
The Implementation of a QoS-based Adaptive Distributed
System Model for Fault Tolerance

Raimundo Macêdo1, Sérgio Gorender1, Paulo Cunha2

1Laboratório de Sistemas Distribuídos (LaSiD), Departamento de Ciência
da Computação (DCC), Universidade Federal da Bahia - UFBA

Salvador, Bahia

2Centro de Informática, Universidade Federal de Pernambuco - UFPE
Recife, Pernambuco

{macedo|gorender}@ufba.br prfc@ci.ufpe.br

Abstract. The capability of dynamically adapting to distinct run-time condi-
tions is an important issue when designing distributed systems where negotiated
quality of service (QoS) cannot always be delivered between processes. Provid-
ing fault-tolerance for such dynamic environments is a challenging task. Con-
sidering such a context, this paper proposes an implementation of an adaptive
model for fault-tolerant distributed computing, composed of distributed failure
and state detectors (for monitoring available QoS and process failures, respec-
tively). Our implementation relies on a QoS mechanism, that we also defined
and implemented, called the QoS provider (QoSP). Thanks to the modularity di-
mension of the QoSP, porting the model implementation to a given environment
requires only to implement the QoSP functions. The developed system is able
to react to the changes in the execution environment, dynamically adapting it
to the QoS conditions available at runtime, and it is particularly powerful in
the sense that it allows for processes with distinct QoS views to continue their
computations and cooperate in a safe, fault tolerant manner.
Keywords: Adaptability, Asynchronous/synchronous distributed system, Con-
sensus, Distributed computing model, Fault tolerance, Quality of service

1. Introduction

Distributed systems are composed of processes, usually spread over a set of networked
sites, which communicate via message passing to offer services to upper layer applica-
tions. As there are no share states accessible by processes (for instance, a shared memory
or global clock), a major difficulty a system designer has to cope with in these systems
is the capture of consistent global states (from which decisions can be taken in order to
guarantee a safe progress of the upper layer applications). To study and investigate what
(and how) can be done in these systems, two distributed computing models have received
a lot of attention, namely, thesynchronousmodel and theasynchronousmodel.

The synchronous distributed computing model provides processes with bounds on
processing time and message transfer delay, and the asynchronous model is character-
ized by the absence of time bounds (that is why this model is sometimes calledtime-free
model). Synchronous systems are attractive because they allow system designers to solve
a lot of problems. The price that has to be paid is the a priori knowledge on time bounds.

If they are violated, the upper layer protocols can be unable to still guarantee their safety
property. As they do not rely on explicit time bounds, asynchronous systems do not have
this drawback. Unfortunately, they have another one, namely, some basic problems are
impossible to solve in asynchronous systems. The most famous is the consensus problem,
that has no deterministic solution when even a single process can crash [8]. Thecon-
sensusproblem is, however, a very important building block to implement fault tolerant
distributed systems (processes must come to an agreement on an decision value despite
of process failures). For instance, it can be used to implementvirtual synchronyon group
communication [12] and to solve theatomic broadcastproblem [3]. This impossibility in
the asynchronous model has motivated researchers to find distributed computing models,
weaker than the synchronous model but stronger than the asynchronous model, in which
consensus can be solved.

In practice, systems are neither fully synchronous, nor fully asynchronous. Most
of the time they behave synchronously, but can have “unstable” periods during which
they behave in an anarchic way. Moreover, there are now QoS architectures that allow
processes to dynamically negotiate the quality of service of their communication chan-
nels [16, 18, 1]. These observations motivated us the design of a hybrid and adaptive
distributed computing model (combining characteristics of both, synchronous and asyn-
chrounous models), that does its best to provide the processes with safe information on
the current state of the other processes [13].

Our model is time-free in the sense that processes are not provided with time
bounds guaranteed by the lower system layer. Each processpi is provided with three
sets denoteddowni, livei anduncertaini. These sets, that are always a partition of the
whole set of processes, define the viewpi has of the state of the other processes. More
precisely, ifpk ∈ downi, thenpi knows thatpk has crashed; whenpk ∈ livei, thenpi

can considerpk as being alive; finally, whenpk ∈ uncertaini, pi has no information on
the current state ofpk. These sets can evolve in time, and can have different values for
different processes. For example, it is possible that (due to the fact that some quality
of service can no longer be ensured) the viewpi has onpk be degraded in the sense
that the model movespk from livei to uncertaini. It is also possible that (due to the
fact that a stable period lasts “long enough”) the viewpi has onpk be upgraded in the
sense that the model movespk from uncertaini to livei. So, the model is able to benefit
from time windows to transform timeliness properties (currently satisfied by the lower
layer) into time-free properties (expressed on the previous sets) which can be used by
upper layer protocols. Interestingly, this model includes the synchronous model and the
asynchronous model as particular cases. The synchronous model corresponds to the case
where, for all the processespi, the setsuncertaini are always empty. The asynchronous
model corresponds to the case where, for all the processespi, the setsuncertaini always
include all processes.

