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Abstract. This work addresses the problem of physical route selection for La-
bel Switched Paths (LSPs) in Multi-Protocol Label Switching (MPLS) networks.
The route selection problem consists of defining routes for LSPs trying to mini-
mize the network rejection rate and the total number of hops necessary to route
the requests. We propose a mathematical model to represent the problem and
we present a genetic algorithm (GA) to solve the model. The experiments show
that the GA is able to obtain very good solutions using a very short amount of
time.

1. Introduction

In recent years there has been a tremendous growth of the Internet. Various real-time
services are being deployed and new applications such as streaming media and voice over
IP present new traffic patterns and new demands to the network. Pressures are being
placed on Internet protocols to support quality of service (QoS).

The Internet is currently based on the best-effort paradigm, which, despite being
highly scalable, cannot provide the hard guarantees that is desired by most time-critical
bandwidth intensive applications. Normally, Internet protocol (IP) traffic follows rules
established by routing protocols, such as Open Shortest Path First (OSPF). There is no
service differentiation in IP networks. Besides no service differentiation, shortest path
destination based routing often leads to unbalanced traffic distribution across the network
[Fortz and Thorup 2000].

The ability to control the traffic is precisely what the MPLS [Awduche et al. 1999]
technology provides. MPLS is a packet label-based switching technique where packets
are assigned a short and fixed-length data header, a label, which identifies the path the
packets will follow in the network as well as the treatment the packets will receive in the
network. These paths are called Label Switched Paths and are basically explicit routes
from a source to a destination. Therefore MPLS plays a key role by providing services
unsupported by the IP protocol. It allows sophisticated routing control capabilities to be
introduced into IP networks, such as the explicit routing feature mentioned before, and can
help build backbone networks that better support QoS traffic[Davie and Rekhter 2000,
Black 2001, Awduche 1999].



This work addresses the problem of defining the route configuration for Label
Switched Paths (LSPs) in a MPLS capable network. We are particularly interested in
using optimization techniques to find the best routes available, since a MPLS network only
provides the explicit route feature but the network operator/administrator has to configure
these explicit routes in an optimal manner.

We proposed an ILP (Integer Linear Programming) model to solve the offline
problem in an exact manner. This model balance the network load while minimizing
the network rejection rate and the total number of hops. The goal is to optimize the
overall network performance by routing requests through under-utilized links improv-
ing the utilization of the installed infrastructure. Other models were already proposed
but normally they only take into consideration one network aspect (delay, number of
hops) and to our knowledge there is no other model that allow rejections[Dias et al. 2003,
Dias and Camponogara 2003, Resende and Ribeiro 2003, Figueiredo et al. 2004]. The
main advantage of allowing rejections is that it can be extended in the future to differ-
entiated services and on-line requests.

The model was executed in CPLEX [ILOG 2002], a commercial optimization
tool. However, various issues concerning the execution time necessary to solve the model
were noticed and to address these issues we developed a genetic algorithm. Our GA is an
evolutionary heuristic [Michalewicz and Fogel 2000] based on the combination of routing
policies and adaptive route movements, which will be described later.

GA have been used before in the context of OSPF in several works such as in
[Buriol 2003, Buriol et al. 2005, Ericsson et al. 2002]. Then the GA is used to set weights
to the links and does not differentiate routes when the request has the same origin-
destination pair.

An important work using GA in the context of MPLS networks is
[Hong et al. 2003]. Their work differs in all important aspects of genetic algorithms:
their objective function does not take into account the possibility of rejections, their def-
inition and implementation of the genetic representation is different from ours as well as
the definition and implementation of the genetic operators. Our work has a simple and
clear definition and implementation of the genetic representation as well of the genetic
operators and still presents fast and reliable results.

In order to analyze the genetic algorithm’s performance various scenarios were
studied and simulations were conducted. Simulation results show that the use of the
genetic algorithm considerably decreases the amount of rejected requests in the network
in comparison with the basic shortest path approach. The mathematical model and the
genetic algorithm solutions were compared and the results were very good, showing that
the genetic algorithm can find solutions very close to the optimal solution and it can run
much faster than CPLEX.



