
Bootstrap-Based Estimation of Flow-Level Network
Traffic Statistics

Stenio Fernandes, Tatiene Correia, Carlos Kamienski, Djamel Sadok

Universidade Federal de Pernambuco, Centro de Informática

CP 7851, Recife-PE, 50732-970
{sflf, tatiene, cak, jamel} @cin.ufpe.br

Abstract: Network traffic measurement and analysis have been playing an important
role in traffic engineering, and network planning. Most recent research papers in this
field have been focusing to passive flow measurement since collecting packet-level data
in high-speed links is prohibitively expensive. Although there are techniques for
handling flow statistics in modern routers, transmitting and storing flow-level
information still imposes a significant burden on the network management operation. In
this paper, we advocate that only a small portion of the flow records need to be
preserved for further processing. We propose the use of the Bootstrap resampling
technique for deriving properties from a previously pre-processed sampled set of flows.
Our results show that only 10% or less of the original sampled statistics is necessary in
order for Bootstrap to reconstruct the characteristics of the original raw flow records.
We also show that such technique has a low computational overhead time.

1. Introduction
Monitoring backbone network traffic is a mandatory task to manage today's complex
Internet Service Providers (ISP) infrastructure. Particularly, computer networking
researchers have been made great efforts to make the systemic nature of the Internet
more comprehensible, based on passive and active measurements. Hence, network
measurements are essential for appraising systems performance, identifying and
locating problems in high-speed links [11]. Further, measurement information has been
widely used by ISPs for short-term monitoring (e.g., detecting denial-of-service attacks
[18]), long-term traffic engineering and provisioning (e.g., forecasting link upgrade
[10]), and accounting (e.g., establishing usage-based pricing [14]).

 In order to obtain such information, today's routers offer tools such as NetFlow
that provides flow level information about traffic. As new applications arise in the
Internet (e.g., peer-to-peer systems) network operators need more accurate information
related to the workload of their network, such as relative volumes of traffic using
different ports and protocols, number and duration of flows traversing their routers,
traffic matrices etc. However, the main obstacle with the flow measurement approach is
its lack of scalability with link speed. For instance, some recent measurements [15]
show that the number of flows in an unsampled raw NetFlow trace collected in an
aggregated link during 1 day in September 2002 reaches 229,448,460 records. As link
speeds and number of flows increase, holding a counter for each flow may be too
expensive or slow [4]. Therefore, packet-sampling techniques are progressively being
used in routers to export statistics of a fraction of the network traffic [13]. Although
packet sampling is a widespread technique, one difficulty that arises is how to deal with

partial measurements. It is imperative to recover statistics of the original traffic from
such partial sampled data through some reliable procedure. Network Managers and
Engineers usually support their decisions based on characteristics of the full network
traffic. Therefore, due to the huge amount of data produced by flow measurement, it is
necessary for routers to control the usage of processing resources, network capacity
used to transfer data to collectors, and processing and storage costs at the collectors.
Likewise, collecting IP packet headers will give rise to an immense amount of data. This
could cause ever increasing demands and costs, e.g., on computational resources at the
measurement point and systems for data storage and analysis.

 This paper analyses the possibility to derive properties of the original traffic
stream from the packet sampled flow statistics, using a well-known resampling
technique called Bootstrap [1][3]. We extend the analysis presented previously in [20],
to evaluate the processing overhead time of such resampling technique. We consider
such methodology very appealing and we think it could be applied to a number of
circumstances. For instance, Bootstrap estimates could be accurately inferred from light
and heavy tailed distribution functions. This opens the doors to the possibility of
performing a smooth sampling technique and also achieving a high level of accuracy of
the Bootstrap estimates related to the original traffic characteristics. Therefore,
considering a variety of network traffic profiles, it seemed promising to look at
alternative procedures to reduce the volume of the sampled network traffic data. In
order to provide useful examples of the applicability of the Bootstrap technique, we
analyzed packet and flow-level traces. Our results show that after a after a small amount
of pre-processing in the raw data and extracting some metrics from traces (e.g., flow
size and duration), it is necessary to store or transmit only 10% of the original sampled
statistics, in order for Bootstrap to precisely reconstruct its main properties.

