persistent states of a process. The set of checkpoints of a dis-
tributed application together with the set of communication events form acheckpoint and
communication pattern(CCP). For a given process, saypi, σ̂k

i represents itsk-th check-
point, associated with stateσl

i, such thatk ≤ l andel
i is an internal event. Each process of

an application associates its initial and final events with checkpoints. Acheckpoint inter-
val ∆k

i is composed by the states of processpi between a checkpoint̂σk
i and its immediate



successor̂σk+1

i , including σ̂k
i and excludinĝσk+1

i . A global checkpoint(Σ̂) is a set ofn
local checkpoints, one per process, specified by a set of integers{c′0, c

′

1, . . . , c
′

n−1}, that is

Σ̂ = {σ̂
c′
0

0 , σ̂
c′
1

1 , . . . , σ̂
c′
n−1

n−1 }.

A global checkpoint is consistent if it represents the boundary of a consistent
cut [Manivannan and Singhal 1999]. The consistency condition is expressed in terms of
the causal precedence relation (→) [Lamport 1978] in the following way: a global check-
point is consistent if and only if:

∀i, j : 0 ≤ i, j ≤ n − 1 : σ̂ci

i 6→ σ̂
cj

j .

If the selection of checkpoints is arbitrary, it may not be possible for a given
checkpointσ̂ to be part of a set of causally unrelated checkpoints. This fact was first
observed in the context of rollback-recovery and can lead a faulty computation to the
domino effect[Randell 1975]. The domino effect exists due to a dependencyrelation be-
tween checkpoints calledzigzag pathor z-path[Netzer and Xu 1995]. If two checkpoints
are causally related, there is az-path connecting them, however, the converse is not true.
A non causalz-pathoccurs when there is az-path between two checkpointŝσk

i andσ̂l
j,

but σ̂k
i 6→ σ̂l

j. A setS of checkpoints can participate of some consistent global checkpoint
if and only if there is not az-path between any of the checkpoints in the setS. The re-
lation defined by thez-path is reflexive, thuŝσ can have az-path to itself. In this case,
considering the setS = {σ̂}, thenσ̂ cannot be part of any consistent global checkpoint.
It is said that̂σ is in az-cycleand that this checkpoint isuseless.

3. Quasi-Synchronous Checkpointing

Checkpointing algorithms are organized in three classes:asynchronous, synchronousand
quasi-synchronous[Manivannan and Singhal 1999]. Asynchronous checkpointing, also
known asuncoordinatedcheckpointing, can very often lead to the domino effect, forcing
the application to discard many of its checkpoints. Algorithms for synchronous, orco-
ordinated, checkpointing halt the operation of the application whilethe processes work
to obtain a global checkpoint. This interruption stops the message flow and guarantees
that all local checkpoints are concurrent and the resultingglobal checkpoint is consis-
tent. Consistency is guaranteed at the expense of the freedomof the application processes
to choose when checkpoints should take place. The algorithmproposed by Chandy and
Lamport [Chandy and Lamport 1985] is the best known algorithmin this class and is of-
ten used as a reference against which others algorithms are assessed.

As the name implies, quasi-synchronous, orcommunication induced, checkpoint-
ing is a compromise between the freedom given to processes toselect checkpoints and
the requirement for consistency of the global checkpoint. In quasi-synchronous check-
pointing the processes of the application can freely choosethe moment to take a check-
point, calledbasic, but may be required to take additional checkpoints, calledforced,
if instructed to do so by the checkpointing algorithm. More precisely, the checkpoint-
ing algorithms of this class rely on control information piggybacked in every message
to decide whether or not to force a checkpoint when the message is received but before
it is delivered. These actions are trigged by events generated by the distsributed appli-
cation, configuring quasi-synchronous checkpointing as a typical event-driven, reactive



distributed algorithm. The checkpoint patterns generatedby quasi-synchronous check-
pointing have different attributes that affect the behavior of the monitor when building
consistent global checkpoints [Garcia and Buzato 1999]. Variations of these attributes
determine two classes of domino-effect free algorithms [Manivannan and Singhal 1999]:

ZPF (z-path free): This pattern is free of non causalz-paths not duplicated by a causalz-
path. Manivannan and Singhal [Manivannan and Singhal 1999]have shown that
algorithms that respect this pattern also respect the RDT (rollback dependency
trackability) property. RDT compliance guarantees that all dependencies among
checkpoints can be tracked during execution using logical time.

