
An RBAC-based PIB for Provisioning Access Control

Timothy E. Squair, Edgard Jamhour, Ricardo C. Nabhen

Pontifícia Universidade Católica do Paraná, PUCPR, PPGIA,
Rua Imaculada Conceição 1155, CEP 80215-901, Curitiba, Brazil.

{timothy, jamhour, rcnabhen}@ppgia.pucpr.br

Abstract. This paper presents a framework for representing and distributing
access control policies in distributed heterogeneous systems. Access control
polices follows the RBAC (Role Based Access Control) model proposed by the
NIST. The framework is based on the provisioning strategy defined by IETF,
i.e., the RBAC information is represented in terms of a PIB (Policy
Information Base) and distributed to the enforcement elements using the
COPS-PR protocol. This approach can be explored in several scenarios for
configuring both network devices and RBAC-aware applications. A research
prototype has been implemented, and the results obtained from a performance
analysis of the proposed extensions are summarized and evaluated.

1. Introduction
Managing security in a large enterprise can be a complex task. Usually, applications
developed using heterogeneous technologies adopt different strategies for representing
and enforcing security. In this scenario, it is impractical to obtain a unified view of the
security policies. Also, auditing and modifying security policies can be an expensive
and difficult task. PBNM (Policy Based Network Management) is a promising approach
for addressing this problem. A complete PBNM framework for managing security
should include an unified model for representing policies, users and resources and also
the mechanisms for distributing and enforcing these policies among heterogeneous
applications.

This paper presents a framework for distributing access control policies in distributed
heterogeneous systems. The framework is inspired on the recently published IETF
standards concerning both policy representation and policy distribution adopting a
provisioning approach. The provisioning approach is based on three main elements [2]:

i. a device-independent policy information model, used for representing policies that
can be reused among different devices;

ii. a policy information base (PIB), which represents the policy assigned to a specific
device. The PIB is generated from the device-independent policy model by a
policy translation process. The translation takes into account the device
capabilities, i.e., the mechanisms that the specific device supports for enforcing
the policy;

iii. a protocol (COPS-PR) [3] specifically designed for supporting policy
provisioning using the PIB structure, i.e., negotiating capabilities, transporting and
installing the PIB into the device.

The provisioning approach is understandably generic, and can be explored in several
management domains. IETF has already explored the provisioning approach for
distributing diffserv configuration and, recently, for distributing IPsec configuration.
Other potential target domains for future standardization are MPLS, Access Control and
3GPP UMTS [15]. Each management domain is addressed by defining a device-
independent policy information model and a PIB. IETF has published the guidelines for
defining these elements. The Policy Core Information Model (PCIM) [5] and its
extensions (PCIMe) [6] define a generic set of classes and associations used for
representing policies for any management domain. Policy models for specific domains
are defined by extending the PCIM/PCIMe classes and associations. The framework
PIB [9] defines a generic PIB template, which specifies the elements required for
supporting capability negotiation and policy installation. Again, specific domains are
addressed by extending the framework PIB elements.

This paper addresses a domain not yet explored by IETF, i.e., a framework for
distributing RBAC (Role Based Access Control) policies to devices and applications.
The framework is defined by introducing a device-independent RBAC information
model and a RBAC-PIB.

The remaining of this paper is organized as follows: Section 2 discusses the motivation
and contributions of this work. Section 3 reviews some important works that propose
alternative approaches for access control policy representation and distribution. Section
4 describes the main elements of the proposed provisioning framework. Section 5
discusses the RBAC-based information model. Section 6 describes the RBAC-PIB.
Section 7 presents the performance evaluation of the proposed framework, considering
both: the size of the RBAC-PIB and the required time for provisioning the PIB. Finally,
the conclusion summarizes the main aspects of this project and main points to future
works.

2. Motivation and Contributions
The access control is one of the most important and complex aspects of the security
management. The need of access control is present in the several components of a
distributed system. In some cases, the access control refers to the right of managing
network devices, such as gateways and firewalls. In other cases, the access control
policies restrict the access of users to shared resources and application level services.
RBAC is a quite generic information model that can be used for representing several
types of access control policies. The RBAC NIST model, adopted in this work, offers a
wide range of combinations where roles, permissions and resources can be associated in
order to express a wide range of access control policies. Additionally, the RBAC NIST
model allows to define special rules for constraining undesirable combinations of access
permissions using static (session independent) and dynamic (activated in a session)
restrictions.

In a distributed system, the access control is implemented by different elements. Not all
elements can support the same enforcement mechanisms or are capable of interpreting
all policy elements defined by the generic RBAC NIST model. The provisioning
strategy offers an elegant approach for this problem. The strategy defines (at least) two
information model levels: a device-independent information model and another that
takes into account the capabilities of the device (PIB). In our work, these models have

been called, respectively, RBPIM (Role-Based Policy Information Model) and RBAC-
PIB (RBAC Policy Information Base).

The RBPIM allows to explore the RBAC model from a centralized point of view,
allowing the reuse of elements shared by the several devices of the distributed
environment (e.g. the role "Network Manager"). Complementarily, the translation
process from RBPIM to RBAC-PIB allows to adapt the RBAC-policies according to the
capabilities of the device by eliminating or replacing the elements not supported by the
device.

The use of the COPS-PR protocol also brings evident advantages for distributing
policies in a distributed and heterogeneous environment. COPS-PR is specifically
designed for supporting policy provisioning using the PIB structure, i.e., negotiating
capabilities, transporting and installing the PIB into the devices.