It is important to notice that our approach is orthogonal to the failure detector
(FD) approach [3]. It aims at benefiting from the fact that systems are built on QoS
architectures, thereby allowing a process not to always consider the other processes as
being in an “uncertain” state. As the proposed model includes the asynchronous model,
it is still necessary to enrich it with appropriate mechanism to solve problems that are
impossible to solve in pure time-free systems. To illustrate this point and evaluate the

proposed approach, we developed an adaptive consensus protocol, which is based on the
fact that each processpi is provided with (1) three setsdowni, livei anduncertaini with
the previously defined semantics, and (2) an appropriate failure detector module (namely,
3S). While 3S-based consensus protocols in asynchronous systems requiref < n/2,
the proposed3S-based protocol allows bypassing this bound when few processes are in
theuncertaini sets during the protocol execution [13].

Contributions of this paper The main contribution of this paper is to show how a
fault tolerant application can benefit from execution environments with QoS facilities
to adjust its behaviour to dynamically modifying run-time conditions, without affecting
its correct execution and improving its ability to detect process crashes when possible.
To our best knowledge, no previous work explored QoS facilities in such context. In
particular, we show how to implement the adaptive distributed computing model, above-
described, and introduced by us in [13], on top of a system with typical QoS facilities.
To accomplish this objective, we define a new QoS support mechanism to interface the
fault tolerant applications, named the QoS Provider (QoSP), and introduce two adaptive
mechanisms that assess existing QoS conditions and update process states, accordingly
(the adaptive state and failure detectors). Additionally, the paper shows experimental
data from a Java/Linux prototype.

Related work Fault tolerance for distributed systems has been addressed in several
ways, according to the system and fault models assumed for the target environment. Usu-
ally, once defined a given system and fault model, the algorithms to handle fault tolerance
are fixed for such model prior to execution. Although such a static configuration already
provides a degree of adaptivity, in some situations it is desired that the fault tolerant mech-
anism be itself adaptive.

The timed asynchronousmodel [5] considers asynchronous processes equipped
with physical clocks. Thetimely computing base[20] provides services built on top of an
underlying dedicated synchronous network.

Closer to our approach there are AquA [17] and Ensemble [19]. AquA provides
adaptive fault-tolerance to CORBA applications by replicating objects and providing a
high-level method that an application can use to specify its desired level of reliability.
AquA also provides an adaptive mechanism capable of coping with application depend-
ability requirements at runtime. It does so by using a majority voting algorithm. Ensemble
offers a fault-tolerant mechanism that allows adaptation at runtime. This is used to dy-
namically adapt the components of a group communication service to switch between two
total order algorithms (sequencer-basedvs token-based) according to the desired system
overhead and end-to-end latency for application messages.

Several works aimed at circumventing the impossibility of consensus in asynchro-
nous systems [8]. Minimal synchronism needed to solve consensus is addressed in [6].
Partial synchrony making consensus solvable is investigated in [7]. Finally, the failure
detector approach and its application to the consensus problem have been introduced and
investigated in [2, 3]. Other authors have also developed consensus protocols using the
unreliable failure detectors of Chandra and Toueg, some of them with adaptivity proper-
ties. Mostefaoui and Raynal [15] presented a quorum-based adaptive consensus protocol,
where the quorum depends on the failure detector class and it is statically determined
for a whole execution of the consensus. So, their solution does not provide adaptation at

runtime. Hurfin, Macêdo et al [11] proposed a consensus protocol with adaptability prop-
erties that allows for processes to dynamically change the number of concurrent rounds
(from 1 to the maximum number of processes - n), and can assume distinct communica-
tion patterns (centralized or decentralized), providing, therefore, adaptation to the com-
munication bandwidth and system resources available at runtime. The work presented in
[10] described an adaptive model based on QoS architectures that works by dynamically
searching for a spanning tree of timely channels, and once such spanning tree is found,
the whole system is considered synchonous. In contrast, the present paper describes a dif-
ferent system model and, besides, it allows for a given process to exploit a synchronous
behaviour even if there is only one timely channel connected to it (no spanning tree is
required).

Differently from previous works, in our paper we consider an environment where
the system behaviour can vary dynamically, leading to the possibility of using distinct
QoS during one execution of a given distributed algorithm.
Structure of the paper This paper is made up of four sections. Section 2. overviews
the model introduced in [13]. Section 3. describes an implementation of the model based
on negotiated QoS guarantees, discusses its correctness, and presents performance data
collected from experiments. Finally, Section 4. draws conclusions and indicates future
works.

2. An Overview of the Adaptive Model for Fault-Tolerant Distributed
Computing

This section overviews our distributed computing model presented in [13]. We consider
a system consisting of a finite setΠ of n ≥ 2 processes, namely,Π = {p1, p2, . . . , pn}.
A process executes steps (a step is the reception of a message, the sending of a message,
each with the corresponding local state change, or a simple local state change). A process
can fail bycrashing, i.e., by prematurely halting. After it has crashed a process does not
recover. It behaves correctly (i.e., according to its specification) until it (possibly) crashes.
By definition, a process iscorrect in a run if it does not crash in that run. Otherwise, a
process isfaulty in the corresponding run. In the following,f denotes the maximum
number of processes that can crash (1 ≤ f < n). Until it possibly crashes, the speed of a
process is positive but arbitrary.

