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Abstract. The capability of dynamically adapting to distinct run-time condi-
tions is an important issue when designing distributed systems where negotiated
quality of service (QoS) cannot always be delivered between processes. Provid-
ing fault-tolerance for such dynamic environments is a challenging task. Con-
sidering such a context, this paper proposes an implementation of an adaptive
model for fault-tolerant distributed computing, composed of distributed failure
and state detectors (for monitoring available QoS and process failures, respec-
tively). Our implementation relies on a QoS mechanism, that we also defined
and implemented, called the QoS provider (QoSP). Thanks to the modularity di-
mension of the QoSP, porting the model implementation to a given environment
requires only to implement the QoSP functions. The developed system is able
to react to the changes in the execution environment, dynamically adapting it
to the QoS conditions available at runtime, and it is particularly powerful in
the sense that it allows for processes with distinct QoS views to continue their
computations and cooperate in a safe, fault tolerant manner.

Keywords: Adaptability, Asynchronous/synchronous distributed system, Con-
sensus, Distributed computing model, Fault tolerance, Quality of service

1. Introduction

Distributed systems are composed of processes, usually spread over a set of networked
sites, which communicate via message passing to offer services to upper layer applica-
tions. As there are no share states accessible by processes (for instance, a shared memory
or global clock), a major difficulty a system designer has to cope with in these systems

is the capture of consistent global states (from which decisions can be taken in order to
guarantee a safe progress of the upper layer applications). To study and investigate what
(and how) can be done in these systems, two distributed computing models have received
a lot of attention, namely, th&/nchronousnodel and theasynchronousnodel.

The synchronous distributed computing model provides processes with bounds on
processing time and message transfer delay, and the asynchronous model is character-
ized by the absence of time bounds (that is why this model is sometimes talteftee
model). Synchronous systems are attractive because they allow system designers to solve
a lot of problems. The price that has to be paid is the a priori knowledge on time bounds.



If they are violated, the upper layer protocols can be unable to still guarantee their safety
property. As they do not rely on explicit time bounds, asynchronous systems do not have
this drawback. Unfortunately, they have another one, namely, some basic problems are
impossible to solve in asynchronous systems. The most famous is the consensus problem,
that has no deterministic solution when even a single process can crash [8tofthe
sensugroblem is, however, a very important building block to implement fault tolerant
distributed systems (processes must come to an agreement on an decision value despite
of process failures). For instance, it can be used to implerigogl synchronyon group
communication [12] and to solve tle¢omic broadcasproblem [3]. This impossibility in

the asynchronous model has motivated researchers to find distributed computing models,
weaker than the synchronous model but stronger than the asynchronous model, in which
consensus can be solved.

In practice, systems are neither fully synchronous, nor fully asynchronous. Most
of the time they behave synchronously, but can have “unstable” periods during which
they behave in an anarchic way. Moreover, there are now QoS architectures that allow
processes to dynamically negotiate the quality of service of their communication chan-
nels [16, 18, 1]. These observations motivated us the design of a hybrid and adaptive
distributed computing model (combining characteristics of both, synchronous and asyn-
chrounous models), that does its best to provide the processes with safe information on
the current state of the other processes [13].

Our model is time-free in the sense that processes are not provided with time
bounds guaranteed by the lower system layer. Each prggassprovided with three
sets denotedown;, live; anduncertain;. These sets, that are always a partition of the
whole set of processes, define the vigwhas of the state of the other processes. More
precisely, ifp, € down;, thenp, knows thatp, has crashed; when, € live;, thenp;
can considep,. as being alive; finally, whep, € uncertain;, p; has no information on
the current state gf,. These sets can evolve in time, and can have different values for
different processes. For example, it is possible that (due to the fact that some quality
of service can no longer be ensured) the viegwhas onp, be degraded in the sense
that the model moveg, from live; to uncertain;. It is also possible that (due to the
fact that a stable period lasts “long enough”) the viewhas onp, be upgraded in the
sense that the model movgsfrom uncertain; to live;. So, the model is able to benefit
from time windows to transform timeliness properties (currently satisfied by the lower
layer) into time-free properties (expressed on the previous sets) which can be used by
upper layer protocols. Interestingly, this model includes the synchronous model and the
asynchronous model as particular cases. The synchronous model corresponds to the case
where, for all the processes, the setsincertain; are always empty. The asynchronous
model corresponds to the case where, for all the processene setsincertain; always
include all processes.