The major contribution of this paper is the RBAC-PIB definition. The RBPIM is based
on a previous work Nabhen et al [12]. In this previous work, the RBPIM model have
been explored using the outsourcing approach. Because some extensions have been
included in order to support the provisioning approach, the RBPIM is also discussed in
this paper. However, it is important to note that, because the PIB is defined by a policy
translation, other information models representing RBAC policies could be combined
with the PIB strategy. Section 3 will review some related works that can eventually be
combined with the RBAC-PIB approach.

3. Other Aproaches
When defining an access control framework two important issues must be considered:
(i) the model (or language) adopted for representing policies; (ii) the approach adopted
for interpreting, distributing and enforcing the policies. The work described in this
paper adopts a PCIM/PCIMe extension for representing RBAC policies and proposes a
PIB/COPS-PR approach for distributing the policies. This work also adopts the PDP
(Policy Decision Point) and PEP (Policy Enforcement Point) as the entities responsible,
respectively, for policy interpretation/distribution and policy enforcement, as defined by
IETF [2]. This section will review three other strategies for representing, distributing
and enforcing access control policies.

An important work that adopts the PDP/PEP approach for access control is the XACML
(eXtensible Access Control Markup Language), proposed by the OASIS consortium
[10]. XACML is a complete solution for modeling, storing and distributing descriptive
access control policies. The XACML adopts a generic access control model, based on
the concept of policies, rules and targets. A XACML Target is a triple formed by
subject, resource and action. Targets are used for selecting policies must be considered
to evaluate a decision request and also for determining if a request is permitted or
denied. By properly defined rules and policies, it is possible to model RBAC policies
using the “xacml policy” language. In fact, the OASIS already published a document
supplying the directives for using XACML for describing RBAC policies [11].
XACML-based frameworks are supposed to be implemented using an "outsourcing"
PDP/PEP architecture, i.e., policy interpretation is performed by the PDP, and final
decisions (Permit or Deny) are delivered to the PEPs. It is a logical assumption to
consider that a "pure" outsourcing strategy represents a scalability issue when large
scale systems are considered. Another important aspect refers to the "reuse" of

management information. Policies are described in terms of subjects (e.g., users) and
resources (e.g., applications). An important feature for an access control framework is
the capacity of reusing management information shared with other management
frameworks. In this scenario, describing policies using a standard method for
representing management information is a desirable feature. The Common Information
Model (CIM) [4] is an important standardization effort for defining a model capable of
representing management information. XACML does not directly support the creation
of policies using CIM elements or any other standard model for reusing management
information [8]. By the other hand, PCIMe-based models offers a straight-forward way
for creating policies that refers to CIM objects by using “PolicyExplicitVariables” (see
section 5).

The “Ponder Language” is another important contribution in the policy-based
management domain [13]. Different from XACML, which addresses only the access
control problem, Ponder can be applied to a wide range of management domains. The
Ponder language supports distinct types of policies. Authorization policies define the
actions that subjects are permitted (or forbidden) to perform on target objects when
certain conditions are satisfied. Obligation policies define the actions that subjects must
perform on target objects when certain events occur. Composite policies provide
facilities for grouping policies and structure them according to the organizational
structure or other management needs. The Ponder project is continuously evolving, and
recent Ponder publications starts exploring the use of CIM as the model for representing
the policy target mechanisms and capabilities for diffserv frameworks [13]. The strategy
adopted for Ponder implementation is quite different from the work described in this
paper. The Ponder framework can be implemented by using a toolkit which permits to
generate Java classes for building policy decision and policy enforcement objects. The
framework also supports a strategy for notifying events to the policy objects responsible
for supporting obligation policies. By the other hand, our proposal, describes access
control policies as a PIB, which is provisioned to the PEP using the COPS-PR protocol.
In the PIB, the RBAC policy elements are distinctly identified, offering a flexible
method for updating the PIB and notifying information to the PDP. Also, because no
assumption is made about the PEP implementation, the RBAC PIB information can be
explored by applications or PEPs under distinct strategies.

The work “Role-Based Access Control for XML Enabled Management Gateways” [14]
defines a XML/SNMPv3 gateway for RBAC. The RBAC policy is defined in XML
(using an schema proposed by the authors). The Gateway is responsible for mapping the
RBAC XML-policy to a MIB structure and configuring the network devices using
SNMPv3. The authors also discusses the advantages of using RBAC policies to simplify
the management of network devices. The RBAC-PIB, proposed in our paper, is also
represented in XML, but follows the rigid structure defined by the framework PIB [9].
However, a similar approach as described in Cridlig et al [14] could be used for
applying the RBAC policy network devices, i.e., creating a RBAC-PIB/SNMPv3
gateway. Conceptually, this gateway could be considered as part of a PEP.

There are also tool kits availables for simplifying the process for building COPS-PR
based frameworks [15]. The white paper [15] also brings an interesting discussion
about the advantages of applying the provisioning approach for several management
domains, including access control.

4. The RBAC Provisioning Framework
Figure1 illustrates the three main elements in the RBAC provisioning framework: the
policy server, the policy client and the policy repository. The policy server (i.e., the
PDP) is the entity responsible for interpreting and distributing the policy information to
the policy clients. A PEP can be considered the component in the policy client
responsible for communicating with the PDP and supplying local policy decisions or
installing the configuration into the device. The communication between the PEP and
the PDP is implemented by the standard COPS-PR protocol. Figure 1 illustrates only
one PEP, but a single PDP in the provisioning approach can handle a large number of
PEPs. The performance issue is addressed in the section 7. As suggested by IETF, the
policy and CIM information are both mapped to a LDAP schema. Because LDAP
supports remote references through its schema, the CIM and LDAP repository are not
required to be implemented in the same LDAP server. Also, both, policy and CIM
information could be implemented using other technology, such as XML.