 Using Bootstrap analysis to characterize the statistical properties of data has
lately become a useful and widespread tool in a number of research
fields[9][7][19][8][5]. For instance, Buvat and Riddel [9] proposed the nonparametric
bootstrap method to characterize the statistical properties of computed tomography
images. White and Racine [7] investigated the use of bootstrap methods for inference
using artificial neural networks applied to predictive accuracy in foreign exchange rates.
Recently, Lei and Smith [19] presented some results on an empirical analysis of the
reliability of nonparametric bootstrap method in assessing the accuracy of sample
statistics in the context of software metrics. Liu et al. [5] proposed the use of Bootstrap
method in order to predict fine time-scale behavior of network traffic from coarse time-
scale aggregate measurements. Therefore, as far as we know, research studies related to
applying bootstrap in the network traffic management field have not been well explored.

 The paper is organized as follows. Section 2 presents related work. Section 3
develops the basic theory of the Bootstrap methodology and describes its application in
common network traffic properties. The next section (Section 4) shows our validation
results of the Bootstrap method based on real network traffic. We use both NetFlow and
NLANR data. Finally we draw some conclusions and present suggestions for future
work in Section 5.

2. Related Work
There are a number of recent research papers related to the problem of packet sampling
and recovering statistics of the original traffic from sampled data. Some of them focus
only on the problem of sampling inside routers whereas others are more interested in
resource utilization and analysis in a measurement infrastructure [14][16][15][4][12][2].

 Sampling methods have been advocated to reduce the volume of sample data on
the measurement infrastructure. The goal is to estimate some traffic properties (e.g., the
packet size distribution) from the sampled packets. In order to reach a better
performance at lower effort, a number of sampling strategies have been studied. It is
possible to deterministically take one in every N packet (regular sampling), take on
average one in N packets (simple random sampling) or take one packet in every bucket
of size N (stratified random sampling). However, Duffield [15] showed that those
sampling techniques are naïve, because they cause the loss of information of short
traffic flows.

 Estan and Varghese [4] proposed two scalable algorithms for identifying large
flows named “sample and hold” and multistage filters. They found out such algorithms
to be highly efficient because they would take a constant number of memory references
per packet and use a small amount of memory. The main motivation of their work is
that a few heavy and long-lived flows dominate the current Internet traffic. They
addressed the issue of identifying these heavy flows without keeping track of millions
of small flows. The proposed algorithms presented a clear advantage against NetFlow’s
sampling technique, since they provide exact values for long-lived large flows and
lower bounds on traffic, avoid resource intensive collection of large NetFlow logs, and
identify large flows very fast. However, this preference on recording longer flows could
lead to some bias in the total traffic volume. Moreover, it could not approximate to the
empirical distribution function of the flow lengths. For this situation, we think that
Bootstrap could be used as a complementary procedure to handle short flows with little
resource consumption in routers. In this case, Bootstrap would correct the bias and
recover the missing information related to the small flows.

 In [15] Duffield et al. presented approaches to accurately infer the distributions
of flow lengths in the original Internet traffic based on the flow statistics formed from
sampled packet streams. Their main contribution is inferring flow numbers and lengths
of the original traffic that escaped thinning process completely. They reasoned that as
only sampled flow statistics are available (particularly in high-speed routers) some
statistical inference is needed to fully determine the flow characteristics of the original
unsampled traffic. Firstly, their work accurately predicted the distributions of flow
lengths shorter than a determined threshold N. They used Maximum Likelihood
Estimation (MLE) to estimate the full distribution of packet and byte lengths. MLE is
consistent because it becomes unbiased as the sample size increases. Likewise, in [14]
Duffield et al. replaced uniform sampling with size dependent sampling, in which an
object of size X is selected with some size dependent probability p. Hence, this
approach allows controlling the rate at which samples are produced. The main
motivation here was to perform accurate usage-sensitive billing from sampled flow
statistics. They showed that is not possible for a router to keep counters on all traffic
flows, either because they are too numerous, or because the set of flows is very
dynamic. Similarly, in [16] Duffield et al. determined resource usage, for both

construction and transmission of flow statistics, and showed how it depends on the
flow’s characteristics. Afterward they recovered some detailed statistical properties of
the original packet stream from the packet sampled flow statistics (e.g., the number and
lengths of flows).