It is important to notice that our approach is orthogonal to the failure detector
(FD) approach [3]. It aims at benefiting from the fact that systems are built on QoS
architectures, thereby allowing a process not to always consider the other processes as
being in an “uncertain” state. As the proposed model includes the asynchronous model,
it is still necessary to enrich it with appropriate mechanism to solve problems that are
impossible to solve in pure time-free systems. To illustrate this point and evaluate the



proposed approach, we developed an adaptive consensus protocol, which is based on the
fact that each process is provided with (1) three set®wn;, live; anduncertain; with

the previously defined semantics, and (2) an appropriate failure detector module (namely,
&S). While ©S-based consensus protocols in asynchronous systems rgqdire /2,

the proposed>S-based protocol allows bypassing this bound when few processes are in
theuncertain; sets during the protocol execution [13].

Contributions of this paper The main contribution of this paper is to show how a
fault tolerant application can benefit from execution environments with QoS facilities
to adjust its behaviour to dynamically modifying run-time conditions, without affecting
its correct execution and improving its ability to detect process crashes when possible.
To our best knowledge, no previous work explored QoS facilities in such context. In
particular, we show how to implement the adaptive distributed computing model, above-
described, and introduced by us in [13], on top of a system with typical QoS facilities.
To accomplish this objective, we define a new QoS support mechanism to interface the
fault tolerant applications, named the QoS Provider (QoSP), and introduce two adaptive
mechanisms that assess existing QoS conditions and update process states, accordingly
(the adaptive state and failure detectprsAdditionally, the paper shows experimental
data from a Java/Linux prototype.

Related work Fault tolerance for distributed systems has been addressed in several
ways, according to the system and fault models assumed for the target environment. Usu-
ally, once defined a given system and fault model, the algorithms to handle fault tolerance
are fixed for such model prior to execution. Although such a static configuration already
provides a degree of adaptivity, in some situations it is desired that the fault tolerant mech-
anism be itself adaptive.

The timed asynchronousiodel [5] considers asynchronous processes equipped
with physical clocks. Thémely computing bas0] provides services built on top of an
underlying dedicated synchronous network.

Closer to our approach there are AquA [17] and Ensemble [19]. AquA provides
adaptive fault-tolerance to CORBA applications by replicating objects and providing a
high-level method that an application can use to specify its desired level of reliability.
AqQuA also provides an adaptive mechanism capable of coping with application depend-
ability requirements at runtime. It does so by using a majority voting algorithm. Ensemble
offers a fault-tolerant mechanism that allows adaptation at runtime. This is used to dy-
namically adapt the components of a group communication service to switch between two
total order algorithms (sequencer-basedoken-based) according to the desired system
overhead and end-to-end latency for application messages.

Several works aimed at circumventing the impossibility of consensus in asynchro-
nous systems [8]. Minimal synchronism needed to solve consensus is addressed in [6].
Partial synchrony making consensus solvable is investigated in [7]. Finally, the failure
detector approach and its application to the consensus problem have been introduced and
investigated in [2, 3]. Other authors have also developed consensus protocols using the
unreliable failure detectors of Chandra and Toueg, some of them with adaptivity proper-
ties. Mostefaoui and Raynal [15] presented a quorum-based adaptive consensus protocol,
where the quorum depends on the failure detector class and it is statically determined
for a whole execution of the consensus. So, their solution does not provide adaptation at



runtime. Hurfin, Macédo et al [11] proposed a consensus protocol with adaptability prop-
erties that allows for processes to dynamically change the number of concurrent rounds
(from 1 to the maximum number of processes - n), and can assume distinct communica-
tion patterns (centralized or decentralized), providing, therefore, adaptation to the com-
munication bandwidth and system resources available at runtime. The work presented in
[10] described an adaptive model based on QoS architectures that works by dynamically
searching for a spanning tree of timely channels, and once such spanning tree is found,
the whole system is considered synchonous. In contrast, the present paper describes a dif-
ferent system model and, besides, it allows for a given process to exploit a synchronous
behaviour even if there is only one timely channel connected to it (no spanning tree is
required).

Differently from previous works, in our paper we consider an environment where
the system behaviour can vary dynamically, leading to the possibility of using distinct
QoS during one execution of a given distributed algorithm.
Structure of the paper This paper is made up of four sections. Section 2. overviews
the model introduced in [13]. Section 3. describes an implementation of the model based
on negotiated QoS guarantees, discusses its correctness, and presents performance data
collected from experiments. Finally, Section 4. draws conclusions and indicates future
works.