Server
Application

PEP service
(COPS interface)

Client

Application
specific
protocol

RBAC-PEP
API

Policy Client

I.
in

it.
 s

es
si

on

II.
 c

on
fir

m
 s

es
si

on

III
. c

he
ck

 a
ce

ss

IV
. a

cc
es

s
de

ci
si

on

RBAC-PIB
instance

RBAC-PIB/
SNMPv3 ,CLI

Gateway

PEP service
(COPS interface)

SNMPv3,
CLI

Policy Client

RBAC-PIB
instance

Network Device

Server

CLI

A) provisioning RBAC for
aplications

B) provisioning RBAC for
network devices

(Users and
Resources) CIM

(RBAC Policies)
RBPIM

Ref

3. subset of RBAC policies
for selected roles

RBAC-PIB
instance

RBPIM-to-PIB
compiler

PEP service
(COPS interface)

PDP provisioning
(COPS interface)

4. compiled
RBAC info

2. request infoPolicy Client

Policy Server

LDAP Server

1. request PIB
(capabilities + roles +

supported
classes and attributes)

5. PIB info

COPS-PR
RBAC-PIB
instance

Figure 1. RBAC Provisioning Framework Overview

The RBAC-PIB information can be explored by two approaches, as illustrated in Figure
1. In the first approach (A), a PEP represents a server application which can be
responsible for serving a large number of clients. The communication protocol between
the server application and its clients is not imposed by our framework. In our current
implementation, the server application communicates with the RBAC framework
through a set of RBAC-based API, which follows the definitions proposed by the NIST
standard [1]. These API are described in details in Nabhen et al [12]. In the second
approach (B) the information in the RBAC-PIB is translated to configuration commands
to the underlying system or to network devices via SNMPv3 or CLI – Command Line
Interface.

The typical sequence of events related to policy provisioning and a PEP decision is also
illustrated in Figure 1 (the explanation in this section follows the numbers in the arrows
in the figure). When initialized, the PEP establishes a COPS-PR connection to the PDP,
and requests an initial policy provisioning (i.e., a “full state” request) (1). As defined by
IETF, the PEP supply in the policy request message a combination of
“roles+capabilities” that are used to select a sub-set of policies that are required by the
application(s) or device(s) interface(s) the PEP represents (e.g., “Warehouse Server” or
“DMZ firewall Inbound Interface”). On receiving the request, the PDP activates the

RBPIM-to-PIB compiler in order to generate a RBAC-PIB for the PEP (2). The
RBPIM-to-PIB compiler collects the subset or RBAC policies associated to the selected
“roles” (3) and compiles the information into a RBAC-PIB (4). The RBPIM-to-PIB
transformation is described in section 6. The PDP returns the PIB information to the
PEP, using the COPS-PR protocol (5). The PEP stores the PIB information in a local
repository.

Note, in the figure, that the PDP also keeps a copy of the RBAC-PIB in memory. This is
required because the COPS-PR is a stateful protocol and PEP information is required in
order to restore the PEP information in case of failure or to update information in the
PEP.

5. RBPIM
This section discusses the RBPIM model. As defined in Ferraiolo et al [1], the RBAC
model includes sets of five basic data elements called users (USER), roles (ROLES),
objects (OBS), operations (OPS), and permissions (PRMS). The main idea behind the
RBAC model is that permissions are assigned to roles instead of being assigned to
users. The User Assignment (UA) is a many-to-many relationship (i.e., a user can be
assigned to one or more roles, and a role can be assigned to one or more users). The
Permission Assignment (PA) is also a many-to-many relationship (i.e., a permission can
be assigned to one or more roles, and a role can be assigned to one or more
permissions). A permission is an approval to perform an operation (e.g., read, write,
execute, etc.) on one or more RBAC protected objects (e.g., a file, directory entry,
software application, etc.). Role hierarchies define an inheritance relation of
permissions among roles. The Static Separation of Duty (SSD) model element
introduces static constraints to the User Assignment (UA) relationship by excluding the
possibility of the user to assume conflicting roles. An important concept in RBAC is
that roles must be activated in a session. The Dynamic Separation of Duty (DSD) model
element introduces constraints on the roles a user can activate within a session.

**

RBACPolicyGroup

-DSDName
-RoleSet[]
-Cardinality

DSDRBAC
-SSDName
-RoleSet[]
-Cardinality

SSDRBAC

*

*

*

*

-RoleName
-InheritedRoles[]

RBACRole

-TimeOfDayMask
PolicyTimePeriodCondition

-PermissionName
RBACPermission

*

*

+ConditionListType
-RulePriority

PolicyRule -PolicyRole : String
PolicyRoleCollection

PolicySet

ROLES

PRMS

DSD

SSD

PolicySetInRoleCollection
SystemSpecificCollection

PolicyGroup

Figure 2. RBPIM Classes and Associations

The RBPIM (Role-Based Policy Information Model) is a PCIM extension for describing
access control policies based on RBAC. RPBIM adopts the RBAC model [1], but some

extensions have been introduced in order to provide a more flexible method for
mapping users to roles and describing permissions and also for establishing network
topology-based and time-based permission constraints. Figure 2 shows the revised
RBPIM model adapted to the provisioning approach. The gray classes were introduced
by the RBPIM model. The others are defined by PCIM/PCIMe [5,6] and CIM Core[4].