Traffic Analysis Platform (TAP) was proposed in [12] to support detailed
information on network resource usage, such as the relative volumes of traffic using
different protocols, traffic matrices or the aggregate statistics of packet and byte
volumes and durations of user sessions. TAP relies on a distributed infrastructure and on
the use of sampling and aggregation at different measurement locations. Three entities
form the TAP architecture, namely Routers, Collectors/Aggregators and a Data
Warehouse. Router’s function is to accumulate NetFlow records on the traffic passing
through, which are exported to a local Collector. Collector/Aggregator’s functions are to
receive raw NetFlow records from the routers, aggregate them and create several higher-
level records. Then, these aggregates are sent to a central Data Warehouse, which stores
the aggregate data. A non-uniform sampling presented in [14] of the completed NetFlow
records is applied at the Collectors for controlling resource usage, based on the
empirical fact that flow sizes have a heavy tailed distribution. One should notice that
cascading down sampling reduces the information that flows through TAP. Therefore, it
is highly necessary to compensate such burden in order to get an unbiased estimate of
the properties in the original traffic. As we will present in Section III (Bootstrap),
Bootstrap is highly efficient in handling light and heavy-tailed probability distribution
functions. Thus, such technique could be applied to recover missing information
traversing its elements in TAP. Furthermore, Bootstrap procedures could be added to
the Collector or to the Data Warehouse in order to allow lessening the data volume
traveling through the network. In other words, one should also rely on the power of
Bootstrap to reduce storage volumes while maintaining the ability to recover statistic
properties of the original data from the sample.

3. Bootstrap Method
In this section we discuss techniques, which are applicable to a single, homogeneous
sample of data, denoted by nyy ,...,1 . The Bootstrap method follows the plug-in
principle, which states that given a parameter of interest � ����depending on CDF F,
estimate it by replacing F by its empirical counterpart obtained from the observed data.
This is referred to as the Bootstrap Estimate of that parameter.

Let the sample data be outcomes of Independent and Identically Distributed (IID)
random variables nYY ,...,1 whose Probability Density Function (PDF) and Cumulative
Distribution Function (CDF) we shall denote by f and F , respectively. The sample is
used to make inferences about a population characteristic, generically denoted by θ ,
using a statistic T whose value is t . We assume for the moment that the choice of T
has been made and that it is an estimate for θ , which we take to be a scalar.

There are two types of Bootstrap techniques: parametric and nonparametric
procedures. When we have a particular probability distribution model, with parameters
that fully determine f , such a model is termed parametric and statistical methods based
on this model are parametric methods. When no such probability distribution model is
specified, the statistical analysis is nonparametric, and it relies only on the fact that the

random variables jY are Independent and Identically Distributed. Even if there is a
plausible parametric model, a nonparametric analysis can still be useful to assess the
robustness of conclusions drawn from a parametric analysis [12]. An important role is
played in nonparametric analysis by the empirical distribution, which puts equal
probabilities 1−n at each sample value jy . The corresponding estimate of F is the

Empirical Distribution Function (EDF) F̂ . When there are repeated values in the
sample, as would often occur with discrete data, the EDF assigns probabilities
proportional to the sample frequencies at each distinct observed value y .

Several statistics could be derived from F̂ . In general, the statistic of interest t is
a symmetric function of nyy ,...,1 and it is not affected by reordering the data, depending

only on F̂ . This fact is frequently expressed simply as)ˆ(Fty = where (.)t is a
statistical function. Such statistical function is of vital importance in the nonparametric
case since it also defines the parameter of interest θ through)(Ft=θ . It corresponds to
the qualitative idea that θ is a characteristic of the population described by F . The
relationship between the estimate t and F̂ could usually be expressed as

)ˆ(Ftt = corresponding to the relation)(Ft=θ between the characteristic of the interest
and the underlying distribution. The statistical function (.)t defines both the parameter
and its estimate, but we shall use (.)t to represent the function, and t to represent the
estimate of θ based on the observed data nyy ,...,1 .