2. Mathematical For mulation

Our model combines rejection rate and total number of hops in the objective function
and the objective function can be parameterized to switch the priority of the minimization
process to be the number of hops or the number of rejections.

Let G = (V, E) be a directed graph representing the MPLS network under study.
Let E denote the set of links that connect the backbone nodes, and V' =1, - - -, n denote
the set of backbone nodes, where MPLS routers reside. For each link (i, j) € E, let p;;
denote the link bandwidth (the maximum kbits/sec rate) allowed to be routed on the link
or the link capacity.

The set K of LSPs to be routed is represented by a list of origin-destination (O-D)
pairs
K = {(01: dl)a (02, d2)a Tty (Ona dn)}

where we associate with each pair a bandwidth requirement. Each commodity & € K
is a LSP to be routed, associated with an origin-destination pair and with a bandwidth
requirement or demand (d¥).

A route for LSP (o, d) is a sequence of adjacent links, where the first link orig-
inates in node o and the last link terminates in node d. A set of routing assignments is
feasible, if for all links (7, j) € E, the total LSP effective bandwidth requirements routed
on (7, ) does not exceed « 1,5, Where « represents the maximum utilization allowed in
the links.

Network load balancing is achieved by minimizing the load on the most utilized
link. Routing assignments with minimum LSP delays may not achieve the best link load
balance. Likewise, routing assignments having the best link load balance may not mini-
mize LSP delays. A compromising objective is to route all LSPs in set K such that a de-
sired point in the trade-off curve between LSP delays and link load balancing is achieved.
Our problem is modeled using a multi-objective approach consisting of two steps. In the
first step, we minimize the maximum link utilization and the problem is stated as shown
in Model P1.
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The first group of constraints (2) imposes limits on traffic over the links, while
the second group of constraints (3) guarantees flow conservation. The demand d¥ takes
the value 1 if the node i is a LSP ingress node, it takes the value -1 if the node i is a
LSP egress node and it takes the value 0 otherwise. The variable z}; takes the value 1 if,
and only if, the virtual path of the £ — th LSP goes through the link (7, ). The ultimate
objective is to minimize the load on the most utilized link.

Let o* be the optimal value of « obtained in the first optimization step. The second
optimization step is to minimize the cost subject to the constraint that all link utilization
remains under o*.

The ultimate objective is to minimize the total resource usage. If o* is less than 1,
its value will be used and no LSP rejections have to happen. If o* is greater than 1, we
will set its value to 1 and allow rejections to happen.
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The mathematical formulation for the second step is shown in Model P2. The
constraints in the second optimization step are the same as those in the first step, except
for constraint (7) and (8). The variable a* takes the value 1 if, and only if, the £ LSP
is accepted into the network, allowing the network to reject requests. The parameter C
indicates the minimum number of LSPs that need to be provided and it is used in the
constraint (8). Ideally, C should be equal to the number of LSP requests. The parameter
M indicates the penalty given to rejections. In our experiments, M is set to 10.

3. Modd Experimentsin CPLEX

We solved the model using CPLEX [ILOG 2002]. The network topologies used in this
work are shown in Figure 1.
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Figure 1. Topologies Used in the Experiments

The simple 6-node network has mesh characteristics. It is used for illustrative
purposes and to get the numerical examples for large complex problems. The second
topology is a telecommunication metropolitan network, composed of four rings. This is a
typical topology showing how today’s backbone networks are interconnected. The third
topology is widely used as an illustrative wide-area backbone network topology. The
fourth topology is a modified version of a well connected carrier’s IP backbone topol-
ogy, widely used for simulation experiments. The fifth and sixth topologies were used in
similar papers [Boutaba et al. 2002, Dias et al. 2003].