The RBACPolicyGroup defines a set of policy information that must be considered
when generating a RBAC-PIB. Usually, in a large distributed environment, the policy
repository will contain a large number of RBACPolicyGroup instances, each one
associated with one or more PolicyRoleCollection. When a PEP requests the policy
provisioning to the PDP, it supplies the “roles” assigned to its interface(s). By using the
PolicySetInRoleCollection association, the PDP selects only the RBACPolicyGroup
instances that must be considered for that particular interface.

Basically, RBPIM introduces two PolicyRule extensions, named RBACRole
(representing roles ∈ ROLES) and RBACPermission (representing permissions ∈
PRMS). The PolicyTimePeriodCondition instances are used for imposing time
constraints to the use of roles and permissions. The static and dynamic separation of
duty constraints are represented, respectively, by DSDRBAC and SSDRBAC instances,
according to the semantic described [1]. Both classes are specializations of
“SystemSpecificCollection”, defined by the CIM Core. Note that the SSD and DSD
constraints are imposed to the RBACPolicyGroup. Therefore, they could not be
represented as rule conditions.

*

*

-RoleName
-InheritedRoles[]

RBACRole

-AssignedRBACPermission
AssignerRBACPermission

*

*

UA

PA

USERS

UACompoundPolicyCondition

PolicyAction

CompoundPolicyCondition

PolicyAction

-PermissionName
RBACPermission

-AssignedOperation[]
AssignerOperation

*

*

OPS

*

*

OBSCompoundCondition

OBS

CompoundPolicyCondition

* *

PacketFilterCondition

IPHeadersFilter

FilterList
1

*

0..1

*

Figure 3. RBACRole and RBACPermission

The RBACRole class and its associations are illustrated in Figure 3. Using the
PolicyRule semantics defined by PCIM, a RBACRole instance express the following
rule: “If conditions are satisfied than assign the RBACRole permission(s) to the
user(s)”. As shown in the Figure 3, users ∈ USERS are represented by a
CompoundPolicyCondition extension, called UACompoundPolicyCondition. The use
of the CompoundPolicyCondition semantics simplifies the process of assigning a role to
a user (UA) because the assignment can be implemented with predefined CIM
information about the users and organization. For more details, please, see references
[6] and [12]. The permission is defined by a PolicyAction extension called
AssignerRBACPermission.

The RBACPermission class and its associations are illustrated in Figure 3. A
RBACPermission instance express the following rule: “If conditions are satisfied than
assign the operation permission(s) to the object(s)”. Objects ∈ OBS are defined by the
OBSCompoundCondition instances. Again, by defining an expression that combines
attributes of objects already described in the CIM repository, the use of a

CompoundCondition simplifies the process of defining permissions. The
AssignerOperation instances are used to represent operations ∈ OPS. The
PacketFilterConditions are used to restrict the permissions according to the network
topology.

Finally, note that because RBACRole and RBACPermission are both PolicyRule
extensions, they are indirectly associated by matching the attribute
AssignedRBACPermission (from AssignerRBACPermission) with the attribute
PermissionName (from RBACPermission).

The example in Figure 4 illustrates the use of the RBPIM model. The RBACRole in the
figure was called “Auditor”. The attribute InheritedRoles is used for expressing the
Hierarchical RBAC, i.e., the role “Auditor” inherits the permissions of role
“Employee”. The UA relationship for “Auditor” points to a compound condition with a
single simple condition, based on a PolicyExplicityVariable. The explicit variable
permits to create conditions referring to CIM objects. In this case, the “Auditor” role is
assigned to all users where the BusinessCategory attribute match “C1”. The UA
assignment is restricted to the period between 10h00 and 16h00 by the
PolicyTimePeriodCondition instance.

ConditionListType = DNF
RulePriority = 5
RoleName = Auditor
InheritedRoles[] = {Employee}

r1 : RBACRole

UAc1 : UACompoundPolicyCondition

ModelClass = Person
ModelProperty = BusinessCategory

obj : PolicyExplicitVariable

StringList[] = C1
obj : PolicyStringValue

AssignedRBACPermission = AUD
ra1 : AssignerRBACPermission

TimeOfDayMask = T100000/T160000
tc1 : PolicyTimePeriodCondition

ConditionNegated = false
GroupNumber = 1

sc1 : SimplePolicyCondition

Users container

TimePeriods container

Roles container

OBSc1 : OBSCompoundPolicyCondition

ConditionListType = DNF
RulePriority = 1
PermissionName = AUD

p1 : RBACPermission

StringList[] = FinancialManager
obj : PolicyStringValue

ModelClass = AplicationSystem
ModelProperty = Name

obj : PolicyExplicitVariable

AssignedOperation[] = auditTransactions
obj : AssignerOperation

ConditionNegated = false
GroupNumber = 1

obj : SimplePolicyCondition

Permissions container

Objects container

GroupNamber = 1
ConditionNegated = false
ConditionListType = DNF

pfc1 : PacketFilterCondition

Name = Internat_Net
Direction = mirrored

fl1 : FilterList

HdrIPVersion = IPv4
HdrSrcAddress = 192.168.1.0
HdrSrcMask = 255.255.255.0
HdrDestAddress = 192.168.1.1
HdrDestMask
HdrProtocolID
HdrSrcPortStart
HdrDestPortEnd = 80
HdrDestPortStart = 80
HdrSrcPortEnd

iph1 : IPHeadersFilter

IPFilters container

Figure 4. RBPIM policy example

The “Auditor” has a PA relationship with a permission called “AUD”. This permission
defines that the operation “auditTransactions” can be executed when
OBSCompoundConditions and the PacketFilterCondition are simultaneously satisfied.
In this case, the compound condition includes an explicit variable condition pointing to
a CIM object that represents an specific application. The PacketFilterCondition restricts
the operation from machines within the 192.168.1.0/24 subnet.