Processes communicate and synchronize by sending and receiving messages
through channels. Every pair of processes(pi, pj) is connected by two directed chan-
nels, denotedpi → pj andpj → pi. Channels are assumed to be reliable: they do not
create, alter or lose messages. In particular, ifpi sends a message topj, then eventually
pj receives that message unless it fails. There is no assumption about the relative speed
of processes or message transfer delays (let us observe that channels are not required to
be FIFO). The primitivebroadcast MSG(v) is a shortcut for:∀pj ∈ Π do send MSG(v) to
pj end (MSG is the message tag,v its value).

How a Process Sees the Other Processes: Three Sets per ProcessA crucial issue
encountered in distributed systems is the way each process perceives the state of the other
processes. To that end, the proposed model provides each processpi with three sets
denoteddowni, livei anduncertaini. The only thing a processpi can do with respect to
these sets is to read the sets it is provided with; it cannot write them and has no access to
the sets of the other processes.

These sets, that can evolve dynamically, are made up of process identities. Intu-
itively, the fact that a given processpj belongs todowni, livei or uncertaini provides
pi with some hint on the current status ofpj. More operationally, ifpj ∈ downi, pi can
safely considerpj as being crashed. Ifpj /∈ downi, the state ofpj is not known bypi with
certainty: more precisely, ifpj ∈ livei, pi is given a hint that it can currently considerpj

as not crashed; whenpj ∈ uncertaini, pi has no information on the current state (crashed
or live) of pj.

At the abstraction level defining the computation model, these sets are defined
by abstract properties (the way they are implemented is irrelevant at this level, it will
be discussed in Section 3.). The specification of the setsdowni, livei anduncertaini,
1 ≤ i ≤ n, is the following (wheredowni(t) is the value ofdowni at timet, and similarly
for livei(t) anduncertaini(t)):

R0 Initial global consistency. Initially, the setslivei (resp.,downi anduncertaini) of
all the processespi are identical. Namely,∀i, j: livei(t) = livej(t), downi(t) =
downj(t), anduncertaini(t) = uncertainj(t), for t = 0.

R1 Internal consistency. The sets of eachpi define a partition:
• ∀i: ∀t: downi(t) ∪ livei(t) ∪ uncertaini(t) = Π.
• ∀i: ∀t: any two sets (downi(t), livei(t), uncertaini(t)) have an empty

intersection.
R2 Consistency of thedowni sets.

• A downi set is never decreasing:∀i: ∀t: downi(t) ⊆ downi(t + 1).
• A downi set is always safe with respect to crashes:∀i: ∀t: downi(t) ⊆

F (t).
R3 Local transitions for a processpi. While an upper layer protocol is running, the

only changes a processpi can observe are the moves of a processpx from livei to
downi or uncertaini.

R4 Consistent global transitions. The setsdowni and uncertainj of any pair of
processespi andpj evolve consistently. More precisely:

• ∀i, j, k, t0: ((pk ∈ livei(t0))∧(pk ∈ downi(t0+1)))⇒ (∀t1 > t0 : pk /∈
uncertainj(t1)).
• ∀i, j, k, t0: ((pk ∈ livei(t0)) ∧ (pk ∈ uncertaini(t0 + 1))) ⇒)(∀t1 >

t0 : pk /∈ downj(t1)).
R5 Conditional crash detection. If a processpj crashes and does not appear in the

uncertaini set of any other processpi for an indefinitely long period of time, it
eventually appears in thedowni set of eachpi. More precisely:
∀pi, if pj crashes at timet0, and there is a timet1 ≥ t0 such that∀t2 ≥ t1 we
havepj /∈ uncertaini(t2), then there is a timet3 ≥ t2 such that∀t4 ≥ t3 we have
pj ∈ downi(t4).

As we can see from this specification, at any timet and for any pair of processes
pi and pj, it is possible to havelivei(t) 6= livej(t) (and similarly for the other sets).
Operationally, this means that distinct processes can have different views of the current
state of each other process. Let us also observe thatdowni is the only safe information on
the current state of the other processes that a processpi has.

Finally, notice that R3 prevents applications from modifying a channel’s QoS dur-
ing the execution of consensus (in fact, we show that without this restriction consensus

cannot be achieved in this model [13]). However, it is important to notice that nothing
prevents to upgrade the model between consecutive instances of the consensus, by mov-
ing a processpx ∈ uncertaini(t1) into livei(t2) or downi(t2). Such an upgrade of a
livei or downi sets between two runs of an upper layer protocol do correspond to “syn-
chronization” points during which the processes are allowed to renegotiate the quality of
service of their channels.

Enriching the Model to Solve Consensus It is well known that the consensus problem
cannot be solved in pure time-free asynchronous distributed systems [8]. So, we consider
that the system is augmented with a failure detector of the class denoted3S [3] (which
has been shown to be the weakest class of failure detectors able to solve consensus despite
asynchrony [2]).

