

 On the Role of Interceptors and AOP in Adapting CORBA
Applications∗

Nélio Cacho, Thaís Batista, Fabrício Fernandes

Departamento de Informática e Matemática Aplicada (DIMAp)
Universidade Federal do Rio Grande do Norte (UFRN)

Campus Universitário – Lagoa Nova – 59.072-970 - Natal - RN
cacho@consiste.dimap.ufrn.br, thais@ufrnet.br,

fabricio@consiste.dimap.ufrn.br

∗ This work is partially supported by the Brazilian Agency CNPq project 552007/2002-1.

Abstract. In this paper we describe two meta-programming strategies that
have been used to extend CORBA-based applications with minimal or no
impact on existing application code: CORBA interceptors and aspect-oriented
programming (AOP). We compare the benefits of using AOP with those of
exploiting interceptors to extend CORBA-based applications. We present the
main issues in which using AOP in this context is different from taking
advantage of the existing CORBA interceptor mechanism. In order to
illustrate our discussion we use a dynamic aspect-oriented language,
AspectLua, and a meta-object protocol, LuaMOP, that supports dynamic
weaving of CORBA components and aspects.

1 . Introduction
CORBA has been used as an underlying middleware platform for distributed application
development for over a decade. The dynamic nature of current applications requires
support for reconfiguration at runtime. Meta-programming mechanisms [Kiczales et al.
1991] have been widely used to support the runtime adaptability of distributed
applications with minimal or no impact on existing application code [Wang et al. 2001].

 CORBA portable interceptors [OMG 2004] support meta-programming by
providing hooks in which developers can register their code. The ORB will
automatically execute this code upon the occurrence of relevant events [Baldoni 2003].
The code can extend the behavior of both applications running over CORBA and also
the CORBA platform itself. This mechanism provides meta-objects to be invoked at
predefined interception points. As operation invocations pass through these meta-
objects, application behavior can be adapted transparently by simply modifying the
meta-objects.

 Another mechanism that has gained popularity as an approach to support the
adaptability of applications is aspect-oriented programming (AOP) [Elrad et al. 2001].
AOP defines a modularization mechanism that provides a high degree of separation of
concerns in software development. The dynamic aspect-oriented approaches [Bouraqadi
and Ledoux 2002][Sullivan 2001] use meta-programming as an underlying technology

to support runtime aspect definition and dynamic weaving. Defining an aspect consists
of specifying points of a component where a code should be inserted (join points), the
moment that such code should be inserted (after, before or around the join point) as well
as the code to be inserted (advice). A dynamic weaving process does the integration
between components and aspects at runtime. Thus, it makes feasible to adapt an
application dynamically.

 In this work we compare the benefits of using these two approaches to adapt
CORBA-based applications. In order to illustrate the use of dynamic AOP in the
development of CORBA-based application we combine the following dynamic tools:
(1) a dynamic aspect-based language, AspectLua [Fernandes and Batista
2004a][Fernandes and Batista 2004b] where AOP is built on top of the reflective
features of an interpreted language, named Lua [Ierusalimsky et al. 1996]; (2) a meta-
object protocol, LuaMOP [Fernandes et al. 2004], which provides operations to inspect
the internal structure of the language and to modify its behavior in order to glue
components and aspects; (3) a binding between Lua and CORBA, LuaOrb [Cerqueira et
al. 1999].

 Thus, we compare the support for application adaptability provided by the
CORBA interceptors with those provided by the use of LuaMOP and AspectLua in a
CORBA platform.

 This paper is organized as follows. Section 2 presents CORBA interceptors
highlighting their support for dynamic adaptation of applications. Section 3 comments
about aspect-oriented programming. This section also presents a set of tools that use
AOP to handle dynamic adaptation of CORBA-based applications as well as some
examples. Section 4 focuses on the comparisons between the two approaches. Section 5
comments about some related works. Section 6 contains the final remarks.