As well as PCIM, the RBPIM model has a neutral implementation. RBPIM mapping to
LDAP schema has been implemented according to the IETF standard PCLS [7]. In
Figure 4, it is defined six containers where the policy objects are stored. In this
approach, a container is created for storing “reusable” information. For example,
“RBACRole” instances are stored in a “Roles” container. by the other hand,
AssignerRBACPermission instances, are too simple for receiving a container, because
duplicate objects is cheaper than pointing them. Hence, they are also stored in the

“Roles” container and associated to RBACRole instances by DIT containment.
UACompoundPolicyCondition instances is also a worthy reusable information and,
therefore, are stored in a specific container. RBACRoles instances have received the
required attributes for pointing to the UACompoundCondition instances and grouping
then according to a DNF or CNF strategy. The same reasoning applies to the other
classes in the figure, i.e., worthy reusable information receives a container and other
associations are implemented by DIT containment.

6. RBAC-PIB
This work defines a RBAC-PIB which represents the information transferred from the
PDP to the PEP during provisioning process. The RBAC-PIB is based on the IETF PIB-
framework definitions [9]. Figure 4 shows the RBAC-PIB structure represented in
XML. A PIB can be described as a conceptual tree namespace where the branches of the
tree represent structures of data or Provisioning Classes (PRCs), while the leaves
represent various instantiations of Provisioning Instances (PRIs). The PRCs
corresponding to the BasePib, DeviceCapabilities and ClassifierGroup groups are
defined by the Framework PIB [9]. All PIB elements corresponding to branches have
an “oid” attribute, defined according to RFC 3159. The oid prefix 1.3.6.1.2.2.2 refers to
the framework PIB definition. The PRCs corresponding to the Rbac group are
extensions defined by our proposal. The oid prefix 1.3.6.1.2.2.2.6, currently unused,
have been assigned to identify the PRC classes corresponding to the Rbac information.
 <RbacPib id="4002">

- <BasePib oid=1.3.6.1.2.2.2.1>
+ <PrcSupport oid="1.3.6.1.2.2.2.1.1">
+ <PibIncarnation oid="1.3.6.1.2.2.2.1.2">
+ <DeviceId oid="1.3.6.1.2.2.2.1.3">

</BasePib>
- <DeviceCapabilities oid=1.3.6.1.2.2.2.2>

+ <CapabilitiesSet oid="1.3.6.1.2.2.2.2.1">
+ <InterfaceRoleCombo oid="1.3.6.1.2.2.2.2.3">

</DeviceCapabilities>
- <ClassifierGroup oid=1.3.6.1.2.2.2.3>

+ <IPFilter>
 </ClassifierGroup>
- <Rbac oid=1.3.6.1.2.2.2.6>

+ <UserAssignment oid="1.3.6.1.2.2.6.1">
+ <PermissionAssignment oid="1.3.6.1.2.2.6.2">
+ <SeparationOfDuty oid="1.3.6.1.2.2.6.3">
+ <TimeFilters oid="1.3.6.1.2.2.6.4">
+ <RbacCapabilities oid="1.3.6.1.2.6.5">

</Rbac>
</RbacPib>

<Prid id="9">
 <SupportedPrc type="6">1.3.6.1.2.2.6.1.1</SupportedPrc>
 <SupportedAttrs type="3">111</SupportedAttrs>
</Prid>

<Prid id="1">
 <Name>RbacCoreOnly</Name>
 <Capability>1.3.6.1.2.6.5.1</Capability>
</Prid>

<Prid id="1">
<Role type="3">Finantial</Role>
<CapSetName type="3">RbacCoreOnly</CapSetName>
<IfIndex> 1<IfIndex>

</Prid>

Figure 5. RBAC-PIB structure represented in XML.

A PRC can be used for both supplying (“notify”) or receiving (“install”) information
to/from the PDP. A PRC can be also “install-notify”, providing bidirectional exchange
of information between the PEP and the PDP. The BasePib have three tables grouping
the instances of the PRCs named PrcSupport, PibIncarnation and DeviceId. All classes
are “notify” except PibIncartion, which is “install-notify”. The PrcSupport instances
define the classes and attributes supported by the PIB. As example, Figure 5 shows the
PRI (instance with id=”9”) corresponding to the PRC User (in the UserAssignment
element of the Rbac group). The SupportedAttrs attribute is a binary map indicating the
PEP supports all three attributes defined for the class. This information is used by the
PDP, in order to determine which attributes must be transferred to the PEP during the
provisioning process.

The PibIncarnation instance (this PRC contains exactly one row) includes information
about the PDP, the version of the policy currently downloaded and the behavior of the
PEP when the connection with the PDP is closed. An attribute called <FullState> plays
an important role in the provisioning process. The PEP use FullState=true for asking a
full state update to the PDP (in this case, any previous state in the PDP is erased) and
FullState=false for asking an incremental update. DeviceId supplies additional
information for the PDP to identify the PEP (e.g., RBAC version or model).

DeviceCapabilities group supplies information to the PDP permitting to select and,
eventually, adapt the policies to be provisioned to the PEP. The CapabilitiesSet defines
optional information about specific mechanisms supported by the PEP. The
CapabilitiesSet defines pointers to specific capabilities defined by the RbacCapabilities
section in the RbacGroup (explained further in this section). The InterfaceRoleCombo
instances indicate the roles and capability sets that have been assigned to each interface
of the managed element.