 Suppose that we have no parametric model, but that it is reasonable to assume

nYY ,...,1 are IID according to an unknown distribution function F . We use the EDF F̂

to estimate the unknown CDF F . We must use F̂ just as we would do in a parametric
model.

In the case of the sample mean, exact moments under sampling from the EDF are
easily found. For example,

yy
n

YE j

n

j

==�
=1

** 1
)(and

similarly { } 2

1

2*****)(
1

)(
1

)(var yy
n

YEYE
n

Y j

n

j

−=−= �
=

Applying simulation with the EDF is very straightforward. Since the EDF puts
equal probabilities on the original data values nyy ,...,1 each *Y is independently

sampled at random from those data values. Therefore the simulated sample **
1 ,..., nYY is

a random sample taken with replacement from the data. This simplicity is specific to the
case of a homogeneous sample, but many extensions are straightforward. This
resampling procedure is called the Nonparametric Bootstrap.

Figure 1 is a schematic diagram of the bootstrap method as it applies to one-
sample problems [3]. The real world is on the left frame, where an unknown
distribution F has generated the observed data),,(21 nyyyy �= by random sampling.

We have calculated a statistic of interest from y ,)(ˆ ys=θ , and wish to know

something about s'θ̂ statistical behavior (e.g., its standard error)ˆ(θFse).

In the Bootstrap world (right frame), the empirical distribution gives bootstrap
samples),,,(**

2
*
1

*
nyyyy �= by random sampling, from which we calculate bootstrap

replications of the statistic of interest,)(ˆ ** ys=θ . The main advantage of the bootstrap

world is that one could calculate as many replications of *θ̂ as one wish or at least as
many as one can afford.

REAL WORLD
Unknown Observed
Probability Random
Distribution Sample

Statistic of interest

)(ˆ

),...,,(21

ys

yyyyF n

=

↓
=→

θ

BOOTSTRAP WORLD

Empirical Bootstrap
Distribution Sample

Bootstrap Replication

)(ˆ

),...,,(ˆ

**

**
2

*
1

*

ys

yyyyF n

=

↓

=→

θ

Figure 1 - A schematic diagram of the bootstrap: one-sample problem.

In general, nonparametric Bootstrap will not work for serially dependent data.
This can be illustrated quite easily where the set nyy ,,1 � form one realization of a
correlated time series. For instance, consider the sample mean y and suppose that the

data come from a stationary series { }jY whose marginal variance is)var(2
jY=σ and

whose autocorrelations are),(hjjh YYcorr +=ρ for �,2,1=h . The nonparametric

Bootstrap estimate of the variance of Y is approximately ns /2 and for large n this
will approach n/2σ . However the actual variance of Y is

� −= .)1()(
2

hn

h

n
YVar ρσ

The sum here would often differ considerably from the unity. Therefore the
Bootstrap estimate of variance would be incorrect. The essence of the problem is that
simple Bootstrap sampling imposes mutual independence on the jY effectively

assuming their joint CDF is)(...)(1 nyFyF ×× and thus sampling from its estimate

)(ˆ...)(ˆ **
1 nyFyF ×× . This is a pitfall of the use of Bootstrap for dependent data. The

difficulty is that there is no obvious way to estimate a general joint density for nYY ,,1 �
given one realization.

We present now two examples to reveal the power of the Bootstrap method. We
utilized two dataset of length 10,000. The first (‘dataset 1’) was generated from a
Normal PDF with mean zero and variance one. The second dataset (‘dataset 2’) was
generated from a Weibull PDF with scale parameter 1.0 and shape parameter 1.5, which

corresponds to a probability model with mean 0.89 and variance 0.37. Later on, these
two datasets were deterministically sampled, drawing 1 to N samples (N = 1000, 100,
10). The resulting sampled data will have sample lengths of size n = 10, 100 and 1000.
We evaluated some metrics (mean and variance) for both sampled unsampled data.
Moreover, we also exhibit the Quantile-Plot.