2 . CORBA Interceptors
CORBA Portable Interceptors (PI) are objects invoked by an ORB in the path of an
invocation to adapt its behavior transparently [Wang et al. 2001]. It provides support for
a developer to define some code that will be automatically executed upon the
occurrence of relevant events such as request/reply communication.

 CORBA specification [OMG 2004] defines two types of PI: request
interceptors and interoperable object reference interceptors (IOR interceptors). The
goal of the Request Interceptors (RI) is to intercept the flow of a request/reply sequence
through the ORB at specific points on clients and servers. Using RI it is possible to
verify information about a request and to manipulate the service context propagated
between clients and servers. An IOR interceptor inserts information into IORs in order
to describe objects. Since this interceptor is not used for adaptability purposes, we will
only focus on Request Interceptors.

 Figure 1 shows interception points of a Request Interceptor. Those points are
divided in two groups according to their location: client-side and server-side. At the
client-side there are five interception points: send_request, send_poll, receive_reply,
receive_exception and receive_other. send_request is used to get information about a
request. It also allows the modification of the service context before sending the request
to the server. send_poll is used specifically in an asynchronous method invocation
following the polling model. In this model the client invokes a method and receives a
Poller valuetype from the server. receive_reply is used to intercept the reply of an

invocation. This point can get information about a reply sent by a server before it
reaches the client. receive_exception is invoked upon the occurrence of an exception at
a method invocation. Thus, it is possible to get information about an exception before it
reaches the client. Finally, receive_other is used to get information when the result of
an invocation is of a different type from the previously mentioned invocation type
(reply and exception). Thus, this interceptor is invoked in case of Poller objects or
replies regarding to a LOCATION_FORWARD exception.

Figure 1: Request Interception Points from [OMG 2004]

 At the server-side there are also five interception points as follows:
receive_request_service_contexts, receive_request, send_reply, send_exception and
send_other. The two first points act together in the same solicitation.
receive_request_service_contexts is invoked before the servant manager. After that,
receive_request is used. The difference between them is related to the data they provide.
receive_request_service_contexts provides data about the service context while
receive_request provides other data about the invocation such as the parameters.
send_reply, send_exception and send_other are used to access and modify data related
to the service context of a reply at three different moments: when a reply is sent to a
client, in the occurrence of an exception during the remote invocation, and when any
other thing happens, for example, a GIOP Reply with a LOCATION_FORWARD.

 To illustrate the use of CORBA interceptors we have implemented a case study
of a banking application that allows objects replication. In this case, the replication will
be inserted in the application using interceptors. The application has been designed with
two different components: a client and a server.

Client

Bank Server 2

Bank Server 1

Bank Server 3

deposit(5)
deposit(5)

deposit(5)

Figure 2: Replication Process

 Figure 2 shows how the replication process works. A client invokes the deposit
method in BankServer2. BankServer2 processes the invocation and, through an

interceptor, forwards the request to BankServer1 and BankServer3. This replication
implies that all the servers must contain the same value. This approach is interesting for
fault tolerance because if BankServer2 is unavailable, the client-side interceptor can be
invoked to forward the request to BankServer1 or BankServer3.

 In order to illustrate how this application has been implemented, we show the
interceptor code of the client and the server as well as the code to initialize the server
interceptor. Client and server implementations will not be detailed because the
replication code is at the interceptors. Servers implement a MyBank interface with a
deposit method.

 To apply an interceptor at a client or server class it is not necessary to insert
code inside these elements. It is necessary to register a class as an interceptor to
invocations of a given class. For instance, to register ClientInitializer class as an
interceptor to invocations of demo.client class the following command must be used:
java -Dorg. omg. PortableInterceptor. ORBInitializerClass.
ForwardInit. demo. interceptors.ClientInitializer demo.client

1 public class ServerInitializer extends org.omg.CORBA.LocalObject
implements ORBInitializer
2 {
3 public ServerInitializer() { }
4 public void post_init(ORBInitInfo info)
5 {
6 NamingContextExt nc=NamingContextExtHelper.narrow(info.resolve_initial_references
 ("NameService"));
7 info.add_server_request_interceptor(new ServerInterceptor(nc, (info.arguments())[0]);
8 }
9 public void pre_init(ORBInitInfo info) { }
}

Figure 3: Source code of the server interceptor

 ClientInitializer class must implement post_init and pre_init methods of
ORBInitializer interface. An example of the class used to register a server-side
interceptor is illustrated in Figure 3.