In [13] we have presented a3S-based consensus protocol suitable for our adaptive
distributed system model, that has a noteworthy feature on its generic dimension: the same
protocol can easily be instantiated in fully synchronous systems or fully asynchronous
systems. Of course, these instantiations have different requirements on the value off . A
significant characteristic of the protocol is to suit to distributed systems that are neither
fully synchronous, nor fully asynchronous. The price that has to be paid consists then in
equipping the system with a failure detector of the class3S. The benefit it brings lies in
the fact the constraint onf can be weaker thanf < n/2 (1).

3. Implementation of the Adaptive Distributed Computing Model

For applications like distributed real-time control and multimedia systems, it is essential
thatquality-of-service(QoS) be guaranteed system-wide, i.e., from the operating system
to the network. Though such QoS infrastructures are not yet widely available (e.g., in
the Internet), there is a growing number of systems and architectures being developed
and used to fulfill the QoS requirements of these modern distributed applications. Our
system model builds on the facilities typically encountered in such QoS architectures,
which include mechanisms to specify, enforce and manage end-to-end QoS requirements
for a variety of classes of applications.

In particular, we assume that the underlying system is capable of providingtimely
communication channels. That is, as long as a message sender remains operational and
the QoS of the related channel is sustained during transmission, a sent message is always
received within a bounded time limit, say∆. Such a level of service, which is largely
supported in existing architectures, is achieved and denoted in different ways for distinct
QoS architectures (e.g.,deterministic[18] andExpress Forward[1]). Similarly, we also
assume the existence of best-effort channels where messages are transmitted without guar-
anteed bounded time delays. We call these channels untimely. For both kinds of channels
(timely anduntimely), we assume that messages are neither lost nor corrupted, and can
be delivered in any order. Another feature we assume for the underlying QoS system is
the capability of informing the current QoS, timely or untimely, available for the created
channels - bearing in mind that as problems can occur during the communication (such

1The only consensus protocols we are aware of, that work in distributed systems that are neither fully
synchronous, nor fully asynchronous, are the protocols designed for fully asynchronous systems. These
protocols require (1)3S (or a failure detector that has the same power as far as failure detection is con-
cerned, e.g., a leader oracle [2, 4]), and (2) the upper boundf < n/2 on the number of process crashes.
Our protocol has the same requirement for item (1), but a weaker for item (2).

as congestion and faults), and also as an application can renegotiate the QoS for its chan-
nels, the QoS of a channel can be dynamically modified, changing between timely and
untimely.

Thus, the QoS-based underlying distributed system we consider is a set ofn
processesΠ = p1, . . . , pn, located in one or more sites, communicating through a set
Γ of n(n− 1)/2 channels, whereci/j means a communication channel betweenpi andpj.
(That is, the system is represented by a complete graphDS(Π, Γ), whereΠ are the nodes
andΓ the edges of the graph.)

We also assume that processes inΠ are equipped with enough computational
power so that the time necessary to process control messages are negligible small com-
pared with network delays. Therefore, control messages originated by the implemented
model are assumed to be promptly computed2. Moreover, the processes are assumed to
fail only by crashing and the network is not partitionable.

3.1. The QoS Provider

In order to make our system model portable to distinct QoS architectures, we define a
number of functions to be encapsulated in a mechanism we call the QoS Provider, for
creating and assessing QoS communication channels on behalf of application processes.
Thanks to this modular encapsulation, porting our system to a given QoS infrastructure
means implementing the QoSP functions in such a new target environment. The QoSP
is made up of a module in each site of the system. The basic data structure maintained
by each module is a table holding information about existing channels. These modules
exchange messages to carry out modifications on the QoS of channels (due to failures or
application requests).

The QoS provider has characteristics similar to services present in QoS archi-
tectures such as Omega [16]. This section describes its main functionalities, which
are needed for implementing our system model. (The complete description of the QoS
provider is beyond the scope of this paper, and can be seen elsewhere [9].) Processes
interact with the QoS Provider through the following functions.

• CreateChannel(px, py) : Π2 → Γ.
• DefineQoS(px, py, qos) : Π2 × {timely, untimely} → {timely, untimely}.
• QoS(px, py) : Π2 → {timely, untimely}.
• Delay(px, py) : Π2 → N+.

The functionsCreateChannel(), DefineQoS(), QoSl(), andDelay() are used
for creating a channel, changing its QoS, obtaining its current QoS, and obtaining the
expected delay -in miliseconds- for message transfer for the channelcx/y, respectively.
Besides the above functions, each QoSP module continuously monitors all timely chan-
nels linked to the related site, to check whether failures or lack of resources have resulted
in a modification of the channel QoS (from timely to untimely). A particular case that the
QoSP also assesses is the existence of a timely channel where no message flow happens
within a period of time, which indicates that the timely channel is possibly linking two
crashed processes (in this circumstance, the QoS of the channel is modified to untimely

2This assumption can be relaxed by using real-time operating systems, which can provide bounded
process execution times

in order to release resources). Modifications on the QoS of channels are immediately
reported to the state detector related to a given module of the QoSP, through messages
changeQoS(px,py,newQoS), indicating that the QoS of the channelcx/y has been modi-
fied tonewQoS(see Section 3.2.1.).

