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Abstract. This paper investigates whether performance of WDM optical switching 
may be improved by traffic shaping. Heavy-tailed Pareto traffic transmission split 
into different wavelengths, according to the holding time, is here proposed as a 
means of traffic shaping aimed at the minimization of mean delay, jitter, or 
blocking-time probability in optical burst switching. It is found that burst 
segregation across n wavelengths (n x M/PT/1) may outperform classical WDM 
(M/P/n) systems as far as overall residual-service time is concerned. The 
existence of optimal segregation thresholds is analytically demonstrated. Results 
for the whole traffic show one order of magnitude reduction in mean delay, while 
jitter and blocking-time are, respectively, two and three orders of magnitude 
better than the classic WDM non-segregated approach. 

 

1. Introduction 
The evolution of circuit switched optical networks will use Optical Burst Switching (OBS) 
[Qiao1999] as the most likely step in the direction of packet switched architectural 
paradigm. One of the main goals of OBS is to avoid the downsides of circuit switched 
systems such as lightpath setup/teardown delay, bandwidth over-provisioning, and complex 
control plane. OBS may provide optical networks with the agility and granularity needed to 
better match spatial and temporal dynamics of Internet Protocol (IP) traffic. On one hand, 
highly variable and time-correlated IP traffic [Leland1994] has deep implications for OBS 
design. The actual impact depends on how the IP packets are gathered to build up optical 
burst payloads [Necker2003] and how optical buffering is employed (if adopted at all) in 
core nodes [Buchta2003]. On the other hand, the end-to-end time-delay experienced by IP-
based applications will be impacted by OBS network performance. Indeed, the strategies 
chosen for burst assembly as well as burst buffering are again key issues but now from the 
point of view of OBS clients. Real-time applications (such as voice and interactive video 
conference) are extremely sensitive to delay and jitter that are introduced in the packet 
stream [Giroux1999]. In addition, non-real time transport protocols, such as Transmission 
Control Protocol (TCP), rely on the first and second order statistics collected from (round-
trip time) end-to-end delay to perform flow control [Tanenbaum2003]. Therefore, efforts 
must be put into the minimization of time-delay features at edge nodes as well as core 
nodes to, simultaneously, meet efficiency in OBS network design, high throughput to bulk 
traffic, and Quality of Service (QoS) targets of premium clients. 



 This paper addresses the residual-service time at queues across the network as it 
assumes the model “blocked calls delayed” to handle contention. It has a twofold 
contribution - to bring evidences that residual-service time of intersected elements lies at 
the root of waiting time statistics and demonstrates that traffic might be segregated, 
according to holding time, in order to reduce the effects of heavytailness in queues. While 
the former gives valuable insights into the role of the diverse factor in queuing dynamics, 
the latter analytically investigates how to take advantage of path diversity allowed by 
wavelength division multiplexing (WDM) systems. The paper is organized as follows. The 
context of application is presented in Section 2. The basic modeling is given in Section 3 
while metrics for comparing segregated and non-segregated approaches over WDM are 
presented in Section 4. The segregation policies investigated in this paper are introduced in 
Section 5. Results and discussion on the their implications on OBS network design are 
given in Section 6. Finally, Conclusion brings final remarks and future work. 

2. Optical Burst Switching and QoS 
An illustration for the OBS network architecture is given in Fig. 1. Edge nodes gather 
traffic from client networks (e.g. IP) and assemble their packets in proper forward 
equivalence classes (FECs) buffers according to edge node destination. Another task 
assigned to edge node is to produce signaling for OBS routers (core nodes). These header-
like messages should include, among other information, the burst length. They are sent, 
some time ahead of the burst, through control channels along the path chosen for the burst 
to reach its destination (another edge node). OBS core nodes are plain optical switching 
matrices that might include optical delay-lines for dealing with contention. Therefore, 
connection pattern to be set is the result of signaling received on-line through control units 
connected to control channels. The burst itself follows the signaling message (after offset-
time) without waiting for acknowledgement, i.e. whether the connections were successfully 
established or not. Note that this eliminates the setup/teardown delay of circuit switching 
but QoS will be impacted due to the increase the likelihood of blocking in one of core 
nodes along the route. The investigation into QoS awareness for OBS can be divided into 
burst assembly methods at edge nodes, resource reservation techniques, and forms for 
reducing burst blocking probability due to contention in core nodes. 
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Figure 1. Illustration for Burst switching network [Morato2003]. 