1 public class ClientInterceptor
2 extends org.omg.CORBA.LocalObject
3 implements ClientRequestInterceptor{
4 private NamingContextExt namer = null;
5 public ClientInterceptor(NamingContextExt nc){namer = nc;}
6 public String name() {return " ClientInterceptor";}
7 public void destroy(){}
8 public void receive_exception(ClientRequestInfo ri)
 throws ForwardRequest{
9 MyBank bank = null;
10 BindingIteratorHolder bi = new BindingIteratorHolder();
11 BindingListHolder bl = new BindingListHolder();
12 BindingHolder b = new BindingHolder();
13 namer.list(0, bl, bi);
14 if (bi.value != null) {
15 while (bi.value.next_one(b)) {
16 bank=MyBank.narrow(namer.resolve(namer.to_name(b.value. binding_name[0].id)));
17 break; }
18 throw new ForwardRequest(bank);
19 }
20 public void send_request(ClientRequestInfo ri) throws ForwardRequest {
21 byte[] data = {(byte)(1)};
22 ServiceContext sc = new ServiceContext();
23 sc.context_id = 1;
24 sc.context_data = data;
25 ri.add_request_service_context(sc,false);
 }
. . .
}

Figure 4: Source code of the client interceptor

 In this example post_init method is invoked at ORB initialization time: when
ORB.init(args) method is invoked. post_init method first gets the reference for the
naming service and then invokes the add_server_request_interceptor method to register
with the ORB the ServerInterceptor interceptor. Such interceptor receives, as
parameters, the naming server reference and a number (passed as command-line
argument) that identifies the server.

 The client-side of the fault tolerance process is done by the interceptor shown in
Figure 4. In this interceptor the receive_exception method is invoked whenever a client
method cannot finish an invocation. In this case study we have assumed that this
problem occurs due to server unavailability. Then, the code from line 10 to 15 searches
for available servers. Their references are obtained at line 16. Finally, the invocation is
forwarded to the first available server by using the FowardRequest exception.

 In this particular application, servers need to distinguish between client calls and
server calls to the deposit method. This is achieved by adding a byte with value one to
the context of the call. This byte, which is added by the send_request method, will be
used to indicate to the server the receipt of a client invocation, and then, it must be
replicated. If this byte is 0, the request is from a server and thus it does not need to be
replicated.

1 public class ServerInterceptor
2 extends org.omg.CORBA.LocalObject
3 implements ServerRequestInterceptor
4 {
5 private NamingContextExt namer = null;
6 private String servernum;
7 private int flaginvocation = 0;
8 public ServerInterceptor(NamingContextExt nc, String servernum)
9 { namer = nc; this.servernum = servernum;}
10 public String name(){ return "ServerInterceptor";}
11 public void destroy(){}
12
13 public void send_reply(ServerRequestInfo ri)
14
15 {
16 String operation = new String(ri.operation());
17 if ((operation.equals("deposit"))&&(flaginvocation == 1))
18 {
19 BindingIteratorHolder bi = new BindingIteratorHolder();
20 BindingListHolder bl = new BindingListHolder();
21 BindingHolder b = new BindingHolder();
22 namer.list(0, bl, bi);
23 if (bi.value != null)
24 while (bi.value.next_one(b))
25 {
26 String cond = new String(b.value.binding_name[0].id);
27 if (!(cond.equals("bankserver"+servernum)))
28 {
29 MyBank bank = MyBankHelper.narrow(namer.resolve(
30 namer.to_name(b.value.binding_name[0].id)));
31 bank.deposit(5);
32 }
33 }
34 }
35 }
36 public void receive_request_service_contexts(ServerRequestInfo ri)
 throws org.omg.PortableInterceptor.ForwardRequest
37 {
38 ServiceContext sc = ri.get_request_service_context(1);
39 byte[] data = sc.context_data;
40 flaginvocation = data[0];
41 }
42 }
 . . .