Table 1 - Descriptive measurements (Mean) for ‘dataset 1’ and ‘dataset 2’.
1000,100,10=n and 1000,500=nb .

Dataset 1 Dataset 2 # of
Bootstrap
Replicas

Sample
Length

Mean Bias Mean Bias

10 -0.24 -0.25 1.03 0.14

100 -0.14 -0.15 1.02 0.13 500

1000 0.02 0.01 0.94 0.05

10 -0.25 -0.26 0.95 0.06

100 -0.06 -0.07 1.01 0.12 1000

1000 -0.03 -0.04 0.91 0.02

Table 2 - Descriptive measurements (Variance) for ‘dataset 2’ and ‘dataset 1’.
1000,100,10=n and 1000,500=nb .

Dataset 1 Dataset 2 # of
Bootstrap
Replicas

Sample
Length Variance Bias Variance Bias

10 0.74 -0.27 0.32 -0.05

100 1.22 0.21 0.47 0.10 500

1000 1.07 0.06 0.40 0.03

10 1.64 0.63 0.39 0.02

100 1.17 0.16 0.46 0.09 1000

1000 1.05 0.04 0.39 0.02

Table 1 and Table 2 present the mean, bias and variance for the three sample data
(1000,100,10=n) considering the number of Bootstrap replications (nb) as 500 and
1000. Our first impression for the results is particularly obvious. First, as the sample
length grows the mean and the variance become more accurate. For instance,
considering nb = 500, ‘dataset 1’ and n = 100, the mean of dataset is –0.14 with a bias
equal to –0.15 whereas for n = 1000 such mean achieve 0.02, but with a bias equal only
to 0.01. Second, with an overall observation on the bias, one should notice that an
increase in the sample length implies in the decrease of this metric for both two dataset
(‘dataset 1’ and ‘dataset 2’). For instance, considering 500=nb and n = 100, the bias
for the variance (dataset 2) is 0.10 whereas increasing sample length to 1000=n , such
bias reach 0.03. Analyzing the number of Bootstrap replications, we should depict
several important conclusions. We notice that as nb increases the results get better. For
instance, considering n = 100 and 500=nb in Table 2, for ‘dataset 1’ the bias of the

variance is 0.21 and increasing the number of bootstrap replications twice, such bias
decreases to 0.16. It is important to emphasize when the sample length is as low as 0.1%
the methodology could not be valuable for the determination of the statistics properties
of the original data. The conclusion that can be made from this experience is that,
indeed, experiments using the bootstrap method should be carefully undertaken.
Observing the variance and bias, one can control the degree of accuracy for any
datasets.

0 20 40 60 80 100

-2
-1

0
1

2
3

4

Index

qu
an

til
e

Original
n = 10
n = 100
n = 1000

Original
n = 10
n = 100
n = 1000

Original
n = 10
n = 100
n = 1000

Figure 2 – Quantile-Plot: ‘dataset 1’

Figure 2 and Figure 3 present the Quantile-Plots from the ‘dataset 1’ and ‘dataset
2’, respectively (nb= 500). One should notice that even considering the length of the
sampled data as low as 1% of the original data size, the technique could precisely mimic
the original quartiles for both distribution, Normal and Weibull.

0 20 40 60 80 100

0
1

2
3

4

Index

qu
an

til
e

Original
n = 10
n = 100
n = 1000

Original
n = 10
n = 100
n = 1000

Original
n = 10
n = 100
n = 1000

Figure 3 - Quantile-Plot – ‘dataset 2’

We repeated the simulation considering several PDF typically utilized in the
network traffic-modeling field (e.g., Pareto, Lognormal, Exponential etc.). In these
circumstances, Bootstrap generated estimates with comparable accuracy. However, we
will not present them here due to lack of space. Furthermore, if we sample 1 in each 10
realization from the original data (i.e., 10% of the original data size) the resulting
Quantile-Plot is indistinguishable.