The sets of requests used in the experiments range from light to heavy traffic
scenarios. For the simulation study, source-destination pairs were chosen by chance to
represent the LSPs. Each simulation consists of a set of CBR type data flows, each with
transmission rates set at 200 Kbps. The number of data flows varied from 10 up to 50.
The purpose of this workload is to contrast the performance of the proposed model with
that of conventional routing. Based on the LSPs definition we generated various traffic
scenarios by configuring the number of flows to vary from 10 to 50 with a step of 10 flows
as described in [Boutaba et al. 2002, Kar et al. 2000, Dias and Camponogara 2003].

To find the optimal solution for the test scenarios, the two models defined previ-
ously were executed on CPLEX. The Model P1 computed the minimum maximum de-
mand rate in one link of the network for all traffic scenarios and topologies. The results
are described in Table 1. Each element of the Table 1 reports the average minimum load
on the most utilized link for each number of flows over 5 run trials and its standard devi-



ation (within brackets). Since the network capacity was not taken as a constraint, some
demand rates are greater than 1. It means that for the traffic generated some rejections
will occur.

Table 1. Minimum MaxLoad on Network Links (1.0 represents 100%)

Topology Number of Flows
10 | 20 | 30 | 40 | 50
Mesh | 0.72(0.10) | 1.32 (0.16) | 1.96 (0.20) | 2.64 (0.15) | 3.04 (0.15)
Ring 0.56 (0.15) | 0.84 (0.08) | 1.40 (0.13) | 1.64 (0.08) | 2.08 (0.16)
NSF 0.48 (0.10) | 0.76 (0.08) | 1.04 (0.08) | 1.40 (0.13) | 1.84 (0.20)
Carrier | 0.36 (0.08) | 0.60 (0.00) | 0.80 (0.13) | 1.0(0.00) | 1.3(0.10)
Dora | 0.33(0.00) | 0.50 (0.00) | 0.67 (0.00) | 0.86 (0.07) | 1.17 (0.00)
Sul 0.88 (0.16) | 1.44 (0.20) | 1.92 (0.39) | 2.98 (0.39) | 3.36 (0.54)

We noticed from Table 2 that Model P1 can take more that 30 minutes to execute

in cases were the network is heavily loaded and presents various options for routes. The
combinatorial nature of the problem makes the execution time very long even for small
networks. These experiments showed the performance problem that we are facing; since
this problem is NP-hard. The variation in the execution time can be explained by the

different traffic patterns and topologies.

Table 2. Model P1 Execution Time in Seconds on CPLEX (Max. 30min)

Top. Number of Flows
10 20 | 30 | 40 | 50
Mesh 0.04 (0.07) 0.02 (0.00) 0.02 (0.01) 363.81 (813.44) 0.05 (0.00)
Ring 0.02 (0.01) 362.19 (809.79) | 723.78 (990.96) | 1088.41 (888.61) | 361.71 (723.13)
NSF 0.03 (0.01) 375.43 (801.44) | 722.83(989.65) | 1102.77 (964.09) | 361.34 (807.50)
Carrier | 653.36 (746.87) | 362.25 (807.24) | 362.14 (809.37) | 1809.59 (2.52) | 1813.18 (1.38)
Dora 9.76 (4.99) 743.44 (973.78) | 1084.52 (989.93) | 361.92 (809.02) | 1810.43 (0.44)
Sul 0.02 (0.00) 0.03 (0.01) 0.04 (0.01) 0.05 (0.01) 0.07 (0.02)

Finally, the Model P2 was executed. It uses the minimum max load («*) computed
in Model P1 as the maximum utilization allowed for each link.
demand is greater than 1, the utilization was set to 1.0 and the rejections start to happen.
The results are presented in the Table 3.

In the cases were the

It is important to notice that the load computed by the model does not take into
account the overhead due to the protocol messages. Therefore, it is important to simulate
the solutions in an operational environment as will be shown in the next section.