When a process crashes, the QoS Provider can still give information about the
QoS of the channels linked to that crashed process. However, if the site hosting a process
crashes or the related QoS Provider crashes, all the channels allocated to processes in
this site are destroyed. If a given QoS Provider module cannot deliver information about
a given channel (possibly, because it has crashed), this channel is then assumed to be
untimely (which may represent a change in its previous QoS condition).

3.2. The System Model Implementation

In our system model, distributed processes perceive each other’s state by reading the con-
tents of the setsdown, live, anduncertain. These sets can evolve dynamically following
system state changes while respecting the rules R0 to R5. Therefore, implementing our
system model implies providing the necessary mechanisms to maintain the sets according
to their semantics. Two mechanisms have been developed to this end:

• a state detectorthat is responsible for maintaining the setslive anduncertain, in
accordance with the information delivered by the QoSP, and
• a failure detectorthat utilizes the information provided by both, the QoSP and the

state detector, to detect crashes and update thedownsets accordingly.

Associated with each processpi there is a module of the state detector, a module
of the failure detector, a representation of theDS(Π, Γ) graph, and the three sets:livei,
uncertaini, anddowni. TheDS(Π, Γ) graph is constructed by using the QoSP functions
CreateChannel()andDefineQoS(), for creating channels according to the QoS required
and resources available in the system. The modules of the state detector exchange the
information of the created channels so that they keep identicalDS(Π, Γ) graphs during
the system initialization phase.

During the initialization phase, the setdowni is set to empty and the contents of
livei anduncertaini are initialized so that the identity of a processpj is placed intolivei

if and only if there is a timely channel linkingpj to another process (i.e.,∃ px ∈ Π such
thatQoS(pj, px) = timely). Otherwise, the identity ofpj is placed inuncertaini. When
the initialization phase ends, processes inΠ observe identical contents for their respec-
tive live, down, anduncertainsets, and a given process is either inlive or in uncertain
(ensuring, therefore, the restrictions R0 and R1 of our model).

During the application execution, the contents of the three sets are dynamically
modified according to the existence of failures and/or QoS modifications. Next it is de-
scribed the implemented mechanisms in charge of updating the contents oflive andun-
certain(the state detector), and the contents ofdown(the failure detector).

3.2.1. An Implementation of the State Detector

There is a module of the state detector for each process inΠ. The module of the state de-
tector associated withpi executes two concurrent tasks to update theDSgraph maintained
by pi.

The first task is activated by messageschangeQoS(pi,px,newQoS)from the local
module of QoSP, indicating that the QoS of the channelci/x has been modified. Upon
receiving thechangeQoSmessage, the state detector ofpi first verifies whetherpx is not
in the downi set (this is necessary to guarantee R4, see Section 3.3.). If that test turns
out to be true, it passes on the information of the new QoS of the channelci/x to the
remote modules of the state detector, and the localDSgraph is updated accordingly (i.e.,
DSi(pi, px) is set toNewQoS).

The second task is activated when the failure detector communicates the crash of a
processpx (see details in the next section). The goal of this task is to check whether there
is process in thelive set, saypy, that had a timely channel to the crashed process. If the
channelcx/y is the only timely channel topy, it can no longer be detectable and therefore
must be moved fromlive to uncertain. This is realized by setting all channels linked to
the crashed process as untimely in theDSgraph.

In both tasks, after updating theDSgraph, the procedureUpdateState(), described
in Figure 1, is called for eachpx linked to a modified channel, to update the setslivei

anduncertaini, accordingly. Processpx is moved fromlivei to uncertaini if no timely
channel linkingpx is left (lines 1-4) ;px is moved fromuncertaini to livei if a new timely
channel linkingpx has been created (lines 6-8).

ProcedureUpdateState(px, livei, uncertaini)

(1) if (px ∈ livei) ∧ (∀ py ∈ Π : ((py 6= px)→ (DSi[px, py] = untimely)))
(2) then % This is for Rule R3 %
(3) livei ← livei − {px};
(4) uncertaini ← uncertaini ∪ {px}
(5) else
(6) if (px ∈ uncertaini) ∧ (∃ py ∈ Π: ((py 6= px)→ (DSi[px, py] = timely)))
(7) then uncertaini ← uncertaini − {px};
(8) livei ← livei ∪ {px}
(9) end_if
(10) end_if

Figure 1. Algorithm to Update the Sets livei and uncertaini

3.2.2. An Implementation of the Failure Detector
Besides maintaining the setdowni, the failure detector also maintains the setsuspectedi

for keeping the identities of processes suspected of having crashed. A processpi interacts
with the failure detector by accessing these sets.

The failure detector works in apull model, where each module (working on behalf
of a processpx) periodically sends "are you alive?" messages to the other modules related
to the other processes inΠ. The timeout value used for awaiting "I am alive" messages
from a monitored processpy is calculated using the QoSP functionDelay(px, py). The
timeout includes the so-called round-trip time (rtt)3, and a safety margin (α), to account
for necessary time to process these messages atpx andpy.