ZCF (z-cycle free): This pattern is free ofz-cycles, only assuring the nonexistence of
useless checkpoints. The algorithms known to respect this pattern are very simple
and efficient and are calledindex-based[Elnozahy et al. 1996, Vieira et al. 2001].

4. Related Work

This section contains results of the survey we have performed to gather data on metrics
and benchmarks for checkpointing algorithms. Space limitation precludes us from writing
a specific commentary for each of the studies surveyed, instead we present our findings
with the help of Tables 1 and 2. Table 2 specifies more metrics than those used in Table 1;
this reflects the fact that several metrics have been proposed by different researchers but
only a few have actually been used. The following text refersto the contents of Table 1
by citing the name of its column in boldface.

Study Type Topol. (Scale) Random Var. #Alg. (Class) Benchmark Metric

[Xu and Netzer 1993] E ⋆ (16) na, 6= 2 (ZCF) AC 7
[Baldoni et al. 1997] SS ⋆, ◦,⇀↽ (6) ns, 6= 2 (ZPF) FDAS 5
[Baldoni et al. 1998] SS ⋆ (8) ns,= 2 (ZCF) BCS 5
[Zambonelli 1998] SL ⋆ (16) ns, 6= 4 (ZPF, ZCF) FDAS 5

[Baldoni et al. 1999] SS ⋆ (8) ν ,= 3 (ZCF) BCS 5
[Alvisi et al. 1999] SS ⋆ (4) ǫ,6= 3 (ZCF) BCS 1,5
[Garcia et al. 2001] SS ⋆ (2-20) υ,6= 3 (ZPF) FDAS 5
[Vieira et al. 2001] SS ⋆ (2-20) υ, = 5 (ZCF) BCS 5

[Agbaria et al. 2003] A ⋆ (8) ǫ, 6= 4 (SB, SNB, na 1,2
ZPF, ZCF)

[Schulz et al. 2004] E ⋆ (64-256) na, 6= 1 (SB) CL 1,2

Table 1. Summary of Checkpointing Comparative Studies.

The Type of studies found in the literature show that simulation of checkpoint-
ing has been the most frequently adopted strategy to assess checkpointing algorithms.
The reason is that simulation is simpler than execution. Thework of [Schulz et al. 2004]
describes several of the hurdles found during the instrumentation of applications and of
LAM/MPI toolkits for checkpointing. Simulation, by contrast, does not require the in-
strumentation of real applications and allows researchersto easily vary parameters such
as checkpointing interval, number of processes, processesand events priorities, etc. The
survey shows that there are two possibilities for the simulation of checkpointing. One
possibility is based on the generation of a computation history from a checkpointing com-
putation model, that is, the computation history can be produced, for example, with the
help of a random number generator. The other possibility relies on computation histories



A analytical model ZPF z-path free
E execution-based benchmark SB synchronous blocking checkpointing
SS simulation-based benchmark, generated SNB synchronous non-blocking checkpointing
SL simulation-based benchmark, log-based AC asynchronous checkpointing
⇀↽ client-server communication FDAS fixed dependency after send
◦ group communication BCS Briatico-Ciuffoletti-Simoncini
⋆ all-to-all (complete communication graph) CL Chandy-Lamport
ν normal distribution Metrics
ǫ exponential distribution 1 execution time
υ uniform distribution 2 recovery time
6= different distributions per process 3 control information (complexity)
= all processes have same distribution 4 #control messages (complexity)
ns not specified 5 number of forced checkpoints
na not applicable 6 checkpoint storage space

ZCF z-cycle free 7 #checkpoints discarded during recovery

Table 2. Abbreviations used in Table 1

that come from logs of the execution of real applications. Inour opinion, the combination
of these two forms of simulation offers the best option for the study of checkpointing be-
cause it is simpler to instrument an application to write a log of events than to instrument
it for full checkpoint-recovery.