Figure 5: Source code of the server interceptor

 Figure 5 illustrates the interceptor code applied to the server. Lines 36 to 41
show the implementation of receive_request_service_contexts that obtains the
service_context from the invocation and sets the variable flaginvocation with the value
of context_data. At line 13 there is the definition of the send_reply function. This
function replicates the client invocation to others servers. Since an interceptor captures
all invocations, it is necessary to define which methods will be replicated and to check
if the replication has not applied yet. At line 17 we define that only invocations to the
deposit method with flaginvocation set to one should be replicated. The code from
line 19 to 27 gets all servers registered with the naming service and then searches for a
server different from the one that received the invocation. When the condition defined
at line 27 is satisfied, the server reference is obtained and the deposit(5) method is
invoked to replicate the client invocation.

3 . Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) emphasizes the need to decouple concerns related
to coding computational components from those related to non-functional aspects of an
application. This decoupling is often supported by proposing the use of different
languages for programming these two types of activities [Papadoupoulos and Arbab
1998]. For instance, Java programmers write the functional code in Java and the aspect
code in a Java extension for aspect-oriented programming such as AspectJ [Elrad et al.
2001]. A special compiler does the integration between Java and AspectJ programs.

 Although there is no consensus about the terminology of the elements that make
part of AOP, in this work we use the terminology used in AspectJ because it is the most
traditional aspect-oriented language. Aspects are the elements designed to encapsulate
crosscutting concerns and take them out of the functional code. Join Points are well-
defined points in the execution of a program. Advices define code that runs at join
points. They can run at the moment a joint point is reached and before the method
begins running (before), at the moment control returns (after) and during the execution
of the joint point (around).

3.1 LuaMOP

LuaMOP is a meta-object protocol that offers a meta-object for any instance in the Lua
environment. Lua is an interpreted extension language developed at PUC-Rio
[Ierusalimsky et al. 1996]. It is dynamically typed: variables are not bound to types
although each value has an associated type. Lua includes conventional features, such as
syntax and control structures similar to those of Pascal, and also has several non-
conventional features, such as the following: (1) Functions are first-class values, which
means they can be stored in variables, passed as arguments to functions, and returned as
results. Functions may return several values, eliminating the need for passing
parameters by reference; (2) Lua tables implement associative arrays, and are the main
data structuring facility in Lua. Tables are dynamically created objects and can be
indexed by any value in the language, except nil. Lua stores all elements in tables
generically as key-value pairs. Many common data structures, such as lists and sets, can
be trivially implemented with tables. Tables may grow dynamically, as needed, and are
garbage collected.

 LuaMOP provides three categories of meta-objects: variables, functions and
tables. Such categories are organized in a hierarchical way where MetaObject is a base

meta-class. Derived from this meta-class is the Variables meta-class. Then, derived
from this meta-class there are two other meta-classes: Table and Function meta-classes.

 To start using LuaMOP the method getInstance(instance) should be invoked.
This method returns the meta-object corresponding to the object with name or reference
described by the instance parameter. This meta-object is an instance of one such meta-
classes: Variable, Table or Function. For each meta-class there are methods to describe
and modify the behavior of a meta-object. LuaMOP methods will be described in this
paper when used in AspectLua.