 The choice for the assembly technique is closely related to the kind of traffic being 
transported. Timer-based algorithms suit time-constrained traffic as a maximum delay for 
assembling a burst is set; regardless of payload size produced. On the other hand, the 
transport of bulk traffic has no such constraint. Then bursts are only released when 
accumulated traffic achieves a minimum payload size. From OBS buffer design standpoint, 
however, it is shown that self-similarity is transferred from IP incoming traffic to the burst 
stream in spite of the assembly method employed [Necker2003]. Furthermore, even 
approaches such as “files-over-bursts”, which are designed to reduce control packets 
overhead, lead to Pareto-distributed burst sizes [Morato2003]. Implications of these results 
for OBS performance may be realized as highly variable delays experienced by bursts when 
crossing just few nodes and failed attempts to reduce contention through fiber delay lines. 
Note that offset time based reservation approach to QoS [Yoo2000] might also be severely 
impacted by unpredictable skew induced through highly variable delays on bursts.  

 In summary, traffic statistic emerges as a key issue in QoS for burst switching as 
much as it is in IP networks. It is argued in this paper that problem is not the heavytailness 
alone but the even heavier tail statistics of residual-service time of intersected bursts. It is 
been previously shown in [Waldman 2004] that multiple servers (WDM) may significantly 
reduce that influence; even bringing first moments of unbounded Pareto distributed bursts 
down to finite figures through the use of a minimum number of wavelengths. Moreover, the 
role of limiting the length of bursts was unveiled as an efficient way to improve delay 
statistics. This paper, in its own right, pinpoints the role of residual-service time in waiting 
time statistics and takes further the improvements suggesting the use of traffic segregation 
across wavelengths. 

3. Basic Modeling 
The main goal here is the comparison between delay statistics in queuing systems M/P/n 
(Markovian arrival, Pareto service, and n servers) and n of M/PT/1 (Markovian arrival, 
truncated Pareto, and one server). In others words, the performance of non-segregated 
approach system is checked against the segragated traffic over the same number of WDM 
channels. The focus is on residual-service time. Bursts are assumed independently and 
identically distributed (i.i.d.) events. They arrive following a random variable A, in 
intervals exponentially distributed given by arrival rate λ, so that E[A]=1/λ. The holding 
time is represented by the random variable T. It is assumed pT=Prob{T≥t} follows Pareto 
distribution in (1), where α is the shape factor, tmin and tmax are, respectively, the minimum 
and maximum bursts length allowed.  
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The kth moment for T is, therefore, obtained as stated in (2)-(4): 

( ) 








−

−

−
==

−

∫ α

α

α

α

r
rtdtttpTE

t

t
T 1

1
1

][
1

min

max

min

    (2) 



( )
max

min

2
2 2 2

min
1[ ]

2 1

t

T
t

rE T t p t dt t
r

α

α

α

α

− −
= =  

− − 
∫                                        (3) 

         ( ) 








−

−

−
==

−

∫ α

α

α

α

r
rt

k
dttptTE

k
k

t

t
T

kk

1
1][ min

max

min

                                       (4) 

3.1. Residual-service time seen by arriving bursts under FIFO scheduling 
Arriving bursts may either gain immediate access to service or intersect another burst being 
served. In the latter case, there may also be a backlog ahead of them, as illustrated in Fig. 2. 
The random variable B represents server occupation and, therefore, its events may only 
assume two values, i.e. b∈{0,1}, with probabilities (1-ρ) and ρ, respectively, with 
ρ=E[T]/E[A]=min(λE[T],1). 
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Figure 2. Arrival of a burst under FIFO scheduling. 