[Agbaria et al. 2003] defines the behavior of processes, communication channels
and checkpointing through the use of random variables with acertain probability distri-
bution. This work adopts exponential distributions for theevents of the computational
model. Validation of an analytical model requires the extraction of data from actual appli-
cation executions to verify whether the model is a good approximation of reality or not.
Despite this, Agbaria’s study offers a very detailed analysis of the various costs incurred
during checkpointing.

Execution of a set of applications on a cluster and the measurement of the overhead
caused by checkpointing in failure-free and in failure-prone runs is possibly the definitive
way to benchmark checkpointing algorithms. As pointed out by [Xu and Netzer 1993]
and [Schulz et al. 2004] setting up the experiment requires the availability of a cluster,
access to the source code of the applications, instrumentation, logging of events, and
summarization of the results. These difficulties and the lack of knowledge on quasi-
synchronous algorithms explain why most of the practical implementations of checkpoint-
recovery are based on Chandy-Lamport, a synchronous algorithm easier to understand
and to interface with distributed applications. It also mayexplain why the number of
checkpointing algorithms compared is very small in the surveyed works.

The majority of the studies consider theTopology of the distributed system to
be a complete graph, in this topology every pair of processesof the system is connected
directly by a bidirectional communication channel. These studies consider ideal FIFO
communication channels. TheScale of the system, in number of processes, shows that
the scales considered are usually small and fixed. Schulz’s study is concerned with scal-
ability because they assess the execution of real applications at the Lawrence Livermore
Laboratory with focus on reliability.Random Variables offers a very concise view of the
probability distributions used to generate the events of the distributed computation used in
the simulation. Our survey shows that the studies do not agree on a common set of random



variables; this implies that it is very difficult to compare results across studies. In addtion,
the definition of a checkpoint interval is made in two incompatible ways: either the num-
ber of communication events or the elapsed time between two consecutive checkpoints.
All studies indicate that measuring the checkpoint interval is very important because the
smaller the length of these intervals, larger will be the frequency of basic checkpoints. If
the number of basic checkpoints grows then the number of possible forced checkpoints
necessary to guarantee the usefulness of the basic checkpoints also grows. However, the
larger these intervals are, the larger is the probability that the causal information of a basic
checkpoint reaches a larger number of processes before the next checkpoint, increasing
the possibility of creatingz-paths andz-cycles. Another factor unearthed by our survey is
the fact that most of the simulations consider scenarios where all the processes events are
generated from exactly the same probability distribution,that is, they have the same sym-
metric behavior. Process asymmetry is relevant because, one or more active processes,
communicating with less active processes, create a large number of basic checkpoints
that can subsequently favor the formation ofz-paths andz-cycles, increasing once again
the number of forced checkpoints. The only two studies that consider asymmetric process
behavior are the studies by [Baldoni et al. 1999] and [Vieiraet al. 2001].

Algorithms shows the number of algorithms compared in each study and their
checkpointing classes. It is worth to observe that the execution based studies consider only
one ([Schulz et al. 2004]) and two ([Xu and Netzer 1993]) checkpointing algorithms. The
studies based on simulation have the number of algorithms compared varying from 2 to
5, but comparing their results, as already pointed out, can be misleading because of their
different assumptions regarding the computational model and random variables.Bench-
mark contains, for each study, what checkpointing algorithm hasbeen chosen as the
benchmark, that is, the algorithm against which all others are judged. What this informa-
tion shows is a lack of agreement on what algorithm to use for the comparions and implies
the practical absence of abenckmark. TheMetrics used in each study are listed in this
column. Studies based on execution and analysis have favored metrics that indicate the
overhead in terms of the costs paid by an application when it has to recover from a failure.
As already pointed out, a combination of the checkpoint and recovery overhead is proba-
bly the best overall indicator to use, but it is costly both interms of implementation effort
and of resources. In contrast, simulation is cheaper and simpler, but requires the defin-
tion of a good metric, that is, a metric that is both directly related with the checkpointing
overhead and discriminating.