The Classifier contains the PRC <IPFilter>, permitting to describe filtering conditions
based on the fields of the IP header. This PRC is used to represent the IPHeadersFilter
conditions used in the RBPIM model for constraining the PA assignments.

The strategy adopted for defining the representation of the RBAC information follows
the framework PIB definitions. PRC classes are used to group the RBAC information,
all attributes are defined within PRI instances and pointers based on “oid’s” are used to
implement the association between classes. This approach is required in order to use the
COPS-PR protocol for provisioning the policy information to the PEP. According to our
proposal the RBAC group contains five elements: <UserAssignment>,
<PermissionAssignment>, <SeparationOfDuty>, <TimeFilters> and
<RbacCapabilities>.

 <UserAssignment oid="1.3.6.1.2.2.6.1">
+ <Users oid="1.3.6.1.2.2.6.1.1">
+ <Roles oid="1.3.6.1.2.2.6.1.2">
+ <UserRoles oid="1.3.6.1.2.2.6.1.3">
+ <RoleTimeFilters oid="1.3.6.1.2.2.6.1.4">
</UserAssignment>

<Users oid="1.3.6.1.2.2.6.1.1">
<Prid id="1">

 <uid>tsquair</uid>
 <pwd>...<pwd>
 <pwdmeth>MD5 hash</pwdmeth>

</Prid>

<Roles oid="1.3.6.1.2.2.6.1.2">
<Prid id="1">

<name>Employee</name>
<priority>1</priority>

</Prid>
<Prid id="2">

<name>Auditor</name>
<priority>5</priority>

</Prid>
…

</Roles>

<UserRoles oid="1.3.6.1.2.2.6.1.3">>
<Prid id="1">

<uid>1.3.6.1.2.2.6.1.1.1</uid>
<role>1.3.6.1.2.2.6.1.2.1</role>

</Prid>
<Prid id="2">

<uid>1.3.6.1.2.2.6.1.1.1</uid>
<role>1.3.6.1.2.2.6.1.2.2</role>

 </Prid>
</UserRoles>

<RoleTimeFilters oid="1.3.6.1.2.2.6.1.4">
<Prid id="1">

<role>1.3.6.1.2.2.6.1.2.2</role>
<timefilter>1.3.6.1.2.2.6.4.1</timefilter>

</Prid>
</RoleTimeFilters>

Figure 6. Rbac PIB: UserAssignement Group

Figure 6 shows the structure <UserAssignment>, which is an element of the <Rbac>
group. The PRIs in the figure correspond to the policy example described in Figure 4.
The <UserAssignment> element contains four PRCs: <Users>, <Roles>, <UserRoles>
and <RoleTimeFilters>. Each PRI in the <Users> PRC corresponds to a user identified
by the <uid> attribute. The <pwd> and <pwdmeth> attributes are optionals (i.e., as

informed by the <PrcSupport> structure). The authentication attributes are optionals
because authentication management can be outside of the framework scope.

Similarly, each PRI in <Roles> corresponds to a RBAC role as defined by the
RBACRole class in the RBPIM model. The UA assignment is defined by the
<UserRoles> PRC, which is an association class between <User> and <Roles>. Note
that all UACompoundPolicyCondition information in the RBPIM model is pre-
processed by the PDP and the result is expressed by the <UserRoles> instances. During
the process of defining the <UserRoles> PRIs, the PDP automatically creates the PRIs
for representing the roles indirectly assigned to a user by heritage (by the
RBACRole.inheritedRoles[] attribute in the RBPIM model). During the process of
defining <UserRoles>, the PDP also takes into account the SSD constraints
(corresponding to the SSDRBAC class in the RBPIM model) resulting that only the
highest priority roles free of SSD constraints are assigned to a user in the PIB. Finally,
the <RoleTimeFilters> is used to constraint the period a user can activate a role. Note
that the time filter information refers to the <TimeFilters> PRC in the <Rbac> group
structure in Figure 5.

<PermissionAssignment oid="1.3.6.1.2.2.6.2">
+ <Objects oid="1.3.6.1.2.2.6.2.2">
+ <Permissions oid="1.3.6.1.2.2.6.2.1">
+ <RolePermissions oid="1.3.6.1.2.2.6.2.3">
+ <RolePermissionIPHeaderFilters oid="1.3.6.1.2.2.6.2.4">
+ <RolePermissionTimeFilters oid="1.3.6.1.2.2.6.2.5">
</PermissionAssignment>

<Objects oid="1.3.6.1.2.2.6.2.2">
<Prid id="1">

<expression>ApplicationSystem. Name=FinantialManager
 </expression>
</Prid>

</Objects>

<Permissions oid="1.3.6.1.2.2.6.2.1">
<Prid id="1">

<object>1.3.6.1.2.2.6.2.2.1</object>
<operation>auditTransaction</operation>

</Prid>
</Permissions>

<RolePermissions oid="1.3.6.1.2.2.6.2.3">
<Prid id="1">

<role>1.3.6.1.2.2.6.1.2.2</role>
<permission>1.3.6.1.2.2.6.2.1.1</permission>

</Prid>
</RolePermissions>

<RolePermissionIPHeaderFilters oid="1.3.6.1.2.2.6.2.4">
<Prid id="1">

 <rolepermission>1.3.6.1.2.2.6.2.3.1</rolepermission>
<ipfilter>1.3.6.1.2.2.2.3.2.1</ipfilter>