2. An Overview of the Adaptive Model for Fault-Tolerant Distributed

Computing
This section overviews our distributed computing model presented in [13]. We consider
a system consisting of a finite sBtof n > 2 processes, namelif = {p1,p2,...,pn}-
A process executes steps (a step is the reception of a message, the sending of a message,
each with the corresponding local state change, or a simple local state change). A process
can fail bycrashing i.e., by prematurely halting. After it has crashed a process does not
recover. It behaves correctly (i.e., according to its specification) until it (possibly) crashes.
By definition, a process isorrectin a run if it does not crash in that run. Otherwise, a
process idaulty in the corresponding run. In the following, denotes the maximum
number of processes that can crasi(f < n). Until it possibly crashes, the speed of a
process is positive but arbitrary.

Processes communicate and synchronize by sending and receiving messages
through channels. Every pair of proces$esp;) is connected by two directed chan-
nels, denoteg¢h, — p; andp, — p;,. Channels are assumed to be reliable: they do not
create, alter or lose messages. In particulas; #ends a message g, then eventually
p, receives that message unless it fails. There is no assumption about the relative speed
of processes or message transfer delays (let us observe that channels are not required to
beFIFO). The primitivebroadcast MSG(v) is a shortcut for¥p, € Il do send MSG(v) to
p; end (MSG is the message tag,its value).

How a Process Sees the Other Processes: Three Sets per Processcrucial issue
encountered in distributed systems is the way each process perceives the state of the other
processes. To that end, the proposed model provides each pggosgh three sets
denoteddown;, live; anduncertain;. The only thing a procegs can do with respect to

these sets is to read the sets it is provided with; it cannot write them and has no access to
the sets of the other processes.



These sets, that can evolve dynamically, are made up of process identities. Intu-
itively, the fact that a given procegs belongs todown;, live; or uncertain,; provides
p; With some hint on the current statusgf More operationally, ifp; € down;, p; can
safely considep; as being crashed. t; ¢ down;, the state op; is not known byp; with
certainty: more precisely, j; € live;, p; is given a hint that it can currently consider
as not crashed; when € uncertain;, p; has no information on the current state (crashed
or live) of p;.

At the abstraction level defining the computation model, these sets are defined
by abstract properties (the way they are implemented is irrelevant at this level, it will
be discussed in Section 3.). The specification of the &ats:;, live; anduncertain,,

1 < i < n,is the following (wherelown;(t) is the value oflown; at timet, and similarly
for live;(t) anduncertain;(t)):

RO Initial global consistency. Initially, the sdt@e; (resp.,down; anduncertain;) of
all the processegi are identical. Namelyyi, j: live;(t) = live;(t), down;(t) =
down;(t), anduncertain;(t) = uncertain;(t), fort = 0.

R1 Internal consistency. The sets of eackefine a partition:

o Vi: Vit down;(t) U live;(t) U uncertain;(t) = I1.
e Vi: Vt: any two setsdown;(t), live;(t), uncertain;(t)) have an empty
intersection.

R2 Consistency of théown; sets.

e A down; setis never decreasingi: Vt: down;(t) C down;(t + 1).
e A down,; set is always safe with respect to crashes: Vt: down;(t) C
F(t).

R3 Local transitions for a procegs. While an upper layer protocol is running, the
only changes a procegscan observe are the moves of a proggsBom live; to
down; Or uncertain,;.

R4 Consistent global transitions. The sétsvn; and uncertain; of any pair of
processeg; andp, evolve consistently. More precisely:

o Vi, j. k. to: ((pr € live;(to)) N(pi € down;(to+1)) ) = (Vt1 > to: pi ¢
uncertain;(ty) ).

o Vi, 5k to: (((px € livei(ty)) N (pr € uncertain;(to + 1)) ) =)( Vi, >
to: pr & down,(ty) ).

RS Conditional crash detection. If a procegscrashes and does not appear in the
uncertain; set of any other process for an indefinitely long period of time, it
eventually appears in thivwn; set of eaclp;. More precisely:

Vp;, If p; crashes at time,, and there is a time¢, > ¢, such thatvt, > ¢; we
havep; ¢ uncertain;(t2), then there is a timg; > ¢, such that/t, > ¢; we have
p; € down;(ty).

As we can see from this specification, at any tiiread for any pair of processes
p; andp;, it is possible to havéive;(t) # live;(t) (and similarly for the other sets).
Operationally, this means that distinct processes can have different views of the current
state of each other process. Let us also observelthat; is the only safe information on
the current state of the other processes that a procéss.