A Simulation Metric for Checkpointing Algorithms This Section has placed the ef-
forts to compare checkpointing algorithms in perspective and offered evidence that al-
lows us to conclude the following: (i) the computational andsimulation models adopted
in these studies are heterogeneous enough to make any comparison among the results
obtained so far very difficult, (ii) the scale, checkpoint interval length and symmetry are
the factors used in these studies to create experimental scenarios that closely approximate
the behavior of real distributed applications, and (iii) the number of forced checkpoints
induced by a checkpointing algorithm is directly affected by the parameters mentioned in
(ii), indicating that this number correlates application behavior with checkpointing over-
head and that it is discriminating. So, the number of forced checkpoints is the simulation
metric of our choice.



5. ChkSim

To simulate checkpoint-enabled distributed applications, we have built a simulator called
ChkSim. This tool has to interpret the model of computation defined in Sections 2 and 3.
The reactive nature of checkpointing algorithms and the metric proposed imply that the
only factor affecting the algorithms is the order of the events in the communication and
checkpoint pattern (CCP). In real executions what defines order for the events in the CCP
is the relative communication and processing delays of the channels and processes, re-
spectively. All orderings in real executions are causally consistent by construction, thus
the simulator has to generate CCPs that have exactly this same characteristic.

Real applications can define any of its blocks of instructions as an internal event,
however to the operation of quasi-synchronous algorithms,the only internal events that
are relevant are basic checkpoints. Due to the deterministic reactive behavior of quasi-
synchronous algorithms, it is possible to subject all of them to the same CCP. This way,
simulation results for each algorithm are guaranteed to be fairly comparable, with the
certainty that we have computed the metric for a given CCP for every algorithm simulated.

Our simulation is based on a pseudo-randomly generated sequence of communi-
cation events (send, receive) and basic checkpoints. Thesesequences define basic com-
putations and associated CCPs that are independent from any constraint beyond those
imposed by causality. However, it wouldn’t be of much interest to generate patterns that
are causally consistent but do not approximate real distributed computations. Our simula-
tions use the parameters observed in the survey to constrainthe CCPs generated: topology
and relative priorities of processes and events. The communication network is defined by
a directed graph, where each vertex represents a process, and messages can only be sent
from pi to pj if there is an edge connectingpi to pj. Communication events always re-
flect a message transversing those edges. The priorities of the events of each process and
of each event inside a process are associated to an integer, defining a weighted uniform
probability distribution. These priorities are, independently of time, the basis for different
orderings of events for CCPs.

ChkSim is implemented in Java and can be run in any platform that has a Java
Virtual Machine available. It was developed with two goals in mind: correctness and
reproducibility. To attain correctness, the design of the tool was made simple and many
aspects of its implementation, including the algorithms, are verified by a comprehensive
test suite. Reproducibility is guaranteed by a completely deterministic simulation model.
These two characteristics are unique to ChkSim, consideringall simulation studies pre-
sented in Section 4. ChkSim is free software and can be downloaded from its project
page2, where instructions on how to replicate the results presented here are also available.