For timely channels, the calculated timeout is accurate in the sense that net-
work and system resources and related scheduling mechanisms guarantee thertt within a

3That is the time to transfer the "are-you-alive?" message frompx to py plus the time to transfer the "I
am alive" message frompy to px.

bounded limit. Therefore, the expiration of the timeout is an accurate indication thatpy

crashed, and in that casepy is moved fromlive to down. To account for a possible modifi-
cation of the QoS of the channelcx/y, before producing a notification, the failure detector
checks it out whether the channel remained timely using the QoSP functionQoS(px,py)4.
On the other hand, if the channel linkingpx andpy is untimely, the expiration of the time-
out is only a hint of a possible crash and, in that case, besides belonging touncertain, py

is also included in the setsuspected.

The algorithm for the failure detector for a processpi, described in Figure 2,
is composed by 5 parallel tasks. The parametermonitoringIntervalindicates the time
interval between two consecutive "are-you-alive?" messages sent bypi. The array
timeouti[1..n] holds the calculated timeout forpi to receive the next "I-am-alive" message
from each process inΠ. The functionCTi() returns the current local time andα is a safety
margin that also includes the time necessary to process each pair of "are-you-alive?" and
"I-am-alive" messages. Task 1 periodically sends a "I-am-alive" message to all processes
(actually, the related failure detector modules) after setting a timeout value to receive the
corresponding "I-am-alive" message, which in turn is sent by Task 5. Task 2 assesses
the expiration of timeouts, and it sends notification messages when the timeouts expire
for processes inlivei, moving them into thedowni set. Otherwise, if the timeout expires
for processes in theuncertaini set, their identities are also included into thesuspectedi

set. Task 3 removes a process from thesuspectedi set when a message from that process
is received. Task 4 handles crash notification messages and updates the setsdowni and
livei, accordingly.

3.3. Correctness Proof Sketches of The Implementation

This section presents correctness arguments showing that the above-described mecha-
nisms properly implement the proposed adaptive system model. That is, they assure the
correct semantics for the construction and maintainance of the setsuncertaini, livei and
downi, as defined by the rules R0-R5, which are demonstrated by the following lemmas.
Lemma 1 Rules R0 and R1 are respected

Proof As discussed in section 3.2., during the system initialization the sets are initialized
respecting R0 and R1. To see that R1 holds during the system execution, notice that any
inclusion of a given element in a specific set is followed by the removal of this particular
element from another set (lines 3-4 and 7-8 of theUpdateState()procedure of the state
detector (Figure 1) and lines 7-8 and 18-20 of the failure detector (Figure 2). Therefore,
R1 cannot be violated for correct processes. 2Lemma 1

Lemma 2 Rule R2 is respected

Proof To see that adowni set is never decreasing (first part of R2), observe that thedowni

set is only modified to include new elements (lines 7 and 18 of Figure 2). The second part
of R2, which states that adowni set is safe regarding crashes, is respected since a process
identifier is only moved into thedowni when a timeout for a timely channel to that process
expires (lines 7 and 18 of Figure 2). To assure that the timely channel has not lost its
timely condition during the transmission of the "I-am-alive" message, the QoS function

4One should observe here that the QoS Provider holds the information and resources related to a given
channel even after the crashes of the processes linked by that channel.

Task T1: everymonitoringIntervaldo
(1) for_eachpj , pj 6= pi do
(2) timeouti[pj]← CTi() + Delay(pi, pj) + α;
(3) send are-you-alive(pi) to pj

(4) end_do
Task T2: when∃pj : (pj /∈ downi) ∧ (CTi() > timeouti[pj])) do

(5) if ((pj ∈ livei)
(6) then if ((DSi[pi, pj] = timely) ∧ (QoS(pi, pj) = timely))
(7) then downi ← downi ∪ {pj};
(8) livei ← livei − pj ;
(9) send notification (pi, pj) to every px such that px 6= pi, pj

(10) else do nothing (wait for a remote notification)
(11) end_if
(12) else if((pj ∈ uncertaini) ∧ (pj 6= suspectedi))
(13) then suspectedi ← suspectedi ∪ {pj} end_if
(14) end_if

Task T3: when “I-am-alive” is received frompj) do
(15) if CTi() > timeouti[pj] then
(16) if (pj ∈ suspectedi) then suspectedi ← suspectedi − pj end_if
(17) end_if

Task T4: whennotification(px, pj) is receiveddo
(18) if pj /∈ downi then downi ← downi ∪ {pj};
(19) if pj ∈ livei then livei ← livei − pj

(20) else uncertaini ← uncertaini − pj ;
(21) if px∈ suspectedy then
(22) suspectedi ← suspectedi − pj

(23) end_if
(24) end_if
(25) end_if

Task T5: when “Are-you-alive?” is received frompj do send “I-am-alive”(pi) to pj

Figure 2. Algorithm for the Failure Detector Module (pi)

of the QoSP is used (line 6 of Figure 2). Thus, if all resources and related QoS scheduling
mechanisms are still available for the channel (i.e., it remains timely), the expiration of
the timeout can only happen when the monitored process fails in sending the "I-am-alive"
message (i.e., it crashed). 2Lemma 2

Lemma 3 Rule R3 is respected

Proof This rule is enforced by the application as it is assumed that a process does not ask
for the modification of the QoS of a channel fromuntimelyto timelyduring the execution
of consensus. 2Lemma 3