Finally, notice that R3 prevents applications from modifying a channel’s QoS dur-
ing the execution of consensus (in fact, we show that without this restriction consensus



cannot be achieved in this model [13]). However, it is important to notice that nothing
prevents to upgrade the model between consecutive instances of the consensus, by mov-
ing a proces®, € uncertain;(t1) into live;(t2) or down;(t2). Such an upgrade of a

live; or down; sets between two runs of an upper layer protocol do correspond to “syn-
chronization” points during which the processes are allowed to renegotiate the quality of
service of their channels.

Enriching the Model to Solve Consensus It is well known that the consensus problem
cannot be solved in pure time-free asynchronous distributed systems [8]. So, we consider
that the system is augmented with a failure detector of the class de©xét¢d] (which

has been shown to be the weakest class of failure detectors able to solve consensus despite
asynchrony [2]).

In [13] we have presentedaS-based consensus protocol suitable for our adaptive
distributed system model, that has a noteworthy feature on its generic dimension: the same
protocol can easily be instantiated in fully synchronous systems or fully asynchronous
systems. Of course, these instantiations have different requirements on the vAlue of
significant characteristic of the protocol is to suit to distributed systems that are neither
fully synchronous, nor fully asynchronous. The price that has to be paid consists then in
equipping the system with a failure detector of the ckags The benefit it brings lies in
the fact the constraint ofican be weaker thap < n/2 ().

3. Implementation of the Adaptive Distributed Computing Model

For applications like distributed real-time control and multimedia systems, it is essential
thatquality-of-servicdQoS) be guaranteed system-wide, i.e., from the operating system
to the network. Though such QoS infrastructures are not yet widely available (e.g., in
the Internet), there is a growing number of systems and architectures being developed
and used to fulfill the QoS requirements of these modern distributed applications. Our
system model builds on the facilities typically encountered in such QoS architectures,
which include mechanisms to specify, enforce and manage end-to-end QoS requirements
for a variety of classes of applications.

In particular, we assume that the underlying system is capable of providiaty
communication channels. That is, as long as a message sender remains operational and
the QoS of the related channel is sustained during transmission, a sent message is always
received within a bounded time limit, say. Such a level of service, which is largely
supported in existing architectures, is achieved and denoted in different ways for distinct
QoS architectures (e.gleterministic[18] and Express Forward1]). Similarly, we also
assume the existence of best-effort channels where messages are transmitted without guar-
anteed bounded time delays. We call these channels untimely. For both kinds of channels
(timely anduntimely, we assume that messages are neither lost nor corrupted, and can
be delivered in any order. Another feature we assume for the underlying QoS system is
the capability of informing the current QoS, timely or untimely, available for the created
channels - bearing in mind that as problems can occur during the communication (such

1The only consensus protocols we are aware of, that work in distributed systems that are neither fully
synchronous, nor fully asynchronous, are the protocols designed for fully asynchronous systems. These
protocols require (1S (or a failure detector that has the same power as far as failure detection is con-
cerned, e.g., a leader oracle [2, 4]), and (2) the upper bgurdn/2 on the number of process crashes.
Our protocol has the same requirement for item (1), but a weaker for item (2).



as congestion and faults), and also as an application can renegotiate the QoS for its chan-
nels, the QoS of a channel can be dynamically modified, changing between timely and
untimely.

Thus, the QoS-based underlying distributed system we consider is a set of
processesl = py,...,p,, located in one or more sites, communicating through a set
I" of n(n — 1)/2 channels, where,,; means a communication channel betwggandp, .
(That is, the system is represented by a complete giap(il, I'), wherell are the nodes
andI the edges of the graph.)

We also assume that processedlirare equipped with enough computational
power so that the time necessary to process control messages are negligible small com-
pared with network delays. Therefore, control messages originated by the implemented
model are assumed to be promptly compétedoreover, the processes are assumed to
fail only by crashing and the network is not partitionable.

3.1. The QoS Provider

In order to make our system model portable to distinct QoS architectures, we define a
number of functions to be encapsulated in a mechanism we call the QoS Provider, for
creating and assessing QoS communication channels on behalf of application processes.
Thanks to this modular encapsulation, porting our system to a given QoS infrastructure
means implementing the QoSP functions in such a new target environment. The QoSP
is made up of a module in each site of the system. The basic data structure maintained
by each module is a table holding information about existing channels. These modules
exchange messages to carry out modifications on the QoS of channels (due to failures or
application requests).