Table 3. Model P2 Result - Minimum Rejection and Minimum Number of Hops

Topology Number of Flows

10 20 30 40 50
Drops | Cost | Drops | Cost | Drops | Cost | Drops | Cost | Drops | Cost
Mesh 0 20 1 48 11 148 20 240 30 340
Ring 0 35 0 81 2 137 10 231 20 331
NSF 0 30 0 70 0 103 6 184 17 289
Carrier 0 28 0 58 0 87 0 134 6 189
Dora 0 35 0 73 0 109 0 146 1 204
Sul 0 16 3 57 10 131 5 117 14 206

4. NS Simulations

A series of experiments were conducted to demonstrate the following points: (1) the need
for optimization techniques to better configure the LSPs in a MPLS network and (2) the
need for simulations of the network in operation taking into account protocol messages
overhead.

These experiments show how a naive configuration of the LSPs leads to bad net-
work performance when compared to a smarter one, obtained by our model. To simulate
the MPLS network in the operational environment, simulations were conducted using the
well known Network Simulator [McCanne and Floyd 2003].

4.1. Default MPLS x MPLS with Two-Step Model

Our hypothesis is that the routes found by the optimization method are much better than
the routes found using the default approach. Even when the load in the network is under
1.0, there will be congestion and packets dropped due to delays caused by the protocols
messages. The number of packets dropped will decrease substantially and the overall
throughput will increase if the proposed strategy is implemented, instead of the default
approach.

The experiments are conducted for all topologies and traffic scenarios where the
network maximum load as computed by the model P1 is less than 1.0 - see Table 1. The
metrics used to compare the solutions are: the number of packets dropped. In theory, no
packet should be dropped. Each element of the Table 4 reports the percentage of packet
drops for each number of flows in NS using the default routing scheme over 5 run trials
and its standard deviation(within brackets).

Tables 5and 4 shows that our approach outperforms conventional routing. Under
normal operation conditions the packet discard rate is almost null for our solution, while
sometimes over 10 % for conventional routing. Under heavily loaded traffic conditions,
number of flows greater than 30, the packet discard rate is over 30% for conventional
routing whereas below 3% if our solution is implemented.



Table 4. Percentage of Packets Dropped when using MPLS Default Scheme

Topology Number of Flows

10 | 20 | 30 | 40 | 50

Mesh | 0.01 (0.02) - - - -
Ring 0.00 (0.00) | 0.13 (0.04) - - -
NSF 0.03 (0.05) | 0.22 (0.04) | 0.36 (0.00) - -
Carrier | 0.00 (0.00) | 0.03 (0.04) | 0.08 (0.04) | 0.16 (0.10) | -
Dora 0.00 (0.00) | 0.04 (0.01) | 0.21 (0.04) | 0.33(0.04) | -
Sul 0.01 (0.01) - - - -

Table 5. Percentage of Packets Dropped when using Routes Computed by Two-

Step Model
Topology Number of Flows

10 \ 20 \ 30 \ 40 \ 50

Mesh 0.0 (0.00) - - - -

Ring 0.0 (0.00) | 0.03 (0.04) - - -

NSF 0.0 (0.00) | 0.0(0.00) | 0.05(0.02) - -

Carrier | 0.0 (0.00) | 0.0(0.00) | 0.02(0.03) | 0.05(0.01) | —

Dora 0.0 (0.00) | 0.0(0.00) | 0.01(0.01) | 0.05(0.04) | -

Sul 0.0 (0.00) - - - -

5. Genetic Algorithm

Genetic algorithms (GA) are a particular class of evolutionary algorithms that use tech-
niques inspired by evolutionary biology such as inheritance, mutation, natural selection,
and recombination (or crossover) [Goldberg 1989],[Reeves 1993]. The pseudo code is
shown in algorithm 1.

Initially several chromosomes are generated to form an initial pool of possible
solutions, the first generation pool. During each successive generation, each organism is
evaluated, and a value of fitness is returned. The pool is sorted, with those having better
fitness ranked at the top. The next step is to generate a second generation pool of organ-
isms, which is done using any or all of the genetic operators: selection, crossover and
mutation. This process is repeated until an organism is produced which gives a solution
that is good enough.

The termination condition used in this paper was (1) the program reached a fixed
number of generations or (2) the highest ranking individual’s fitness has reached a plateau
such that successive iterations are not producing better results anymore.