In ChkSim, the checkpointing algorithms are implemented as Java classes that
have to adhere to a standard event-based simulation interface. These events are mapped
directly to the ones defined in our simulation model, and are presented to the algorithm
as higher level abstractions. This allows for simple and extensible implementations even
when complex data structures are used. The checkpointing algorithms under simulation
are all subject to the same simulation event sequence, created by ChkSim from an XML
coded specification of the model of computation, including the directed graph that rep-

2http://www.ic.unicamp.br/∼gdvieira/chksim/



resents the communication network and the process and eventpriorities. In addition of
being capable of generating CCPs, ChkSim can receive as its input an event log obtained
from thereal executionof a distributed application, as long as it represents a consistent
run of the distributed application.

ChkSim can process multiple event sequences, applying them to a set of check-
pointing algorithms. This feature of ChkSim is used to createvery comprehensive bench-
marks where various network topologies and relative priorities of processes and events
can be used to compare the algorithms. The metric values obtained are guaranteed to
represent fair, comparable values due to the determinism ofthe simulation model. We
couldn’t find such guarantees in the other simulation studies listed in our survey (Sec-
tion 4). For more information about ChkSim, its software architecture and how to use it,
the interested reader is invited to consult the ChkSim manual[Vieira 2005].

6. Simulation Experiments

The combination of the parameters mentioned in Section 4 (scale, length of and similar-
ity of checkpoint interval) allows practically any CCP to be modeled and, in our view,
represent a powerful abstraction to generate simulation scenarios that mimic very closely
the behavior of distributed applications. Using the flexibility of ChkSim we created five
simulation scenarios that cover important patterns of CCPs for quasi-synchronous check-
pointing algorithms:

SP: Symmetric processes with data collected as a function ofthe number of processes
in the system. All processes have checkpoint intervals withan average of 40 com-
munication events and the measurements were made with applications composed
from 3 to 60 processes.

SI: Symmetric processes with data collected as a function ofthe average checkpoint
interval length. The system in this scenario is composed by 6processes and the
measurements were made with checkpoint intervals composedfrom 4 to 118 com-
munication events.

VA: Asymmetric processes with data collected as a function of the asymmetry differ-
ence. The system is composed by 6 processes and the measurements were made
changing the checkpoint interval length of only one application process. The data
is a function of the difference of the average checkpoint interval length of this pro-
cess with respect to the interval length of the other processes. The processes have
an average of 44 communication events in each interval and the interval length
difference ranges from 2 to 40 communication events.

AP: Asymmetric processes with data collected as a function of the number of pro-
cesses in the system. The processes have checkpoint intervals with an average
of 44 communication events, except a single process with an average of only 14
communication events in each checkpoint interval. The measurements were made
with applications composed from 3 to 60 processes.

AI: Asymmetric processes with data collected as a function of the average checkpoint
interval length. The system is composed by 6 processes, witha single process with
an average of 30 communication events less in each checkpoint interval than the
others. The measurements were made with checkpoint intervals composed from 4
to 118 communication events.



All the scenarios described above share common ChkSim settings. The commu-
nication network is complete and the channels do not lose, corrupt or change the order of
the messages sent. The message receive event has priority slightly larger than the message
send event. This way we model a system where the latency of themessages is very small
compared to the time span of a checkpoint interval. The totallength of the computation
is determined by a fixed number of communication events per process.

The proposed synthetic basic computations have some interesting properties. For
SP and AP, as the total length of the computation is given as a function of the process
number, the total processing done by the distributed systemincreases as we add more
processes. If the total number of events were kept constant,this would reflect the unrea-
sonable supposition that the basic computation could be perfectly parallelized indefinitely.
Although there exists problems that exhibit this property,we decided to concentrate on
computations that scale by increasing the total processingto be done. Weather forecast-
ing is one such application, where extra nodes are used to increase the precision of the
weather model. In SI, VA and AI the data points represent computations with increasing
basic checkpoint interval. The total number of basic checkpoints in one such computation
is given bynC/I, wheren is the number of processes,C is the number of communication
events per process andI is the checkpoint interval length in number of events. AsnC is
constant, this represent a decreasing total number of basiccheckpoints. Moreover, for our
synthetic computations, it is important to note that as the interval length increases linearly
the number of basic checkpoints is inversely proportional,decreasing sharply for small
values ofI.