The QoS provider has characteristics similar to services present in QoS archi-
tectures such as Omega [16]. This section describes its main functionalities, which
are needed for implementing our system model. (The complete description of the QoS
provider is beyond the scope of this paper, and can be seen elsewhere [9].) Processes
interact with the QoS Provider through the following functions.

CreateChannel(p,, p,) : 11> — T.

De fineQoS(ps, py, qos) : I1? x {timely, untimely} — {timely, untimely}.
QoS (pz, py) : II? — {timely, untimely}.

Delay(py,py) : 11? — N+,

The functionsCreateChannel(), De fineQoS(), QoSl(), andDelay() are used
for creating a channel, changing its QoS, obtaining its current QoS, and obtaining the
expected delay -in miliseconds- for message transfer for the chappetespectively.
Besides the above functions, each QoSP module continuously monitors all timely chan-
nels linked to the related site, to check whether failures or lack of resources have resulted
in a modification of the channel QoS (from timely to untimely). A particular case that the
QOSP also assesses is the existence of a timely channel where no message flow happens
within a period of time, which indicates that the timely channel is possibly linking two
crashed processes (in this circumstance, the QoS of the channel is modified to untimely

2This assumption can be relaxed by using real-time operating systems, which can provide bounded
process execution times



in order to release resources). Modifications on the QoS of channels are immediately
reported to the state detector related to a given module of the QoSP, through messages
changeQo$(,,p,,newQoS)indicating that the QoS of the channegl, has been modi-

fied tonewQoSsee Section 3.2.1.).

When a process crashes, the QoS Provider can still give information about the
QoS of the channels linked to that crashed process. However, if the site hosting a process
crashes or the related QoS Provider crashes, all the channels allocated to processes in
this site are destroyed. If a given QoS Provider module cannot deliver information about
a given channel (possibly, because it has crashed), this channel is then assumed to be
untimely (which may represent a change in its previous QoS condition).

3.2. The System Model Implementation

In our system model, distributed processes perceive each other’s state by reading the con-
tents of the setdown live, anduncertain These sets can evolve dynamically following
system state changes while respecting the rules RO to R5. Therefore, implementing our
system model implies providing the necessary mechanisms to maintain the sets according
to their semantics. Two mechanisms have been developed to this end:

e astate detectothat is responsible for maintaining the skt® anduncertain in
accordance with the information delivered by the QoSP, and

¢ afailure detectorthat utilizes the information provided by both, the QoSP and the
state detector, to detect crashes and updatddivasets accordingly.

Associated with each procegsthere is a module of the state detector, a module
of the failure detector, a representation of &(I1,I") graph, and the three set§ve;,
uncertain;, anddown;. The DS(IT, T") graph is constructed by using the QoSP functions
CreateChannel(and DefineQoS()for creating channels according to the QoS required
and resources available in the system. The modules of the state detector exchange the
information of the created channels so that they keep idenfi¢dl1, I') graphs during
the system initialization phase.

During the initialization phase, the sétwn; is set to empty and the contents of
live; anduncertain; are initialized so that the identity of a procegsss placed intdive;
if and only if there is a timely channel linking; to another process (i.ed,p, € 1I such
thatQoS(p;, p.) = timely). Otherwise, the identity of; is placed inuncertain;. When
the initialization phase ends, processeslinbserve identical contents for their respec-
tive live, down anduncertainsets, and a given process is eithetive or in uncertain
(ensuring, therefore, the restrictions RO and R1 of our model).

During the application execution, the contents of the three sets are dynamically
modified according to the existence of failures and/or QoS modifications. Next it is de-
scribed the implemented mechanisms in charge of updating the contdivis afdun-
certain(the state detector), and the contentsl@ivn(the failure detector).

3.2.1. An Implementation of the State Detector

There is a module of the state detector for each procelds The module of the state de-
tector associated withy executes two concurrent tasks to updatedBgraph maintained

by p.



The first task is activated by messaghangeQoSf,p..,newQoS¥rom the local
module of QoSP, indicating that the QoS of the chanrfjelhas been modified. Upon
receiving thechangeQo3$nessage, the state detectoppfirst verifies whethep, is not
in the down; set (this is necessary to guarantee R4, see Section 3.3.). If that test turns
out to be true, it passes on the information of the new QoS of the chappeb the
remote modules of the state detector, and the ID&draph is updated accordingly (i.e.,
DS;(pi, p:) is set toNewQo0$.