4. Experimental Application and Results
The previous section presented a theoretical examination for the Bootstrap methodology
for two different classes of data (Normal and Weibull PDF). In this section we present a
numerical evaluation of the Bootstrap technique tackling some flow level statistics. Our
data for the experiments were comprised of flow and packet level traces. The passive
measurements (raw data) used to illustrate the Bootstrap Methodology came from a
large ISP (NetFlow records). We pre-processed such traces (flow level) in order to get
some metrics, namely the flow lengths and sizes.

Additionally, we analyzed real data from the interfaces BWY – (Columbia
University at Broadway), COS (Colorado State University) and TXS (Texas universities
GigaPoP at Rice University) available at the NLANR website. We transformed the
packet-level traces into the same metrics (flow length and size). Hence, results
presented in this section consider each register in the datasets as flow duration (in
seconds) or volume (in bytes). We achieved similar results for all packet-level traces
and also for the flow-level ones. Therefore, in the following paragraphs, we chose to
show only the results for the COS trace.

Table 3 and Table 4 present the first and second-order statistics and their
respective biases for three sample lengths considered (n = 15, 145, 1447, which
correspond to 0.1%, 1% and 10% of the original trace, respectively). These sample
lengths are the result of deterministic sampling performed in the pre-processed traces.
The original sample dataset comprised approximately 15000 individual (flow-level

metrics) records. We also kept the number bootstrap replications (500 and 1000) for
both ‘duration’ and ‘volume’ datasets.

Table 3 - Descriptive measurements for the ‘time’ dataset; n = 15, 145, 1447 and
1000,500=nb . Original Mean (for Duration=35.06s; for Volume=0.14MBytes)

Table 4 - Descriptive measurements for ‘volume’ dataset; n = 15, 145, 1447 and
1000,500=nb . Original Variance (for Duration =1.23e3; for Volume=2.23e12)

Per-flow
Duration Per-flow Volume

of
Bootstrap
Replicas

Sample
Length Variance

(x1e3) Bias Variance
(x1e10)

Bias

(x1e10)

15 1.17 -614 1.73 -223

145 1.23 -4.17 167 -56.3 500

1447 1.23 2.35 131 -92.7

15 1.22 -17.1 0.0816 -223

145 1.22 -6.42 173 -49.9 1000

1447 1.23 2.01 132 -91.0

In our experiments, we observed similar behavior to the simulation of section 2.
Recall that the mean value for per-flow metrics presented in Table 3 refers to the
average of flow duration and sizes. We could draw several conclusions from the results.
First, if we focus on bias, we could state that increasing the sample length implies in
diminishing the value of this metric for both datasets ‘duration’ and ‘volume’. For
instance, considering nb = 1000 and n = 145, the bias is 1.11. If we increase the sample
length to n = 1447, then the bias decreases to only 0.18. Second, as far as bootstrap
replications are concerned, we observed that as nb increases from 500 to 1000, the
results get better in most cases. For instance, for nb = 500 and n = 15, the bias for the
variance is –614. Increasing twice the number of bootstrap replications, it reaches only
2.35, as shown in Table 4.

Per-flow
Duration (s)

Per-flow

Volume (MBytes)
of

Bootstrap
Replicas

Sample
Length

Mean Bias Mean Bias

15 28.74 -6.32 0.01 -0.13

145 36.11 1.05 0.20 0.06 500
1447 35.23 0.16 0.15 0.01

15 29.99 -5.07 0.01 -0.13

145 36.17 1.11 0.22 0.07 1000
1447 35.24 0.18 0.14 0.00

Original

n = 15

n = 145

n = 1447

Original

n = 15

n = 145

n = 1447

Figure 4 - Empirical Cumulative Distribution Function - ‘duration’ (in seconds).

Figure 4 presents the ECDF from the ‘duration’ dataset (in seconds). We set the
number of Bootstrap replications (nb) to 500. One should observe that even with the
length of the sampled data as low as 1% of the original data size, the Bootstrap
technique could precisely mimic the original raw pre-processed data. Furthermore, if we
gather records through 1 in 10 sampling from the original data (i.e., 10% of the original
data size) the resulting ECDF remains indistinguishable. Figure 5 presents the ECDF for
the per-flow volume dataset. The number of Bootstrap replications (nb) was set to 500.
In the same way, the Bootstrap technique could accurately imitate the original pre-
processed data with only 10% of the records.