3.2 AspectLua

AspectLua explores the power of Lua tables and uses it for the definition of aspects,
pointcuts and advices. These elements are defined using the Lua features and no special
commands are needed. AspectLua defines an Aspect object that handles all aspects
issues. This object defines a function to create a new aspect: the new function. After
creating an aspect, it is necessary to define a Lua table that contains the aspect elements
(name, pointcuts and advices). Figure 6 illustrates the generic code for aspect definition.
The first parameter is the aspect name. The second one is the Lua table that defines the
pointcut elements: its name, its designator and the functions or variables that must be
intercepted. The designator defines the pointcut type. The extension supports the
following type: call for function calls, callone for those aspects that need to be executed
just once, introduction for introducing functions in tables (objects in Lua) and get and
set applied upon variables. The list field defines functions or variables that will be
intercepted. This list can use wildcards. For instance Bank.* means that the aspect
should be applied for all methods of the Bank class. Finally, the third parameter is a
Lua table that defines the advice elements: the type (after, before, around) and the
action to be taken when reaching the pointcut. In Figure 6, the logfunc function will act
as an aspect to the deposit function. For each deposit function invocation, logfunc
function will be invoked before it in order to print the deposit value.

function deposit(amount) . . . end
function logfunc(a) print('It was deposited: ' .. a) end
a = Aspect:new()
a:aspect({name = 'logaspect'},
 {pointcutname = 'logdeposit', designator = 'call', list = {'deposit'}},
 {type = 'before', action = logfunc})

Figure 6: Generic code to aspect definition

 A dynamic weaver is responsible for integrating aspect code and the application
code. These two codes are weaved by the LuaMOP protocol. Then, the final code is
executed.

function interceptFunction(list, adType, adAction)
 for _,fn_name in ipairs(list) do

local name = fn_name
metaobject=LuaMOP:getInstance(name)
 if adType == 'before' then metaobject:addPreMethod(adAction)
 elseif adType == 'after' then metaobject:addPosMethod(adAction)
 elseif adType == 'around' then metaobject:setAroundMethod(adAction) end

 end
end

Figure 7: interceptFunction function

 Aspect creation consists of defining aspects properties. Aspects can intercept
functions, and also intercept set and get functions applied upon variables. It also allows
the introduction of new methods in a program. Function interception specification is
done through the definition of the function to be intercepted and the action (advice) that
will take place when such function is invoked. This issue is supported by an AspectLua
function (Figure 7) that uses the following LuaMOP functions: getInstance,
addPreMethod, addPosMethod and setAroundMethod . getInstance function returns the
metaobject correspondent to the name passed as a parameter. For a metaobject of type
function the following methods can be invoked: addPreMethod, addPosMethod and
setAroundMethod. These methods insert a function before, after or around the target
method.

 It is also possible to introduce new functions in a running program. Lua tables
containing methods and properties represent functions. An aspect can be defined using
the designator introduction to specify the function to be introduced in an object. The
introductionFunction in AspectLua implements this facility getting the instance of the
destination object using the LuaMOP getInstance function. After that, the setField
function is called to introduce the function.

function checkRights() ... end
a:aspect({name = 'secaspect'},
 {pointcutname = 'verifyRights', designator = 'call', list = {'deposit'}},
{type = 'before', action = checkRights })
local order = Aspect:getOrder('deposit')
Aspect:setOrder('deposit', { order[2], order[1]})

Figure 8: Defining order to aspects invocations

 To control the execution order of aspects in a given pointcut, AspectLua offers
getOrder and setOrder functions. getOrder is used to get the list of aspects associated
with a variable or function. It receives as a parameter the name of the variable or the
function. It returns a list with the current aspect invocation order. setOrder is used to
modify this order. This function receives the following parameters: variable or function
name and the new execution order. In Figure 8 the deposit method has two aspects that
will be executed before it. By default, the execution order is the order of aspect
definition. Therefore, logfunc will be executed before checkRights. To modify this
order, setOrder can be used with the following parameters: deposit and a table
defining a different order. In order to get information about a variable or function,
getOrder function is invoked receiving as a parameter its name.

3.3 . Combining CORBA components and Aspects

As we have already mentioned, AspectLua uses the same language constructions of
Lua. So, there is no need to change or use another interpreter. The Lua interpreter is
used to execute the component part as well as the aspect code. This adds a great
flexibility for using AOP via Lua.