The second task is activated when the failure detector communicates the crash of a
proces®, (see details in the next section). The goal of this task is to check whether there
is process in théive set, sayp,, that had a timely channel to the crashed process. If the
channek,/, is the only timely channel tp,, it can no longer be detectable and therefore
must be moved frontive to uncertain This is realized by setting all channels linked to
the crashed process as untimely in B@graph.

In both tasks, after updating tiES graph, the procedundpdateState()described
in Figure 1, is called for each, linked to a modified channel, to update the Jeéts;
anduncertain;, accordingly. Procesgs, is moved fromiive; to uncertain; if no timely
channel linkingp,, is left (lines 1-4) ;p, is moved fromuncertain; to live; if a new timely
channel linkingp,. has been created (lines 6-8).

Procedure UpdateStaté,., live;, uncertain;)

(1) if (ps € live;)) AN (Y py €11 ((py # pz) — (DSi[pe, py) = untimely)))
(2) then % This is for Rule R3 %

3) live; — live; — {p. };

(4) uncertain; «— uncertain; U {p;}

(5) else

(6) if (pz € uncertain;) A (3 py € IL: ((py # pa) — (DSilps, py] = timely)))
@) then uncertain; « uncertain; — {p. };

(8) live; < live; U {py}

9 end_if

(10) end_if

Figure 1. Algorithm to Update the Sets  live; and uncertain;

3.2.2. An Implementation of the Failure Detector

Besides maintaining the sétwn;, the failure detector also maintains the setpected;
for keeping the identities of processes suspected of having crashed. A prpicéseacts
with the failure detector by accessing these sets.

The failure detector works inpull model, where each module (working on behalf
of a procesg,.) periodically sends "are you alive?" messages to the other modules related
to the other processes Iih. The timeout value used for awaiting "I am alive" messages
from a monitored process, is calculated using the QoSP functidérelay(p,,p,). The
timeout includes the so-called round-trip tintet)¢, and a safety marginy), to account
for necessary time to process these messagegsaatdp, .

For timely channels, the calculated timeout is accurate in the sense that net-
work and system resources and related scheduling mechanisms guaranteeithen a

3That is the time to transfer the "are-you-alive?" message fipto py Plus the time to transfer the "I
am alive" message from, to p,.



bounded limit. Therefore, the expiration of the timeout is an accurate indicatiop,that
crashed, and in that caggis moved fromlive to down To account for a possible modifi-
cation of the QoS of the channel,,, before producing a notification, the failure detector
checks it out whether the channel remained timely using the QoSP fur@tisg..,p,)*.

On the other hand, if the channel linkipg andp, is untimely, the expiration of the time-
out is only a hint of a possible crash and, in that case, besides belongingddain p,

Is also included in the ssuspected

The algorithm for the failure detector for a process described in Figure 2,
is composed by 5 parallel tasks. The parametenitoringintervalindicates the time
interval between two consecutive "are-you-alive?" messages sepf. byThe array
timeout;[1..n] holds the calculated timeout fprto receive the next "l-am-alive" message
from each process ifi. The functionCT;() returns the current local time ands a safety
margin that also includes the time necessary to process each pair of "are-you-alive?" and
"l-am-alive" messages. Task 1 periodically sends a "l-am-alive" message to all processes
(actually, the related failure detector modules) after setting a timeout value to receive the
corresponding "l-am-alive" message, which in turn is sent by Task 5. Task 2 assesses
the expiration of timeouts, and it sends notification messages when the timeouts expire
for processes ihive;, moving them into theown,; set. Otherwise, if the timeout expires
for processes in thencertain; set, their identities are also included into thespected;
set. Task 3 removes a process from thepected; set when a message from that process
is received. Task 4 handles crash notification messages and updates thevsetand
live;, accordingly.

3.3. Correctness Proof Sketches of The Implementation

This section presents correctness arguments showing that the above-described mecha-
nisms properly implement the proposed adaptive system model. That is, they assure the
correct semantics for the construction and maintainance of thesetstain;, live; and

down;, as defined by the rules RO-R5, which are demonstrated by the following lemmas.
Lemma 1 Rules RO and R1 are respected

Proof As discussed in section 3.2., during the system initialization the sets are initialized
respecting RO and R1. To see that R1 holds during the system execution, notice that any
inclusion of a given element in a specific set is followed by the removal of this particular
element from another set (lines 3-4 and 7-8 of thpdateState(procedure of the state
detector (Figure 1) and lines 7-8 and 18-20 of the failure detector (Figure 2). Therefore,
R1 cannot be violated for correct processes. 07 emma 1