We tested 18 quasi-synchronous checkpointing algorithms with the following pa-
rameters. Each one of the experimental points was obtained by the average of 10 execu-
tions of each algorithm with a random pattern of messages andbasic checkpoints. Each
execution spanned 12000 communication events per process.For all experimental points
the standard deviation for the 10 executions was always lessthan 4% of the average. Due
to space limitations, we have reproduced and comment results for only 8 of the more
representative algorithms in the next sections.

7. ZPF Algorithms

Checkpointing algorithms that generate a ZPF checkpoint pattern were one of the first
algorithms able to avoid the domino effect. This pattern shows interesting properties
that make it useful not only to rollback-recovery [Schmidt et al. 2005] but also to other
applications, such as debugging [Wang 1997]. Four algorithms are representative of the
techniques commonly employed by algorithms in this class: FDAS, RDT-Partner, BHMR,
and RDT-Minimal.

The FDAS (Fixed-Dependency-After-Send) algorithm combines a vector clock to
track the causal dependency and the observation that a non causalz-path is only formed
after a message in sent. Thus, this algorithm breaks allz-paths, except those causally du-
plicated in the current interval, generating a ZPF pattern [Wang 1997]. The RDT-Partner
algorithm [Garcia et al. 2001] makes use of the fact that whena processpi receives a
message from a processpj, after sending messagem′ only to pj, it only needs to break a
z-path formed bym andm′ if this z-path causes the formation of az-cycle. This small
optimization, when combined with the FDAS algorithm, can avoid some forced check-



points, specially if the processes exchange messages in a request/response pattern.

In the attempt to avoid the unnecessary break of causally duplicated z-paths,
the BHMR algorithm [Baldoni et al. 1997] uses all the causality information available
to decide if it will force or not a checkpoint. To do so, this algorithm propagates a
boolean matrix carrying all causal history of the message being received, similar to a
matrix clock. Using this information the algorithm tries todiscover if the non causal
z-path being formed is causally duplicated. It was later shown that it was possible to
implement the exactly same behavior of BHMR piggybacking only two boolean vec-
tors, creating the RDT-Minimal algorithm [Garcia and Buzato 2004]. Both algorithms
induce aminimalnumber of forced checkpoints under the strong property of operational
RDT [Garcia and Buzato 2004], but not theminimumnumber of forced checkpoints to
guarantee a ZPF pattern, and even not necessarily less than other weaker conditions, such
as the one employed by RDT-Partner. The data collected aboutthese algorithms are rep-
resented in Figures 1 and 2.
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Figure 1. ZPF algorithms - 1.

The data regarding the SP and AP scenarios (Figures 1(a) and 2(b)) show that
the more elaborate algorithms outperform FDAS for systems with a small number of
processes, but all algorithms worsen their performance as scale is increased. This effect
is caused by the type of clock (a vector clock) used by these algorithms and by the fact
that in our experiments the communication model is uniform.The RDT-Partner, BHMR
and RDT-Minimal algorithms explore very particular patterns in the message exchange,
patterns that are less frequent in a uniform setting. In our scenario, small number of
processes can also mean that communication is restricted toa subset of all processes.
So, we expect to observe less forced checkpoints in large systems with communication
clustered in small process groups.

The ZPF algorithms are not affected by the length of the checkpoint interval nor
by the asymmetry of the system, as can be observed in the graphs of the scenarios SI,
AI and VA (Figures 1(b), 2(c) and 2(a)). We observed only a small decrease in forced
checkpoints for very small intervals, because a checkpointis never forced in intervals with
less than 2 communication events. The constant number of forced checkpoints in these
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Figure 2. ZPF algorithms - 2.

scenarios for ZPF algorithms is noteworthy because the number of basic checkpoints is
always decreasing. It means that the behavior of these algorithm is dominated by message
exchange and not by the basic checkpoint pattern. Moreover,as the SP and AP scenarios
suggest, the number of processes exchanging messages determines the fairly constant
number of forced checkpoints.