 A configuration file is used to configure the application. This file contains
invocations to components and aspects that compose the application. It is submitted to
the Lua interpreter that interprets the aspects definitions and does the association
(pointcut and join points that must be intercepted) between what was defined and the
component. AspectLua achieves this association using the LuaMOP functions.

 Applications developed in Lua can use CORBA components due to the support
of LuaOrb binding. This binding relies on the CORBA dynamic invocation interface
(DII) to handle dynamic access to CORBA components in the same way as using any
Lua object. LuaOrb also uses the CORBA dynamic skeleton interface (DSI) to handle
dynamic installation of Lua objects as a CORBA server. When the interpreter finds a
code related to CORBA objects, it invokes LuaOrb to handle this invocation. Then,
LuaOrb calls the proper object in the CORBA platform. To invoke a CORBA method
via LuaOrb it is necessary to create a proxy to the remote object. This is done by using
the createproxy method. This method receives two parameters (a remote object
reference and its interface) and returns a proxy to be used to invoke methods of such
remote object.

 Figure 9 illustrates the role of each component (Lua, LuaORB, AspectLua and
CORBA) as well as the way they are combined to compose an application development
environment.

LuaOrb

ORB
Name

Service
Trading
Service

Lua
AspectLua

Lua
code

Aspects
code

Figure 9: Architecture of AspectLua with LuaOrb

 The adaptation capability provided by the integration of components and aspects
will be illustrated in this section using the same case study discussed in section 2. This
will allow us to compare interceptors and AOP support for adapting CORBA
applications.

 Figure 10 illustrates the deposit method invocation of the bank object. In this
case, if the bank object becomes unavailable, the application will fail.

bank = luaorb.createproxy(readIOR("./account.ref"),"IDL:Account:1.0")
bank:deposit(5)

Figure 10: Client code

 To overcome this problem, we insert an aspect in the bank object for searching
other implementations instead of returning an error to the client.

 Figure 11 shows the code of trynewreferences function. At line 2 the client
creates a generic connector [Batista et al. 2000]. At line 4, it invokes, , the deposit
method. The function of the generic connector is to find an implementation that offers
the deposit method. At line 7, an aspect that will act on the deposit method of the bank

object is defined. It will execute the trynewreferences function instead of executing the
deposit method.

1 function trynewreferences(self, ...)
2 newbank = Generic()
3 table.remove(arg, 1)
4 newbank:deposit(unpack(arg))
5 end

6 client = Aspect:new()
7 client:aspect({name = clienteIntercept'},
 {name = 'replicationMethods', designator = 'call', list = { ' bank.deposit'} },
 {type = 'around', action = trynewreferences })

Figure 11: Client code

 Figure 12 shows bank_impl table that represents the implementation of the
IDL:Account:1.0 CORBA interface. The deposit method is described by the code at line
4. Finally, at line 6, the bank_impl implementation is registered at the searching
mechanism.

1 bal = 0
2 bank_impl = {
3 deposit = function(self,amount)
4 bal = bal + amount
5 end}
6 source_server,id = ls_createservant(bank_impl, "IDL:Account:1.0")

Figure 12: Server code without replication – coreServer.lua

1 os.execute("idl --feed-ir -ORBIfaceRepoAddr inet:localhost:15000 account_rep.idl")

2 dofile("AspectLua.lua")
3 function replication_deposit(self,amount)
4 local proxy_Discovery=luaorb.createproxy(readIOR("./search.ref"),
 "IDL:CosDiscovering/SearchComponents:1.0")
5 proxy_Lookup = proxy_Discovery.getLookup
6 search_result = {}
7 search_result = proxy_Lookup:search("(operationame == 'deposit_rep')
 and(offerId != "..id..")")