 Contrary to intuition, the intersected burst at the moment of arrival (darker filling in 
Fig. 2) does not follow T. Actually, longer bursts are more likely to be intersected than 
shorter ones. In other words, it is the random variable T sampled at random times rather 
than samples taken randomly from the sample space; that would result in T itself. The 
residual–service time seen from intersecting burst standpoint in Fig. 2 is represented by 
random variable Z, with p.d.f. presented in (5) [Waldman 2004]. 
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 It is clear that pZ(z\b=0)=0 as no residual-service time is seen by a burst arriving at a 
moment the server is not busy. Thus, pZ(z)=pZ(z\b=1)ρ. Notice that the kth moment from Z 
can be related to the (k+1)th moment of T, as it is stated in (6)-(8). 
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The situation encountered by the arrival is the accumulation of q burst (see Fig. 2), 

each of which following the distribution of Ti, awaiting service on top of residual-service 
time. The p.d.f. for waiting time for service (represented by random variable W) could be 
described as in (9).  

 

1 qW Z T 1 T qp (w \ b 1) p (z \ b 1) p (t \ b 1) p (t \ b 1)= = = + = + + =�                                (9) 

 
Provided that bursts are i.i.d. with p.d.f. pT(t), independent to B, and that backlog is 
unbounded, the kth moment for pW(t) with ρ<1 can be found [Takács1962] 
[Kleinrock1975]. After arithmetical manipulations, a recursive expression using moments 
from Z is yielded in (10). 
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It is now evident the importance of residual-service times Z over the moments of W. 
Consequently, one should expected that efforts to reduce moments of Z will be directly 
reflected in the statistics for waiting time in queue. For k=1, Eq. (10) turns into the well-
known Pollaczek-Khintchine mean delay for M/G/1. It is also noteworthy that (10) implies 
(11). 
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k kE Z E W ρ     (11) 

Indeed, it is shown that Eq.(11) holds even for GI/GI/1 systems, i.e. general-but 
independent-for both arrival and service statistics [Scheller-Wolf2000]. This may be a 
strong indication of predominance of service over arrival statistics in queuing stability as 
far as waiting time goes. 

3.2 Multiserver scenario (WDM) 
Let Z1, Z2, ..., Zn in Fig. 3 be the residual-service times of the n processes intersected by the 
new arrival. The residual-service time for one out n busy wavelengths to be released under 
scheduling policy “first available server”, will then be as in (12). 
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Figure 3.  Residual-service time seen by arriving bursts in multiserver scenario. 

Let { } { }( )1{ } \ 1, , 1nn
Zp z b b= =�  be the p.d.f. for residual-service time under first available 

server scheduling given that arriving bursts finding all n servers busy [Waldman2004].  
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Let b{i}=1 stand for the following event: i-th wavelength busy. The total load ρ{n}, which is 
no longer limited to 1 but to n instead, is evenly distributed across n wavelengths. Provided 
that any b{i}

≠1 leads {n}
Zp (z) to zero, then ( )

n{n} {n} {1} {n} {n} 1
Z Zp (z) p (z \ b 1, , b 1) n−

= = = ρ�  is 
found. The modeling for queuing with multiple servers is not as simple as in (9) and it is 
not possible, to the best of our knowledge, to reach closed expressions such as (10) to 
account for waiting time moments of W in M/G/n. Nevertheless, residual-service time plays 
a central role in waiting time statistics for single server and multiserver alike. It is shown in 
[Scheller-Wolf2000] that for GI/GI/n Eq. (11) remains valid to ρ{n}<(n-1), as the load per 
server (ρ) stay bellow 1. Furthermore, under lightly loaded servers, i.e. ρ{n}<1, finite mean 
waiting time becomes viable for lower and lower moments of T as n approaches infinity in 
(14). 
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4. Metrics 
The scenarios investigated consider wavelengths at full use, i.e. each server is loaded at 
ρ→1. This provides a common framework to compare performance of segregated against 
non-segregated approaches. Actually, network operators standing point could be well 
represented by this framework since they seek best use of deployed resources. As a result, 
the strategy adopted here is to provide comparisons using solely the residual-service time. 
In doing so, queuing length and the effects of load on waiting time are ruled out as causes 
for differences in performances of segregated vs. non-segregated systems. This, however, 
does not mean that such effects are unimportant but only that they do not lie at the root of 
waiting time moments (see Eq. (10)). In addition, they are not quantifiable for ρ→1 and an 
analytical framework encompassing them all, at this stage of investigation, would be rather 
complex and it would, perhaps, fail to provide conclusive outcomes. 