Lemma 4 Rule R4 is respected

Proof Let us first consider the first part of R4 and assume by contradiction that∀i, j, k:
pk ∈ livei(t0) ∧ pk ∈ downi(t0 + 1) ⇒ ∃t1 > t0 : pk ∈ uncertainj(t1). If pk ∈
uncertainj(t1), pj must see all channels topk as untimely at timet1 (lines 1-4 of the
state detector in Figure 1). However, aspk crashed at timet0 + 1, there was at least one
timely channel topk (the one linking to the process that detectedpk’s crash, say channel
cx/k). So, in order to have all channels untimely, the changing of QoS for the channelcx/k

must be reported topj by t1. Since the state detector related topx will not send any QoS

modifications for channels connected to crashed processes (see section 3.2.1.),pj will not
change the status ofcx/k and, therefore, at least one channel will remain timely att1.

As for the second part of R4, let us assume by contradiction that∀i, j, k: pk ∈
livei(t0) ∧ pk ∈ uncertaini(t0 + 1)⇒ ∃t1 > t0 : pk ∈ downj(t1). To detect the crash of
pk at timet1, there must be at least one timely channel linking topk (see lines 6-7 in Figure
2). Since all channels are untimely at timet0 + 1, and by assumption channels cannot
become timely during consensus execution (R3), then there will be no timely channel
linking to pk at t1 and, therefore,pk cannot belong todowni(t1). 2Lemma 4

Lemma 5 Rule R5 is respected

Proof Assume a processpj crashes at timet0, and thatpj does appear in theuncertain
set of any process for an indefinitely long period of time. That is,∀t2 ≥ t1 we have
pj /∈ uncertaini(t2), for t1 ≥ t0. And assume by contradiction that there is a timet3 ≥ t2
such that∀t4 ≥ t3 we havepj /∈ downi(t4). First notice that fromt0 processpj will not
send "I-am-alive" messages (Task T1 of Figure 2). Thus, the timeout set to receive such
a message frompj will eventually expire (Task T2 of Figure 2). Aspj does not appear in
theuncertaink set of any processpk at t2, it must belong to the setslive of all processes
(which implies that there is at least one process, saypx, with timely channel topj at t2).
Therefore, the predicate of lines 5-6 of Figure 2 will become true andpj will be moved
from livei to downi (lines 7-8 of Figure 2). Aditionally, a notification message is sent and
received (as channels are assumed to be reliable) by all correct processes (i.e., processes
that do not crash byt4), which update theirdownsets accordingly (task T4 of Figure 2).

2Lemma 5

3.4. A LINUX/JAVA Prototype and its Performance

The failure detector, thestate detector, the consensus algorithm, and the QoS provider
have been implemented (as JAVA classes) and tested over a set of networked LINUX
workstations. We utilized the RED HAT LINUX 9 (kernel 2.4.20), which includes the
iproute2package that allows the configuration of the kernel routing tables to control com-
munication flows and to execute traffic control disciplines (such as the ones necessary
to implementDiffServfunctions [1]). We configured the LINUX kernel withCBQ(Class
Based Queue) forwarding characteristics to createDiffServ classes of service (Express
Forwarding for timelychannels andBest Effortfor untimelychannels), and we used the
u32andtcindexfilters to identify packets and to associate them to classes of service.

We carried out experiments to assess the prototype performability. The experi-
mental environment used consisted of a network of three LINUX Pentium III computers
(800 MHz, 128 MB RAM) connected through a 100 megabits network. One of the com-
puters worked as a router connecting the other two computers.

We run the quorum-based consensus protocol described in [13] with four
processes over the non-router computers (so that a decision quorum would never been
formed in a sole machine), and measured the time to reach consensus. In this particu-
lar experiment, the processes were connected by two timely channels and four untimely
channels, in such a way that three processes were in thelive set and one process in the
uncertainset. During the experiment, two processes in thelive set were forced to fail. The
other two processes detected the failures and moved the identities of the crashed processes

from thelive set to thedownset, thus adjusting the decision quorum (for the two remain-
ing correct processes), and finally achieving consensus. It is important to notice that if
all channels were untimely, consensus would not have been achieved, as in this circum-
stances, a majority of correct processes is required [3] (this point illustrates the benefit of
our hybrid and adaptive model). We run this experiment 100 times and collected the time
to reach consensus from the first coordinator (that always belonged to theuncertainset),
and calculated the mean time and standard deviation for the 100 runs (see first column of
Table 1).

We also run two other experiments. One with all channels untimely and the other
with all channels timely for a set of three processes, both experiments without failures.
The second and third columns of Table 1 show the mean time and standard deviation for
100 runs of each experiment, respectively.

|uncertain| = 1 and|live| = 3 |uncertain| = 3 |live| = 3
Mean Time 154 ms 50.93 ms 49.96 ms

Standard Deviation 78.64 ms 21.18 ms 26.85 ms

Table 1. Mean time to reach consensus

4. Conclusion

This paper showed how to exploit QoS facilities to implement an adaptive model for fault-
tolerant distributed computing, that encompasses both the synchronous model (where
there are time bounds on processing speed and message delay) and the asynchronous
model (where there is no time bound).