8 replication = Generic()
9 for i,refid in ipairs(search_result) do
10 replication:deposit_rep(amount)("offerId == "..refid)
11 end
12 end

13 function deposit_rep(self,amount)
14 bal = bal + amount
15 end

16 a = Aspect:new()
17 a:aspect({name = 'AccountDeposit'},
 {name = 'replicationMethods', designator = 'call', list = { 'bank_impl.deposit'} },
 {type ='after', action = replication_deposit})
18 a:aspect({name = 'AccountDeposit_rep'},
 {name = 'replicationMethods', designator = 'introduction', list = {
 'bank_impl.deposit_rep'} },
 {type ='after', action = deposit_rep})

Figure 13: Replication aspects – aspectServer.lua

 In order to dynamically adapt the server to include replication we define two
aspects. The first aspect defines that all invocations to the deposit method of bank_impl

should be followed by the execution of the replication_deposit method. This method
performs information replication. Another aspect is necessary to introduce the
implementation of the deposit_rep function. This function will be invoked to replicate
the information. This method is necessary to avoid recursion among several servers.
Since deposit_rep method does not exist in the original Account interface previously
defined, the IDL with this function must be loaded. This is done in the first line of the
code of Figure 13. The replication_deposit function represents the replication process.
Lines 4 and 5 get the reference of the discovery service [Cacho et al. 2004]. At line 7
the search function is used to find out servers that have the deposit_rep operation and
whose id is different from the current server id (expressed by the offered variable).
Next, the deposit_rep method is invoked for all servers described at the search_result
table.

 After defining the aspect code, the next step is to specify the application
configuration file. This file defines the elements that compose the application: the
server code (coreServer.lua) and, optionally, the replication code. The user can choose
to include replication or not (Figure 14). In this example, dynamic reconfiguration takes
place via an aspect that can be inserted in the application according to user selection.
The configuration file can also implement a more automatic approach that does not
request user intervention.

dofile("coreServer.lua")
print("Would you like to use replication ?(y,n)")
answer = io.read()
if (answer == "y") then
 dofile("aspectServer.lua")
end

Figure 14: Application configuration file

4. Interceptors versus AOP
In the previous sections, two approaches for handling replications and fault tolerance
have been presented. In both cases, it was not necessary to modify the application code.
Both provide support for adapting CORBA applications in a non-intrusive way. In this
section we present a comparison of these approaches, in particular their advantages and
disadvantages.

 Figure 1 illustrates interceptors points defined by OMG. As we illustrated in
section 2, each point requires different information such as: method name, parameters,
service_context and so on. This introduces a great complexity in using interceptors. In
contrast, the aspect definition using the environment we propose in this paper is very
simple.

Although OMG has opened the ORB a bit by allowing the interception of messages at
certain defined places within an ORB [Wegdam 2000], an important drawback is that
the interceptors points defined in the current specification [OMG 2004] are only
implemented by few ORBs. For instance, Mico implements another sequence of
interceptors points that does not match with the current specification. JacORB does not
support access to arguments, results, and exception related to an invocation. Some
ORBs have similar proprietary mechanisms (for example filters in Orbix and Visigenic)
[Wedgam 2000]. In this way, portability, that could be an advantage of interceptors, is
not achieved.

 Another drawback is that using interceptors it is not possible to constraint
objects and methods in which an interceptor will act. Besides, since interceptors are
defined inside the ORB, every invocation mediated by the ORB is captured by
interceptors. For instance, the interceptor described in Figure 4 is invoked to handle the
remote functions called by the receive_exception method, such as: list, next_one,
to_name, resolve and deposit. To avoid problems regarding to infinite recursions, the
implementation constraints remote invocation by using the ForwardRequest exception.

 Using AspectLua it is possible to insert aspects before, after or around functions
executions or operations upon variables. The place where the aspect will act is defined
using a pointcut definition such as bank_impl.deposit or using wildcards, such as
bank_impl.*. So, it provides more flexibility than interceptors.

 Since it is possible to define a lot of aspects or interceptors for a function,
sometimes it is necessary to define the precedence order among aspects or interceptors.
To handle this feature, AspectLua offers the setOrder function. This function can be
used to define the execution order of aspects for a certain method. On the other hand,
interceptors do not address this issue. Then, using interceptors the execution order is
unpredictable.