The metrics employed here are overall traffic average delay, delay variance, and 
blocking time probability. The first two metrics are well known among real-time and 
interactive services as statistical descriptors for QoS [Giroux1999]. Blocking time 
probability [Morato2003], in contrast, imposes a hard, i.e. deterministic, deadline to be met 
by individual bursts, e.g. those bearing critical mission data, instead of usual statistical 
bounds given by the former two metrics. The size of playout buffers, in real time 
applications over the Internet, is another illustration for how such deterministic limit is 
imposed on traffic. Packets experiencing delays above the playout buffer size are discarded. 
It is important to stress that throughput of bulk traffic is affected by a combination of the 
metrics. Widespread a non-real time protocol, i.e. TCP, relies on delay statistics to 
adaptively tune the timeout, which trigger flow control mechanisms [Tanenbaum2003]. As 
far as burst switching design is concerned, delay experienced by bursts should be kept as 
close as possible to blocking time so that the length fiber delay lines (used as buffers to deal 
with contention) are maintained at a minimum [Yoo2000].  The metrics described above 
are now presented for both (non-segregated) WDM and segregated traffic approaches.  

4.1. (Non-segregated) WDM Approach 
A pool (with n wavelengths) serves the incoming traffic. Observe in Fig. 4 that pT(t) is 
present in all n wavelengths. 
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Figure 4. Non-segregated WDM traffic. 

The metrics for WDM approach are calculated through straightforward expressions 
given in (15)-(17), which stand, respectively, for average delay, variance and blocking time 
probability.  
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Note that (17) also depends on the deadline (tth) set and it is, as far as a single-hop and 
residual-service time alone are concerned, the probability of bursts experiencing delays 
exceeding tth.    



4.2. Segregated Traffic Approach 
In contrast to (non-segregated) WDM scheme, each wavelength here bears different slices 
taken from pT(t). As it is illustrated in Fig. 5, the incoming traffic goes through a classifier 
and this element segregates burst according to its length. 
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Figure 5. Segregated WDM traffic. 

The metrics for segregated traffic, in order to allow direct comparison with (non-
segregated) WDM, take the overall delay and its variance as well as the weighted blocking 
time probability. However, the traffic on each wavelength derives from (1) and the 
residual-service time from (13) using the set of definitions given in (18). 
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 The vector containing the maximum holding time for wavelengths 1 to n-1 is 
denominated Tmax. The last wavelength receives tmax from the incoming traffic itself. The 
overall mean delay is then stated in (19), which for ρ →1 yields (20). 
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The overall variance is presented in (21) and in (22) is its particular case when ρ →1. 
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Finally, (23) presents the weighted time blocking probability while (24) brings the 
expression for the case under investigation in this paper (ρ →1). 
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5. Burst Length Segregation Policies 
Choosing Tmax properly is the crucial point now. Two segregation strategies are 
investigated, namely, logarithmical and optimal. While the former is based on uniform ratio 
between tmin and tmax for all wavelengths, the latter provides the upper bound, i.e the best 
attainable performance for the segregated approach. 

5.1. Logarithmical Segregation 
In this case the whole range r of the incoming traffic is divided into n segments (ri is 
constant) as described in (25). 

n
i rr =  for i = 1, 2, ... , n.       (25) 

From (18) Tmax is readily found given ri.      