The three most important aspects of using genetic algorithms are: (1) definition
of the objective function, (2) definition and implementation of the genetic representation,



Algorithm 1 Genetic Algorithm Pseudo Code

Choose initial population of size M

repeat
Evaluate the fitnesses of the population
Sort the population based on fitness
Select (C) pairs to be parent’s candidates
Mate pairs at random
Apply crossover operator
Keep only one child
Select (M-C) best-ranking individuals
to form the elite

until terminating condition

and (3) definition and implementation of the genetic operators. Once these three have
been defined, the generic genetic algorithm should work fairly well.

In the following subsections, we will describe in detail our approach.

5.1. Genetic Representation

In our approach, a gene represents a possible path for a LSP. Each chromosome has the
number of genes equal to the number of LSPs in the problem. The locus of a gene is the
LSP identification ¥ = 1,---, K. Thus, the value of the 7 x th gene of the chromosome
represents a possible path for the 7 x th LSP. In our approach, the chromosome represents
a solution for the problem, i.e, its set of genes is the set of paths that can be used by all
LSPs. Let’s use as an example the network shown in Figure 2 and the LSP’s requests
shown in Table 6.

Figure 2. Example - Mesh Topology

Table 6. LSP Requests
| Topology | LSPs |

[ Mesh | (0.4) (32) (5.3) |

The alleles represent the possible routes for each LSP. In our solution, we limited
the number of possible routes to a parameter K. So, if K is 2, we can have the following
genes and chromosomes.



Table 7. Possible Gene Values
| LSP | Allele 1 | Allele 2 |

1 | 0-34 |0-1-24
2 | 312 | 342
3 | 543 | 5-2-4-3

Table 8. Possible Chromosome Values
| Chromosome | Gene 1 | Gene 2 | Gene 3 |

1 0-3-4 | 3-1-2 | 5-4-3
2 0-1-2-4 | 3-4-2 | 5-4-3
3 0-3-4 | 3-4-2 | 5-2-4-3

The K-shortest paths for each LSP are computed in a pre-processing phase, using
Djikstra’s algorithm.

5.2. Population Initialization

Our first attempt was to define the first generation pool using a random function. There-
fore, in a pre-processing phase of the algorithm, the first K shortest paths available for
each LSP were calculated, using Djikstra’s algorithm. Then, for each LSP, one of the K
LSPs routes was chosen by chance, defining the genes for the chromosomes.

Besides the number of alternative routes, K, the population size or number of
chromosomes is also a parameter in our implementation.

After some experiments, we noticed that the initial population could be improved
leading to a faster convergence of the algorithm to a better solution. Hence, three policies
were defined to address the problem of initial population definition. Instead of picking a
route by chance, we started using different criteria to choose the routes to compose the
chromosomes. The polices implemented are: min-hop (MH), limited utilization (LU) and
load balance (B) and will be described in detail.

5.2.1. MH - Min Hop

This algorithm tries to grant to each LSP request the shortest route possible for that LSP.
The final solution would have the minimum number of hops possible. It works as fol-
lowing: for each LSP request, it is verified if the shortest route residual bandwidth is
sufficient to satisfy the LSP demand. If yes, the LSP is allocated to this route, otherwise
the next route is checked and this process is repeated till all possible routes are verified. In
other words, in the min-hop algorithm, the path from the ingress to the egress node with
the least number of feasible links is chosen. This algorithm is the most commonly used
algorithm for routing LSPs.



5.2.2. LU - Limited Utilization

This algorithm tries to balance the network load imposing a limit on link utilization to
avoid congestion. It is an extension of the MH algorithm but besides being feasible the
link utilization must be below a certain limit. It works as following: for each LSP request,
it is verified if the shortest route residual bandwidth is sufficient to satisfy the LSP demand
and if it is below a certain limit. If yes, the LSP is allocated to this route, otherwise the
next route is checked and this process is repeated till all possible routes are verified.