Original

n = 15

n = 145

n = 1447

Original

n = 15

n = 145

n = 1447

Figure 5 - Empirical Cumulative Distribution Function – Volume (in Mbytes).

Figure 6 shows the results of the processing times evaluation. First, we generated
a dataset with 100.000 samples from a Weibull PDF. Second, we reduced such dataset
to 0.1%, 1% and 10% (Na = 100, 1000, and 10.000 respectively) of the original using
uniform sampling. After that, we applied the bootstrap method varying the number of
replicas as indicated in the axis X (Nb = 10, 50, 100, 200, 300, 500, and 1000), and
calculated the mean processing times for a number of simulations. Clearly, as the
number of replicas increases, the execution time of the processing time increases. For a
small size sub-sampled set of data (i.e., 0.1% and 1% of the original dataset), the
processing time remains stable with a slight increase. In such case, the computational
time of the bootstrap technique is flat until 300 replicas and then starts to increase.
However, for the biggest sub-sampled set of data (i.e., 10% of the original dataset) the
processing time increases in an exponential manner. From this result, one can observe
that there is a clear tradeoff between the number of replicas and the accuracy of the
technique. Using the bootstrap method requires that experimenters should choose the
number of replicas and the uniform sampling rate carefully. However, despite the
exponential increase for large datasets, it is worth emphasizing that the processing time
remains in a suitable level (below 5 seconds), using a standard computer configuration
(2GHz processor with 256MB RAM) and a free software environment for statistical
computing and graphics, named R [21].

Processing Overhead

0.0

0.5
1.0

1.5
2.0

2.5

3.0
3.5

4.0
4.5

5.0

10 50 100 200 300 500 1000
Number of Bootstrap Replicas

Ti
m

e
(s

)

Na - 100

Na - 1000

Na - 10000

Figure 6 - Processing Time Evaluation

5. Concluding Remarks
Motivated by the concerns of network operators in large ISP backbones that point out to
an ever increasing huge amount of data produced by the passive measurement
infrastructure, this paper undertake the problem of reducing such data volume without
missing crucial statistical properties. We relied on the Nonparametric Bootstrap
technique, which is a resampling procedure. We verified by simulation the Bootstrap
performs well with a variety of probability functions.

Due to its flexibility, we propose Bootstrap to be used as a technique to reduce
data volume either in routers or in a post-processing element (such as the Aggregator in
TAP). In practice, any effort to gather flow statistics involves classifying individual

packets into flows. For flow-level sampling, all packets have to be put into flows before
they can be discarded. This is an apparent pitfall of using Bootstrap in routers as it could
probably involve more computation and memory. However, as indicated in [13], this
may not be a weakness if new flow classification techniques, such as Bloom filters [2],
can be applied as an alternative. Hence deploying Bootstrap in a post-processing
element is a viable solution to support reduction in data volume.

Applying the methodology in real network traffic measurements, this paper
showed that one could use Bootstrap to infer some general characteristics of the network
traffic distribution. In order to provide useful examples, we analyzed packet and flow-
level traces. This paper points out that after executing a short pre-processing in the raw
data and extracting some metrics from traces (e.g., flow size and duration), it is
necessary to store (in case of Data Warehouse) or transmit (in case of routers) only 10%
of the original sampled statistics, in order for Bootstrap to reconstruct its main
properties. Our results showed that we could precisely recover the ECDF with a low
computational overhead time.

There are several possibilities for future advances. In particular, we would like to
analyze longer traces covering at least one week of flow information. Another line of
exploration is the combination of the Bootstrap methodology with the size dependent
sampling [15] or inverted sampling [13] techniques.

ACKNOWLEDGMENTS

The authors thank CAPES (BEX0016/04-7) and CNPq for financial support. We
also would like to thank Guthemberg Silva for assistance with some of the datasets.

6. References

[1] A. C. Davison & D. V. Hinkley. “Bootstrap Methods and Their Application”. New
York: Cambridge University Press, 1997.