5.2. Optimal Segregation 

It is possible to find optimum Tmax but only for a single metric. Therefore, there is a }{
max
µT  

for overall mean, a {var}
maxT  for overall variance, and a }{

max
bPT for weighted blocking time 

probability. Gradient method is here used for minimization of each metric and it can be 
expressed as in (26) for mean, (27) for variance, and (28) for time blocking probability. 
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6. Results 
Results are presented for shaping factor α=1.2 for incoming traffic burst lengths. This 
shape factor is a representative case for Internet traffic [Crovella1997] and it is assumed 
that little change is seen after edge nodes build up optical bursts [Necker2003]. Fig. 6 
presents results for logarithmical burst segregation against (non-segregated) WDM for the 
same number n of wavelengths. There are also results from an ad hoc numerical simulator 
for validation of analytical results. The good agreement between numerical and analytical 
results is clear in Fig. 6(a) and Fig. 6(b). Nevertheless, results are slightly skewed only for 
variance in the WDM approach with tmax that may reach 10000 times tmin (i.e. r =10-4). This 
difference is basically down to constraints of the numerical simulation in capturing (higher 
order) statistics of such highly variable traffic using a finite number of events [Gross2002].  
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                                             (a)                                                                           (b) 

Figure 6. Residual-service time for log. segregation. (a) Mean and (b) Variance . 

The most important outcome from Fig. 6 is the reduction in the overall mean 
residual delay as well as its variance when using n=2. Nearly ten-fold reduction is seen in 
variance (Fig. 6(b)) while average delay is decreased to half of its (non-segregated) WDM 
counterpart with two wavelengths for r=10-4. On the other hand, the WDM approach mostly 
outperforms systems with segregated traffic elsewhere. Separating the incoming traffic into 
logarithmically sized limits is just a first approach to the problem. One should actually seek 
out the maximum improvement by segregating traffic across wavelengths via optimal 
segregation thresholds.  

Results in Fig. 7 give the maximum attainable improvements for the segregated 
traffic approach against the number of wavelength in use. The best improvement is found at 
n=2, as in logarithmical segregation, but overall delay and variance are improved for other 
values of n. For instance, for r=10-4 the variance of optimally segregated traffic is still 
slightly better than the WDM approach for n=3 while with logarithmical splitting in Fig. 
6(b) only allow to match WDM performance. It is evident from Fig. 7(a) and Fig. 7(b) that 
the higher the range of burst variation, the more advantageous is the use of traffic 
segregation. One order of magnitude delay reduction is found for incoming traffic with 
r=10-6 in Fig. 7(a), while variance in Fig. 7(b) is decreased nearly 100 times compared with 
WDM for two wavelengths.  
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      (a)                                                                              (b) 

Figure 7. Residual-service time for optimal segregation. (a) Mean and (b) Variance. 

One should bear in mind that Tmax allowing the best results for the overall mean 
delay is diverse from the one that minimizes the variance. Results obtained for 
logarithmical segregation, on the other hand, uses a single Tmax. Fig. 8 illustrates the 
optimum segregation points under n=2, i.e. Tmax = {tmax1}, for overall mean and variance. 
Indeed, quite different optimal points are obtained depending on whether minimization is 
aimed at mean or variance. For example, with r =10-6 in Fig. 8(a) yields tmax1=512.86 as the 
best choice to reduce mean, which contrast with tmax1=5980.5 in Fig. 8(b) for achieving the 
least possible variance in the overall traffic under the same conditions. 
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Figure 8. Residual-service time showing optimal Tmax . (a) Mean and (b) Variance. 

Note that logarithmical segregation with n=2 would use tmax1 =10 (for r=10-2), 100 (for 
r=10-4), and 1000 (for r=10-6). This result helps explain the good performance of 
logarithmical segregation found in Fig. 6. For logarithmical segregation, Tmax presented 
above falls in between optimum values obtained for mean and variance in Fig. 8. More 
elaborated trade-off solutions for Tmax, i.e. those properly balancing mean and variance in 
order to meet particular performance targets of applications using OBS networks, can be 
found by merging (26) and (27) into (29). 