We observed that in our experimental environment the BHMR and RDT-Minimal
algorithms have not shown a considerable gain over the RDT-Partner algorithm, even
though they use a stronger condition to detect causally duplicatedz-path. This data indi-
cates that probably the occurrence of the patterns exploredby BHMR and RDT-Minimal
is less frequent than the occurrence of those explored by theRDT-Partner algorithm, even
for very local computations. However, as the communicationoverhead of RDT-Minimal
is comparable to RDT-Partner, it is well worth the cost even if just a few forced check-
points are avoided. Based in the collected data, it seems that the RDT-Minimal algorithm
is more appropriate for applications with few processes and/or more clustered communi-
cation. For larger applications and for situations where the cost of a local checkpoint is



very low, the smaller communication overhead of the FDAS algorithm makes it a better
choice.

8. ZCF Algorithms

Algorithms that generate ZCF checkpoint patterns force lessrigid rules over the applica-
tion than the algorithms that generate ZPF patterns. As a consequence of this less intrusive
behavior, these algorithms tend to be simpler and to propagate less control information.
However, depending on the communication pattern of the processes, it may not be possi-
ble to build the most recent consistent global checkpoint [Garcia and Buzato 1999]. The
majority of the ZCF algorithms use only a single integer as a checkpoint identifier and
control information, thus they are known as index-based algorithms. The first algorithm
proposed in this class was BCS [Briatico et al. 1984] that, although simple, exhibit all
main characteristics of algorithms in this class.

The BCS algorithm uses the causal precedence relation to discover when it should
force a checkpoint. To do so, the algorithm propagates a logical clock very similar to
the one proposed by [Lamport 1978], with the only differencethat the counter is only
incremented after a basic checkpoint. When a message is received, if it brings a bigger
clock than the current one, that is, causal information about a new checkpoint in some
other process, a checkpoint is forced. This behavior generates a ZCF pattern and we
can observe, intuitively, why it is so. A messagem carrying causal information of some
checkpoint̂σ is never received in the same checkpoint interval where a messagem′ that
could precede causallŷσ is sent. Thus, allz-cycles are broken.

A way to explore the message pattern to avoid the occurrence of forced check-
points in an index-based algorithm comes from the followingobservation: it is the incre-
ment of the index when a basic checkpoint is taken that can trigger forced checkpoints
in other processes. Naturally, the index increment is what guarantees the correctness of
the algorithm, but there are situations where a basic checkpoint can be stored without
requiring an increment of the index. The Lazy-BCS algorithm [Vieira et al. 2001] uses a
very simple condition to avoid increasing its index: only messages from processes with
indexes strictly smaller than the current index were received [Baldoni et al. 1999]. Intu-
itively, this lazy behavior of the indexes still guaranteesthe absence ofz-cycles because,
if a process only received messages with strictly smaller indexes, then the last checkpoint
was not taken to break az-cycle and the next checkpoint can use the same index.

The techniques used by the algorithms FDAS and RDT-Partner can be combined
with the strategy adopted by the Lazy-BCS algorithm, generating new algorithms from
these combinations. We then have the Lazy-BCS-Aftersend [Vieira et al. 2001] and Lazy-
BCS-Partner algorithms, which are algorithms that try at thesame time to save forced
checkpoints and to avoid to increase the checkpoint indexes. These simple combinations
create two very simple and efficient algorithms. The graphs of these algorithms are in
Figures 3 and 4.