[2] A. Kumar, J. Xu, L. Li, and J. Wang, “Space-Code Bloom Filter For Efficient
Traffic Flow Measurement" in ACM SIGCOMM Internet Measurement
Conference, 2003.

[3] B. Efron and R. J. Tibshirani. “An Introduction to the Bootstrap”. New York:
Champman & Hall, 1993.

[4] C. Estan and G. Varghese. “New Directions in Traffic Measurement and
Accounting”, ACM SIGCOMM 2002, Pittsburgh, Pennsylvania, USA.

[5] Chuanhai Liu, S. Vander Wiel and Jiahai Yang. “A Nonstationary Traffic Train
Model for Fine Scale Inference from Coarse Scale Counts”, IEEE Journal on
Selected Areas in Communications, Vol. 21, Aug. 2003, Pg. 895 - 907.

[6] CISCO NetFlow, http://www.cisco.com /warp /public /732 /Tech /nmp /netflow
/index.shtml – accessed April 5, 2005.

[7] Halbert White and Jeffrey Racine. “Statistical Inference, The Bootstrap, and
Neural-Network Modeling with Application to Foreign Exchange Rates”. IEEE
Transactions on Neural Networks, Vol. 12, No. 4, July 2001. pg. 657-671.

[8] Hwa-Tung Ong and A.M. Zoubir. “Bootstrap-Based Detection of Signals With
Unknown Parameters in Unspecified Correlated Interference”, IEEE Transactions
on Signal Processing, Vol. 51, Issue: 1, Jan. 2003.

[9] I. Buvat.; C. Riddell. “A Bootstrap Approach for Analyzing the Statistical
Properties of SPECT and PET Images”. IEEE Nuclear Science Symposium
Conference Record, Vol. 3, Nov. 2001.

[10] K. Papagiannaki, et al., "Long-Term Forecasting of Internet Backbone Traffic:
Observations and Initial Models". IEEE Infocom. San Francisco. March 2003.

[11] K. Papayanaki, N. Taft, C. Diot. "Impact of Flow Dynamics on Traffic Engineering
Design Principles". IEEE Infocom 2004. 7-11 March. Hong-Kong.

[12] N. Duffield & C. Lund. “Predicting Resource Usage and Estimation Accuracy in an
IP Flow Measurement Collection Infrastructure”. ACM Internet Measurement
Conference, October 27–29, 2003, Miami Beach, Florida, USA.

[13] N. Hohn and D. Veitch. “Inverting Sampled Traffic”, ACM Internet Measurement
Conference - IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.

[14] N.G. Duffield, C. Lund, M. Thorup, “Charging from sampled network usage”,
ACM SIGCOMM Internet Measurement Workshop San Francisco, CA, 2001

[15] N.G. Duffield, C. Lund, M. Thorup, “Estimating Flow Distributions From Sampled
Flow Statistics”, ACM SIGCOMM, Karlsruhe, Germany, 2003.

[16] N.G. Duffield, C. Lund, M. Thorup, “Properties and Prediction of Flow Statistics
from Sampled Packet Streams”, ACM SIGCOMM Internet Measurement
Workshop 2002, Marseille, France, November 6-8, 2002

[17] NLANR Measurement and Network Analysis Group, http://moat.nlanr.net/,
accessed April 5, 2005.

[18] Ratul Mahajan et al., “Controlling High Bandwidth Aggregates in the Network”,
ACM SIGCOMM CCR, Volume 32 , Issue 3 (July 2002), Pg 62–73.

[19] Skylar Lei and M.R. Smith. “Evaluation of Several Nonparametric Bootstrap
Methods to Estimate Confidence Intervals for Software Metrics”. IEEE
Transactions on Software Engineering, Vol. 29, Issue: 11, Nov. 2003.

[20] Stenio Fernandes, Tatiene Correia, Carlos Kamienski, and Djamel Sadok,
“Estimating Properties of Flow Statistics using Bootstrap”, 12th IEEE / ACM
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Netherlands, Oct. 2004.

[21] The R Project for Statistical Computing, http://www.r-project.org/, accessed April
05.