 



( ) ( )max max, , 0SGR SGRn T Var n Tµ β ∇ + =      (29) 

where β is the parameter gauging the relative importance of the two objectives. Taking 
values of β→ 0 one can represent the predominance of mean while with β→∞ is used to 
express that the major concern is the traffic overall variance. As a result, it should be 
expected the convergence of Tmax → }{

max
µT  and Tmax → {var}

maxT , respectively, for these 
extreme values for β. 
 The last results presented here concern blocking time (Pb) performance. Recall that 
this metric assesses the probability of bursts arriving after a given timeout (represented by 
tth). It is then clear that Pb→0 as tth→tmax. This means that all bursts meet the deadline since 
no intersected burst will delay the next burst for more than tmax. Provided two wavelengths 
are available, Fig 9 shows the time blocking probability Pb against tth for (a) r =10-2  (b) r 
=10-4  (c) r =10-6. In addition, Fig.9(d) presents tmax1=topt found for each value of deadline 
(tth). 
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Figure 9. Blocking time probability for optimally segregated traffic with two 
wavelengths. (a) r=10-2. (b) r=10-4 . (c) r=10-6 . (d) Optimal segregation against traffic 
deadline. 
 



 On the whole, similar trends for the relationship between improvements brought by 
traffic segregation and the maximum allowed bursts lengths are once more observed. For 
instance, while modest results are obtained for r =10-2 in Fig. 9(a), it is possible to 
significantly reduce Pb from 10-3 to 10-6 when tth is set at 105 in Fig. 9(c). Bursts differing in  
as much as six orders of magnitude, i.e. r=10-6, benefit more from traffic segregation than 
those differing in only one hundred times. However, these results should be interpreted 
along with curves in Fig. 9(d). The optimal values for tmax1 actually point out to the fact that 
tmax1→tth for deadlines set beyond 102. This means that the first wavelength should bear the 
traffic meeting the deadline while the second carries traffic that is very likely breach it. 
Consequently, the second wavelength is solely used by traffic that most of it will be 
discarded at the receiver end. Indeed, the optimal traffic segregation in Fig. 9 perhaps 
suggests to network designers that the income traffic with deadlines beyond 102 should be 
truncated at tth and carried on a single wavelength as the best engineering solution to the 
problem of OBS supporting traffic with hard deadlines. Nevertheless, for stringent 
deadlines (e.g. tth=102) there is use for traffic segregation with one and two order of 
magnitude improvements for over all performance, as seen in Fig. 9(b) and (c), 
respectively.  

7. Conclusion 
This paper presented an analytical approach (along with numerical validation) aimed at best 
use of WDM resources. Traffic transported separately, according to its holding time, was 
compared with highly variable demands placed upon a pool with n wavelengths. Traffic 
segregation proved to be an advantageous design strategy from the standpoint of reduction 
of residual-service times. Under realistic traffic assumption (α=1.2), benefits start to 
emerge as soon as the maximum allowed holding time exceeds the shortest one by two 
orders of magnitude. The larger is the ratio between them, the more prominent are the 
improvements brought by segregation. Particularly, the best results come into view at n=2. 
Significant reductions, of one and two orders of magnitude, were found for mean and 
variance, respectively, with r=10-6. Furthermore, time blocking probability, under same 
conditions, may reach impressive figures around one thousand times better than non-
segregated WDM.  

 This paper highlights the fact that residual-service time is the most important part of 
the problem of queuing under heavy-tailed service so that enhancements found in delay 
statistics are likely to prevail the test of realistic traffic load scenarios. Although it managed 
to fairly contrast two different approaches, one should bear in mind that comparisons were 
carried out under fully loaded wavelengths. Queuing system are not stable at this point. 
Improvement figures may change as sound traffic loads are used. For instance, notice that a 
factor (ρ{n}/n)n multiplies the residual-service time for (non-segregated) WDM approach. 
This may lessen the differences found once after segregation wavelengths may become 
unevenly loaded. On the other hand, segregation allows fairness improvements and may 
accept a convenient incoming traffic shape in order to set wavelength traffic loads 
accordingly. Therefore, finding out the proper traffic load for stable queues is an issue in its 
own right and future investigations will tackle that along with the development of new 
performance metrics.  
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