5.2.3. B - Load Balance

This algorithm tries to balance the load among the routes. It looks for the route with the
best residual/capacity ratio to allocate the LSP. It is also an extension of the MH algorithm.
We define the residual bandwidth along a link to be the difference between the bandwidth
of the link and the sum of the LSP demands that are already routed on that link. It works
as following: for each LSP request, it is verified which route has the maximum value for
the residual/capacity ratio and has sufficient bandwidth to satisfy the LSP demand. This
route is allocated to this LSP.

5.2.4. Adaptive Movements - Reducing Rejection

The policies described previously routed the LSP requests based on their arrival order.
After running some experiments, we noticed that changing the routes of previously ac-
cepted requests could reduce the number of LSPs rejection. Hence an adaptive scheme
was proposed to solve the problem of accommodating requests that would normally be
rejected.

The adaptive movements idea came from [Salvadori and Battiti 2003]. But in
their work they reroute or move some LSPs to obtain the best solution. In our work
[Oliveira et al. 2005, Oliveira and Mateus 2005], we will reroute or move a LSP only to
allow another LSP to be accepted in the network. We will not test all possibilities, look-
ing for the best solution. This small modification will improve the performance of our
algorithm. In summary, the adaptive movements or adaptive routing scheme (ARS) is a
rerouting technique that will be combined with the policies previously described to de-
crease the network rejection rate.

The algorithm presented in algorithm 2 is the pseudo-code for the adaptive routing
scheme. This algorithm works as following: for each LSP request, a route is calculated,
based on the chosen policy: MH, LU or B. If the policy can not find a route or if the route
found is too long, the ARS tries to change previously accepted LSPs routes to accept the
new LSP or to install it in a better way. A route is considered too long if it is at a distance
D or greater than D of the shortest path.



The adaptive scheme then searches for the congested link in the first shortest path
route. For this link, it checks the LSPs that were already allocated to that link - line 5. If
there is a LSP that uses more bandwidth than that requested by the new request and can
be moved to another route with a length increase of maximum D hops, lines 6-8, the LSP
routes are changed, otherwise nothing is done. In [Salvadori and Battiti 2003], this search
will be exhaustive, compromising performance at some extent.

Algorithm 2 Adaptive Movements Pseudo Code
1: route = alocateOneRoute(new LSP, demand);
2: if route does not exist or route > minRoute+D then
3. find the congested link in one of the available routes;
repeat
for all each LSP that crosses this link do
if (LSP.demand > newLSP.demand) then
find a newroute such as newroute < LSP.route +D;
end if
end for
10:  until found or LSPs are finished:;
11:  if found() then

© N TR

12: changeRoutes;
13:  endif
14: end if

The policies previously defined are combined with the adaptive movements gen-
erated three new possible ways to establish the first generation pool: adaptive min-hop
(AMH), adaptive limited utilization (ALU) and adaptive load balance (AB).

5.3. Selection Methods

The selection method determines how individuals are chosen for mating. In our imple-
mentation, individuals are picked using random selection as parents candidates. Then, for
each mating iteration, two chromosomes are selected from the parent’s candidates group.

5.4. Fitness Function

In genetic algorithms, fitness is used to guide the search by deciding which chromosomes
will be used as future points to look for better solutions. The fitness function represent
the condition of being suitable. In our work, the fitness value of a chromosome will be
the number of requests that are rejected due to lack of bandwidth in a path and the total
number of links (hops) used in the solution, as shown in equation 11. M is a parameter
that can be used by the network operator to give more priority to solutions with a lower
number of hops or to solutions with a lower number of rejections.

Fitness(x) = total number of hops + M.total number of rejections (11)



The load balanced solutions obtained when using the first part of the ILP model
will be obtained by the genetic algorithm through the use of the policies: AMH, B, AB,
LU and ALU. In our implementation, the fitness function will be used for the elite defini-
tion and algorithm termination.

5.5. Elite Definition

In our approach, some of the better organisms from the first generation are carried over
to the second generation unaltered. This form of genetic algorithm is known as an elite
selection strategy.

5.6. Heuristic Crossover

In our approach, the crossover occurs in the following way. For each mating pair, the
parent’s genes are compared and the best gene is copied to the offspring. The metric used
to compare the genes is their number of hops. Therefore, the gene that has the smaller
number of hops is copied from the parent to the offspring.