Lemma 2 Rule R2 is respected

Proof To see that down; setis never decreasing (first part of R2), observe thatdhe:,

set is only modified to include new elements (lines 7 and 18 of Figure 2). The second part
of R2, which states that@wn; set is safe regarding crashes, is respected since a process
identifier is only moved into théown; when a timeout for a timely channel to that process
expires (lines 7 and 18 of Figure 2). To assure that the timely channel has not lost its
timely condition during the transmission of the "l-am-alive" message, the QoS function

40One should observe here that the QoS Provider holds the information and resources related to a given
channel even after the crashes of the processes linked by that channel.



Task T'1: every monitoringlntervaldo
(1) for_eachp;, p; # p;do
@) timeout;[p;] < CT;() + Delay(pi,p;) + o
3) send are-you-alivép;) to p;
(4) end_do
Task 72: when3p; : (p; ¢ down;) A (CT;() > timeout;[p;])) do
(5) if ((p; € live;)
(6) then if (DSy[pi, ;] = timely) A (QoS(pi. py) = timely))
@) then down; « down; U {p,};
(8) live; «— live; — py;
(9) send notification {p;, p;) to every p, such that p, # p;,p;
(10) else do nothing (wait for a remote notification)
(11) end_if
(12) elseif((p; € uncertain;) A (p; # suspected;))
(13) then suspected; — suspected; U {p;} end_if
(14) end_if
Task T'3: when*“I-am-alive” is received fronp;) do
(15) if CT;() > timeout;[p,] then
(16) if (p; € suspected;) then suspected; «— suspected; — p; end_if
an end_if
Task T'4: when notificationf,, p;) is receiveddo
(18) if p; ¢ down, then down; «— down; U {p;};
(19) if p; € live,; thenlive; «— live; — p;
(20) else uncertain; «— uncertain; — p;;
(21) if p,€ suspected, then
(22) suspected; <+ suspected; — p;
(23) end_if
(24) end_if
(25) end_if
Task T'5: when “Are-you-alive?” is received fromp; do send “I-am-alive”(p;) to p;

Figure 2. Algorithm for the Failure Detector Module (  p;)

of the QOSP is used (line 6 of Figure 2). Thus, if all resources and related QoS scheduling
mechanisms are still available for the channel (i.e., it remains timely), the expiration of
the timeout can only happen when the monitored process fails in sending the "lI-am-alive"
message (i.e., it crashed). O emma 2

Lemma 3 Rule R3 is respected

Proof This rule is enforced by the application as it is assumed that a process does not ask
for the modification of the QoS of a channel framtimelyto timelyduring the execution
of consensus. U Lemma 3

Lemma 4 Rule R4 is respected

Proof Let us first consider the first part of R4 and assume by contradictiorvthatk:
pe € livei(to) A pr € down;(to + 1) = 3t1 > to : px € uncertain;(ty). If p; €
uncertain;(t1), p; must see all channels {9, as untimely at time; (lines 1-4 of the
state detector in Figure 1). However,jascrashed at time, + 1, there was at least one
timely channel tg, (the one linking to the process that detecigd crash, say channel
cz/k)- S0, in order to have all channels untimely, the changing of QoS for the chanpel
must be reported tp; by ¢,. Since the state detector relatedtowill not send any QoS



modifications for channels connected to crashed processes (see section3 &ill not
change the status of ;, and, therefore, at least one channel will remain timely; at

As for the second part of R4, let us assume by contradictionvthatk: p, €
live;(to) A\ pr, € uncertain;(to + 1) = 3t; > to : pi € down;(t1). To detect the crash of
pr attimet,, there must be at least one timely channel linking,t¢see lines 6-7 in Figure
2). Since all channels are untimely at time+ 1, and by assumption channels cannot
become timely during consensus execution (R3), then there will be no timely channel
linking to p, att¢; and, thereforep, cannot belong tdown;(t;). O/ ermma 4

Lemma 5 Rule R5 is respected

Proof Assume a process; crashes at timé,, and thatp,; does appear in thencertain

set of any process for an indefinitely long period of time. Thatvis, > ¢, we have

p; ¢ uncertain;(ts), fort; > t,. And assume by contradiction that there is a time ¢,

such thatvt, > t; we havep; ¢ down;(t,). First notice that front, procesg; will not

send "lI-am-alive" messages (Task T1 of Figure 2). Thus, the timeout set to receive such

a message from; will eventually expire (Task T2 of Figure 2). Ag does not appear in

theuncertain, set of any process, att,, it must belong to the setiwe of all processes

(which implies that there is at least one process,sayvith timely channel tg; att,).