</Prid>
</RolePermissionIPHeaderFilters>

<RolePermissionTimeFilters oid="1.3.6.1.2.2.6.2.5">
<Prid id="1">

 <rolepermission>1.3.6.1.2.2.6.2.3.1</rolepermission>
<timefilter>1.3.6.1.2.2.6.4.1</timefilter>

</Prid>
</RolePermissionTimeFilters>

Figure 7. RBAC PIB: Permission Assignment

Figure 7 shows the structure of the <PermissionAssignment> which is an element of the
<Rbac> group. The <PermissionAssignment> element contains five PRCs: <Objects>,
<Permissions>, <RolePermissions>, <RolePermissionsIPHeadersFilters> and
<RolePermissionTimeFilters>. The <Objects> PRC defines the resources controlled by
the RBAC policy. The resources are represented by CIM objects. Each <Objects> PRI
contains a Boolean expression, formed by grouping policy explicit variables in CNF or
DNF form. The <Permissions> PRC defines permissions by mapping an operation
(“defined as a string attribute”) to an <Objects> PRI. Alternatively, CIM offers also
elements for describing operations that can be used in this approach by including the
operation in the <Objects> expression. <RolePermissions> is the association class
responsible for assigning permissions to RBAC roles. The permission assignment (PA)
is constrained by the PRCs <RolePermissionIPHeadersFilters> and
<RolePermissionsTimeFilters> permitting to define, respectively, subnet constraints and
time period constraints to the permissions assigned to a role. Note that

<RolePermissionIPHeadersFilters> employees “oid” references to the <IPFilter>
element defined by the Framework PIB.

The <SeparationOfDuty> element (see Figure 8) contains the RBAC definitions
permitting the PEP to implement the dynamic separation of duty, i.e., constraints the
roles a user can simultaneously activate within a section. The <DSD> PRC defines the
DSD cardinality and the <DSDEntries> PRC defines the roles constrained by the DSD.
Note that the static separation of duty constraints are pre-processed by the PDP and,
therefore, are not included in the PIB.

<DSD oid="1.3.6.1.2.2.6.3.1">
<Prid id="1">

<cardinality>2</cardinality>
</Prid>

</DSD>

<SeparationOfDuty oid="1.3.6.1.2.2.6.3">
+<DSD oid="1.3.6.1.2.2.6.3.1">
+<DSDEntries oid="1.3.6.1.2.2.6.3.2">

</SeparationOfDuty>

<DSDEntries oid="1.3.6.1.2.2.6.3.2">
<Prid id="1">

<role>1.3.6.1.2.2.6.1.2.2</role>
<dsd>1.3.6.1.2.2.6.3.1.1</dsd>

</Prid>
<Prid id="2">

<role>1.3.6.1.2.2.6.1.2.3</role>
<dsd>1.3.6.1.2.2.6.3.1.1</dsd>

</Prid>
</DSDEntries>

Figure 8. RBAC PIB: Separation of Duty

<RbacCapabilities> contains the elements pointed by the <CapabilitiesSet> from the
framework PIB. It is composed by 5 elements (see Figure 9). <RbacCoreCaps> defines
the support to the basic access control functionalities, as defined by the NIST. Presently,
only the NIST model is supported, but future extensions could include alternative
models. <RbacDSDCaps> defines the support to dynamic separation of duty
constraints. Usually, network devices do not have support to this functionality.
<RbacIPFilterCaps> and <RBacTimeFilterCaps> define the support to network and
time constraints imposed to Rbac permissions. These features are not presented in the
NIST specification, being extensions proposed by the RBPIM. In our current
implementation, when the constraining capabilities (DSD, Time and IPFilter) are not
supported the corresponding Permission and Roles are simply eliminated.

 <RbacCapabilities oid="1.3.6.1.2.2.6.5">
+<RbacCoreCaps oid="1.3.6.1.2.2.6.5.1">
+<RbacDSDCaps oid="1.3.6.1.2.2.6.5.21">
+<RbacIPFilterCaps oid="1.3.6.1.2.2.6.5.3">
+<RbacTimeFilterCaps oid="1.3.6.1.2.2.6.5.4">
+<RbacUAIncrementalUploadCaps>

</RbacCapabilities>

<Prid id="1">
<coreModel >NIST<coreModel>

</Prid>

<Prid id="1">
<filterModel >CIMIPHeadrFilter< filterModel>

</Prid>

<Prid id="1">
<dsdModel >NIST<dsdModel>

</Prid>

<Prid id="1">
<filterModel >CIMTimeFilter< filterModel>

</Prid>

<Prid id="1">
<uploadMethod >onDemand< uploadMethod>

</Prid>

Figure 9. RBAC Capabilities

Finally, <RbacIncrementalUploadCaps> defines an optional framework feature. When
this feature is present, the PIB information generated in the initial provisioning process
is not complete because it lacks the UA assignment (i.e., the mapping between user and
roles). The UA assignment is not initially provisioned because an application with a
large number of potential users would lead to a extremely large PIB. Instead, the UA
assignment is incrementally uploaded to the PIB when a new RBAC session is created.
The PEP requests the UA assignment to the PDP using the COPS-PR protocol
(FullState=false) and receives only the PIB elements concerning the UA assignment of

the new user. After this event, the check access requests can be locally decided by the
PEP. Note that this feature is not useful when the PIB is used for generating
configuration commands (the traditional PIB approach), it applies only to RBAC-aware
applications.