Observing the SP and AP scenarios (Figures 3(a) and 4(b)) we can notice that the
ZCF algorithms, even though they don’t use a vector clock, arestill sensitive to the size
of the system, but not as much as the ZPF algorithms. Again this effect is caused by
the increased number of processes propagating new dependency information, inducing
forced checkpoints in the other processes. However, for ZCF algorithms it is possible
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Figure 3. ZCF algorithms - 1.

for processes to spontaneously get “in sync” if they take basic checkpoints verifiable
causally unrelated (checkpoints with the same index). In this case, a forced checkpoint
can be avoided and ZCF algorithms tend to force fewer checkpoints than ZPF algorithms.
Moreover, for computations with clustered communication patterns we expect to see even
fewer forced checkpoints.

In the SI and AI scenarios (Figures 3(b) and 4(c)) we can observe a vital informa-
tion about the BCS algorithm and its optimizations. The performance of these algorithms
is heavily dependent upon the length of the checkpoint intervals. We can notice in the
graphic that, for all algorithms, as the intervals increasethe number of forced check-
points decreases. This effect is a direct consequence of thecheckpoint pattern generated
by these algorithms; forced checkpoints are induced to break z-cycles created by basic
checkpoints. Bigger checkpoint intervals decrease the number of basic checkpoints taken
by the processes, reducing the number of forced checkpoints. This is particularly interest-
ing in comparison with the ZPF algorithms. As shown in the previous section, using ZPF
algorithms the system designer can’t choose the global checkpointing frequency through
the basic checkpoint frequency. On the other hand, for ZCF algorithms it is possible to
influence the global number of checkpoints by changing basiccheckpoint policy.

The VA scenario (Figure 4(a)) shows another property of these algorithms; their
performance is also affected by the asymmetry among the processes. This is another BCS
characteristic observed in all other algorithms. The asymmetry is caused by a process
taking basic checkpoints in a faster rate than the other processes, inducing forced check-
points in them. In the VA scenario we have a combination of twofactors: as one of
the processes accelerates, it produces smaller checkpointintervals and takes more basic
checkpoints. As a result, the chance for different processes to get “in sync” spontaneously
decreases and we observe a sharp increase in the end of the plotted interval. In the VA
scenario the Lazy-BCS optimizations and its variants show the best relative performance.
In this scenario we have the combination of a fast process taking more basic checkpoints
than the rest of the system in increasing smaller checkpointintervals. In this situation the
whole system will profit from the fast process refraining from increasing its indexes and
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the smaller intervals will allow this to occur.

We have found that the Lazy-BCS algorithm shows better performance in the sit-
uations where the BCS algorithm performance is impaired by asymmetry in the system
processes. However, this algorithm in isolation does not explore other ways to avoid un-
necessary forced checkpoints. We can compensate this by employing the combination
algorithms Lazy-BCS-Aftersend and Lazy-BCS-Partner, that exhibit the strong points of
both approaches, having a simple implementation and control information with constant
size.

9. Conclusion

This work has presented evidence that the number of forced checkpoints induced by a
checkpointing algorithm is the best metric to use to assess in a fair manner a large number
of algorithms. Our result is backed up by evidence coming from a survey of previous
comparative studies and from a comprehensive simulation experiment carried out using a
deterministic simulator that not only measures the metric proposed but also allows a very



well controlled variation of the main parameters that affect the behavior of checkpointing:
number of processes and process symmetry, and checkpointing interval.

We recommend a two step procedure as the most sensible approach to gain a good
understanding of the behavior of checkpointing algorithms; it does not matter whether
during the design of the algorithm or later as an aid for choosing a cost effective algo-
rithm to match an application. Simulation, as indicated in this work, is the first step, but
our study has also shown that execution-based studies are the ultimate test to validate the
real costs of checkpointing. This implies that the second step of the procedure is the actual
instrumentation of applications for checkpointing and their monitored execution. Unfor-
tunately, current programming environments for high-performance cluster computing do
not include user-friendly libraries for checkpointing. Future research on checkpointing
must go in the direction of creating checkpointing toolkitseasy to instrument, adapt and
run. Only when such toolkits become available it is going to be possible to create fair and
comprehensive comparisons using as indicators the rollback time, amount of checkpoint
storage used, execution time, or message and control informantion overhead.
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