Therefore, the predicate of lines 5-6 of Figure 2 will become trueygnwill be moved

from live; to down; (lines 7-8 of Figure 2). Aditionally, a notification message is sent and

received (as channels are assumed to be reliable) by all correct processes (i.e., processes

that do not crash by,), which update theidownsets accordingly (task T4 of Figure 2).
I:\Lemma 5

3.4. A LINUX/JAVA Prototype and its Performance

Thefailure detector the state detectqrthe consensus algorithm, and the QoS provider
have been implemented (as JAVA classes) and tested over a set of networked LINUX
workstations. We utilized the RED HAT LINUX 9 (kernel 2.4.20), which includes the
iproute2package that allows the configuration of the kernel routing tables to control com-
munication flows and to execute traffic control disciplines (such as the ones necessary
to implementDiffServfunctions [1]). We configured the LINUX kernel witiBQ(Class

Based Queue) forwarding characteristics to cré&iféServ classes of serviceEkpress
Forwarding for timely channels an@est Effortfor untimelychannels), and we used the
u32andtcindexfilters to identify packets and to associate them to classes of service.

We carried out experiments to assess the prototype performability. The experi-
mental environment used consisted of a network of three LINUX Pentium Il computers
(800 MHz, 128 MB RAM) connected through a 100 megabits network. One of the com-
puters worked as a router connecting the other two computers.

We run the quorum-based consensus protocol described in [13] with four
processes over the non-router computers (so that a decision quorum would never been
formed in a sole machine), and measured the time to reach consensus. In this particu-
lar experiment, the processes were connected by two timely channels and four untimely
channels, in such a way that three processes were iliviheet and one process in the
uncertainset. During the experiment, two processes inlitreeset were forced to fail. The
other two processes detected the failures and moved the identities of the crashed processes



from thelive set to thedownset, thus adjusting the decision quorum (for the two remain-
ing correct processes), and finally achieving consensus. It is important to notice that if
all channels were untimely, consensus would not have been achieved, as in this circum-
stances, a majority of correct processes is required [3] (this point illustrates the benefit of
our hybrid and adaptive model). We run this experiment 100 times and collected the time
to reach consensus from the first coordinator (that always belonged tot¢keetainset),

and calculated the mean time and standard deviation for the 100 runs (see first column of
Table 1).

We also run two other experiments. One with all channels untimely and the other
with all channels timely for a set of three processes, both experiments without failures.
The second and third columns of Table 1 show the mean time and standard deviation for
100 runs of each experiment, respectively.

| |uncertain = 1 and|live| = 3 | |uncertai = 3 | [live| =3
Mean Time 154 ms 50.93 ms 49.96 ms
Standard Deviation 78.64 ms 21.18 ms 26.85 ms

Table 1. Mean time to reach consensus
4. Conclusion

This paper showed how to exploit QoS facilities to implement an adaptive model for fault-
tolerant distributed computing, that encompasses both the synchronous model (where
there are time bounds on processing speed and message delay) and the asynchronous
model (where there is no time bound).

This new model can be particularly relevant for applications that require run-time
adaptiveness characteristics, such as distributed multimedia systems, where previously
negotiated QoS cannot always be delivered between processes. In order to specify the un-
derlying functionality needed to implement the adptive model, a mechanism (called the
QoS provider) has been developed and implemented. Thanks to this modularity dimen-
sion of the approach, porting the model implementation to a given environment requires
only to implement the QoS Provider functions that have been defined. The proposed sys-
tem has been implemented in JAVA and tested over a set networked LINUX workstations,
equipped with QoS capabilities.

The work presented in this paper is part of a QoS middleware infrastructure in-
tended for adaptive fault tolerant applications, being developed in the Distributed System
Laboratory (LaSID) at UFBA, in cooperation with the distributed systems and networks
research group at UFPE. In [13] we introduced an adaptive distributed computing model
and related consensus algorithm that can benefit from the QoS support and fault tolerant
mechanisms presented in this paper. Other efforts are needed to complement the function-
alities of the infrastructure being developed. For instance, the development of replication
management and group communication services and a tool capable of mapping fault tol-
erant and QoS specifications into the infrastructure services, are efforts planned for future
work.
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