This new model can be particularly relevant for applications that require run-time
adaptiveness characteristics, such as distributed multimedia systems, where previously
negotiated QoS cannot always be delivered between processes. In order to specify the un-
derlying functionality needed to implement the adptive model, a mechanism (called the
QoS provider) has been developed and implemented. Thanks to this modularity dimen-
sion of the approach, porting the model implementation to a given environment requires
only to implement the QoS Provider functions that have been defined. The proposed sys-
tem has been implemented in JAVA and tested over a set networked LINUX workstations,
equipped with QoS capabilities.

The work presented in this paper is part of a QoS middleware infrastructure in-
tended for adaptive fault tolerant applications, being developed in the Distributed System
Laboratory (LaSiD) at UFBA, in cooperation with the distributed systems and networks
research group at UFPE. In [13] we introduced an adaptive distributed computing model
and related consensus algorithm that can benefit from the QoS support and fault tolerant
mechanisms presented in this paper. Other efforts are needed to complement the function-
alities of the infrastructure being developed. For instance, the development of replication
management and group communication services and a tool capable of mapping fault tol-
erant and QoS specifications into the infrastructure services, are efforts planned for future
work.
References

[1] Blake S., Black D., Carlson M., Davies E., Wang Z. and Weiss W., An Architecture for
Differentiated Services,RFC 2475, June, 1998.

[2] Chandra T.D., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Con-
sensus.Journal of the ACM, 43(4):685-722, July, 1996.

[3] Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225-267, March, 1996.

[4] Chu F., ReducingΩ to 3W. Information Processing Letters, 67(6):289-293, September,
1998.

[5] Cristian F. and Fetzer C., The Timed Asynchronous Distributed System Model.IEEE Trans-
actions on Parallel and Distributed Systems, 10(6):642-657, June, 1999.

[6] Dolev D., Dwork C. and Stockmeyer L., On the Minimal Synchronism Needed for Distrib-
uted Consensus.Journal of the ACM, 34(1):77–97, January, 1987.

[7] Dwork C., Lynch N. and Stockmeyer L., Consensus in the Presence of Partial Synchrony.
Journal of the ACM, 35(2):288-323, April, 1988.

[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One
Faulty Process.Journal of the ACM, 32(2):374-382, April, 1985.

[9] Gorender S. and Macêdo R., Fault-tolerance in Networks with QoS,Technical Report Num-
ber RT001/03, Distributed System Laboratory (LaSiD), UFBA (in Portuguese), 2003.

[10] Gorender S. and Macêdo R., Um Modelo para Tolerância a Falhas em Sistemas Distribuídos
com QoS.Anais do XX Simpósio Brasileiro de Redes de Computadores (SBRC’02), Maio,
2002, pp.277-292

[11] Hurfin M., Macêdo R., Tronel F., and Raynal M., A Consensus Protocol based on a Weak
Failure Detector and a Sliding Round Window,Proceedings of the 20th IEEE Int. Symposium
on Reliable Distributed Systems (SRDS’01), New Orleans, pp. 120-129, October 2001.

[12] Macêdo R., Silva F., The mobile groups approach for the coordination of mobile agents,
Journal of Parallel and Distributed Computing (JPDC), Elsevier 65(3), pp. 275-288, March
2005.

[13] Macêdo, R., Gorender, S., and Raynal, M. A set-based Adaptive Distributd Computing
Model and its Application to Distributed ConsensusTechnical Report Number RT002/04,
Distributed System Laboratory (LaSiD), UFBA, 2004. A version of this paper will ap-
pear in IEEE/IFIP Int. Conference on Computer Systemas and Networks Yokohama, Japan,
June/2005 (full paper).

[14] Hadzilacos V. and Toueg S., Fault-tolerant Broadcasts and Related Problems InDistributed
Systems, ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

[15] Mostefaoui A. and Raynal M., Solving Consensus Using Chandra-Toueg’s Unreliable Fail-
ure Detectors: a General Quorum-Based Approach.Proc. 13th Symposium on Distributed
Computing (DISC’99), Springer Verlag LNCS #1693, pp. 49-63, September 1999.

[16] Nahrstedt K. and Smith J. M., The QoS Broker,IEEE Multimedia, 2(1):53-67, 1995.
[17] Ren Y., Cukier M. and Sanders W.H., An Adaptive Algorithm for Tolerating Values Faults

and Crash Failures.IEEE Transactions on Parallel and Distributed Systems, 12(2):173-192,
February 2001.

[18] Siqueira F. and Cahill, V., Quartz: A QoS Architecture for Open Systems,Proceedings of
the 18th Brazilian Symposium on Computer Networks, pages 553-568, May 2000.

[19] van Renesse R., Birman K., Hayden M., Vaysburd A. and Karr D., Building Adaptive Sys-
tems Using Ensemble.Software Practice and Experience, 28(9):963-979, July 1998.

[20] Veríssimo P. and Casimiro A., The Timely Computing Base Model and Architecture.IEEE
Transactions on Computers, Special Issue on Asynchronous Real-Time Systems, 51(8):916-
930, August 2002.