7. Evaluation
Our proposal has been evaluated in terms of two criteria: a) the size of the PIB with
respect to the complexity of the RBAC policy, i.e., the number of policy elements
(Roles, PRMS, OBJS, OPS, DSD and SSD, as defined in session 5) that must be
processed in order to generate the PIB; b) the time required for provisioning a PIB. The
provisioning time includes the time for compiling the RBPIM model, generating the
PIB and transferring it to the PEP using the COPS-PR protocol.

The PDP has been implemented in Java and runs in a Pentium IV 1.6 GHz, 1GB
memory PC. The policies are stored in a OpenLdap server, version 2.7. The PDP/PEP
are connected by a 100 Mbps Ethernet LAN. The evaluated scenario corresponds to
provisioning RBAC for applications (see item A in Figure 1). In this scenario, we
assume a managed device with support to the <RbacIncrementalUploadCaps), i.e., user
information is not initially provisioned. Table 1 summarizes the results of the
provisioning time evaluation for a subset of RBAC policies that concerns "a single PIB"
(as defined by the interface roles of the managed element). Note in the Table 1, the
effect of the number of RBAC objects in the PIB size and provisioning time. The time
for provisioning "one" user is also presented in the table. The PIB size corresponds to
the XML representation adopted in this paper.

Table 1. Evaluation of Provisioning Time
Roles PRMS OBJS OPS DSD SSD Initial Provisioning

(ms)
PIB
size

Provisioning a
user (ms)

PIB Size
(+user)

10 6 3 8 1 3 2133 16k 0280 17k
40 6 3 8 1 3 3775 34k 0519 39k
80 6 3 8 1 3 6460 58k 1111 68k
20 10 7 12 1 3 2974 24k 0370 24k
20 40 37 42 1 3 4256 42k 0441 42k
20 80 77 82 1 3 7180 67k 0410 67k
20 6 3 8 10 3 2845 25k 0451 25k
20 6 3 8 40 3 2895 36k 0391 36k
20 6 3 8 80 3 3655 51k 0431 51k
20 6 3 8 1 10 2864 22k 0421 22k
20 6 3 8 1 40 2724 22k 0441 22k
20 6 3 8 1 80 2684 22k 0411 22k

Obs. The initial Provisioning corresponds to a time used to load every object in the PIB except the UA Assignment

8. Conclusion
This paper has presented a policy based framework for implementing RBAC policies in
heterogeneous and distributed systems adopting a provisioning approach. The
framework has been implemented in accordance with the IETF standards and a superset
of the NIST RBAC standard. This work has proposed a RBAC-based information
model and a RBAC-based PIB. These elements combined with the COPS-PR protocol
offers a flexible method for distributing and updating policies in distributed and
heterogeneous systems. Future works include extending the provisioning approach for
other access control languages and building an SNMPv3 gateway for the RBAC PIB.

9. References
[1] D.F. Ferraiolo, R.S. Sandhu, G. Serban; “A Proposed Standard for Role-Based

Access Control”, ACM Transactions on Information System Security, Vol. 4, No. 3,
(2001) pp. 224-274”.

[2] J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M.
Carlson, J. Perry, S. Waldbusser; “Terminology for Policy-Based Management”,
IETF RFC 3198, Nov. 2001.

[3] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer,
R. Yavatkar, A. Smith, “COPS Usage for Policy Provisioning (COPS-PR)”, IETF
RFC 3084, Mar. 2001.

[4] Distributed Management Task Force (DMTF); “Common Information Model (CIM)
Specification”, URL: http://www.dmtf.org (2003).

[5] B. Moore, E. Elleson, J. Strasser, A. Weterinen; “Policy Core Information Model”,
IETF RFC 3060, Feb. 2001.

[6] B. Moore, E. Elleson, J. Strasser, A. Weterinen; “Policy Core Information Model
Extensions”; IETF RFC 3460, Feb. 2001.

[7] J. Strassner, E. Ellesson, B. Moore, R. Moats. “Policy Core Lightweight Directory
Access Protocol (LDAP) Schema”, IETF RFC 3707, Feb. 2004.

[8] E. Toktar, E. Jamhour, C. Maziero, "RSVP Policy Control using XACML", IEEE
5th International Workshop on Policies for Distributed Systems and Networks.
(POLICY 2004), New York, 2004, pp. 87-98.

[9] R. Sahita, S. Hahn, K. Chan, K. McCloghrie; “Framework Policy Information
Base”, IETF RFC 3318, Mar. 2003.

[10] OASIS: “eXtensible Access Control Markup Language (XACML)”, version 1.03.
OASIS Standard, Feb. 2003, URL: http://www.oasis-open.org

[11]. OASIS; “XACML Profile for Role Based Access Control (RBAC)”, draft, Feb.
2004, URL: http://www.oasis-open.org

[12] R. Nabhen, E. Jamhour, C. Maziero, “Policy-Based Framework for RBAC”, 14th
IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management, Germany (DSOM 2003), Oct. 2003, pp. 181-193.

[13] L. Lymberopoulos, E. C. Lupu, M. S. Sloman, “Ponder Policy Implementation and
Validation in a CIM and Differentiated Services Framework”, NOMS 2004, Seoul,
Apr. 2004.

[14] V. Cridlig, O.Festor, R.State, “Role-Based Access control for XML Enabled
Management Gateways”, 15th IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management (DSOM 2004), Davis, USA, Nov. 2004, pp.
183-195.

[15] R. Fenger, H. Hegde, D. Larson, R. Sahita, "Simplifying Support of New Network
Services Using COPS-PR", Intel Corporation white paper, 2002, URL
http://www.intel.com/labs/manage.cops.