6. GA Experiments

The experiments will show the performance yielded by the heuristic against that obtained
solving the integer linear formulation using CPLEX. Our hypothesis is that the genetic
algorithm will be able to find a good solution much faster than using CPLEX.

Since the GA can obtain different results depending on the parameters configu-
ration, we first determined the best GA solution and then compared this solution to the
solution obtained by CPLEX.

In our implementation, the genetic algorithm receives four parameters as the input:

number of possible routes (K),
population initialization strategy,
population size,

number of iterations.

The number of possible routes in the experiments varied from 2 to 5. The pop-
ulation initialization strategy worked as follows: if the initialization strategy is 0, all the
chromosomes in the population are chosen randomly. If the initialization strategy is set
to 1, the first 6 chromosomes were initialized using the policies and the rest was chosen
randomly.

The population size varied from 5 to 25 with a step of 5 as well as the number of
iterations. The solutions found by the best execution of the genetic algorithm are shown
in Table 9 and in Figure 3. The graph shows CPLEX results for the different models
described before:

e MinRej - model that takes into account the number of rejections but does not try
to balance the load. It is a lower bound for our two-step model.



e MinRejBal - model that takes into account the number of rejections and tries to
balance the load. Gives the results for our two-step model.

e Genetico - heuristic that takes into account the number of rejections and tries to
balance the load using policies.

Table 9. Number of Rejections and Number of Hops Using the Genetic Algorithm

Topology Number of Flows
10 | 20 | 30 | 40 | 50

Rej. | Hops | Rej. | Hops | Rej. | Hops | Rej. | Hops | Rej. | Hops

Mesh 0 20 1 48 11 | 148 | 20 | 240 | 30 | 340
Ring 0 29 0 68 4 139 | 15 | 248 | 24 | 340
NSF 0 30 0 65 2 118 | 11 | 211 | 20 | 307
Carrier 0 25 0 54 0 77 1 144 7 212
Dora 0 33 0 71 3 118 | 8 193 | 22 | 314
Sul 0 14 1 43 8 120 | 8 136 | 14 | 210

We notice that the genetic algorithm is able to find the best solution for the vast
majority of cases and is very close to the optimal solution in the other cases. The number
of iterations necessary to reach the best solution of the GA is generally less than 5. The
execution time is on the magnitude of milliseconds for all instances executed.

Fitness

10 20 30 40 50
Nunber of LSP Requests

Figure 3. CPLEX and GA Results Comparison for the Carrier Network

For the scenarios with light traffic, the GA results are similar to the lower bound,
where there is no need for load balancing. When the traffic load starts to increase, the GA
solution is between the ones found when the traffic is balanced and the solutions found
when it is not balanced.

When the network is overloaded, the GA results found are on average 20% worse
than the best solution, but this is not very problematic, since our goal is to obtain good
solutions when the load is within the network capacity and the network is still congested.



7. Concluding Remarks

This work demonstrates the effectiveness of the application of optimization techniques to
traffic management in computer networks. It validated the use of optimization techniques
for improving performance of IP networks over MPLS and the use of heuristics to obtain
the solutions in a time period practical in real life. We presented a formal model that
works offline and considers number of hops and rejection rates.

We presented a genetic algorithm for adaptive routing, whose main goal was min-
imizing the network rejection rate. It was possible, in the population initialization phase,
to reroute a LSP to avoid congested links even choosing longer paths, in order to balance
the overall link loads and to allow a better use of the networks resources.

The results showed an improvement on the solutions when compared to traditional
shortest-path approaches and the heuristic manages to solve the mathematical model
much faster than the optimization tool CPLEX. The execution of the exact models takes
longer and it is very complicated since it has to occur in two phases. The packet discard
rate is considerably reduced by the use of the optimization techniques.

Another advantage of the GA is the fact that it is very easy to change the ob-
jective function to change the priorities (rejection rate or minimum delay) according to
administrative interests.
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