 Besides, while separation of concerns is one of the main goals of AOP, it is not
an issue in the interceptors proposal. Interceptor code is inserted into the ORB. AOP
code is independent.

5. Related Work
There are other mechanisms that support adaptability in the context of CORBA, such as
smart proxies and servant managers.

 Smart proxies are application-defined stub implementations that transparently
override the default stubs. The disadvantage of smart proxies is that, to take advantage
of their support for modifying the behavior of an interface, it is necessary to implement
smart proxy class and register it with the ORB. Besides, smart proxies only address
client applications. In contrast, interceptors and AOP handle both client and server
applications.

 Servant Managers, provided by the CORBA POA specification [OMG 2004],
allow server applications to register objects that activate servants on demand. Unlike
interceptors and AOP, servant managers are tightly coupled with POAs and servant
implementations [Wang 2001].

 [Wang 2001] also discusses a comparison among meta-programming facilities to
adapt applications. It focuses on smart proxies and interceptors. Considering that smart
proxies act only at the client side, we choose to analyze approaches that handle both
client and server adaptation.

 There are some works [Pichler 2002, Zhang 2003] that address the use of AOP
in the context of middleware platforms. Zhang [Zhang 2003] mentions that AOP is a
promising way to handle complexity of middleware architecture because it addresses
separation of concerns and avoids scattering phenomena in the code. In this work we
also use AOP in middleware platform, but analyzing it as an adapting mechanism.

 Baldoni [Baldoni 2003] analyzes a particular class of interceptors: CORBA
request interceptors. The paper focuses on the request redirection and piggybacking that

are the main mechanisms provided by PIs. In this paper we focus on the role of
interceptors and AOP in supporting application adaptation.

6. Final Remarks

In this paper we have discussed two meta-programming facilities to support adaptation
of CORBA-based applications: interceptors and aspect-oriented programming. Using
these mechanisms, it is possible to improve the adaptability of distributed applications
with minimal or no impact on existing application code. We have chosen to compare
interceptors with AOP for some reasons. First of all, interceptors are standardized
mechanism available inside the ORB. Second, AOP is an approach that has gained
attention as an important mechanism for handling adaptability.

 We have presented the CORBA interceptors mechanism as well as the aspect-
oriented programming concepts. In order to exploit AOP to dynamic adaptation, we
have defined an AOP dynamic environment composed of the following dynamic tools:
the Lua language, the LuaOrb binding, AspectLua and LuaMOP. We have applied the
two approaches in a same case study in order to illustrate the power of each of them.

 Although interceptors are useful facilities inside ORB, it presents some
disadvantages when compared with dynamic AOP: they do not allow the definition of
constraints regarding to objects or method affected by them; they capture every
invocation at pre-defined ORB interception points regardless of what operation is
invoked; interceptors execution order is unpredictable. The AOP environment discussed
in this paper is more flexible than the interceptor approach and it overcomes these
drawbacks of CORBA interceptors. Besides, it is easier to use because it is not
necessary to know the internal details of the middleware.

 While interceptors are tightly coupled with ORB, the AOP environment is
independent and located on a high abstraction level. On one hand, this independence is
an advantage because it avoids that developers deal with the burden of middleware
internal mechanisms. On the other hand this independence can be seen as a
disadvantage because it is not a standardized mechanism of the middleware platform.
So, portability is not achieved. As previously mentioned, interceptors portability is not a
reality yet because most middleware implementations do not offer all interceptors
points proposed by the current CORBA specification.

7. References
Baldoni, R. and Marchetti, C. and Verde, L. (2003) CORBA request portable

interceptors: analysis and applications. Concurrency and Computation: Practice and
Experience, pp. 551-579, 2003.

Batista, T., Chavez, C. and Rodriguez, N. (2000)
Conector Genérico: Um Mecanismo para Reconfiguração de Aplicações baseadas em
Componentes e Ambientes de Software (IDEAS'2000), Cancun, México, April 2000.

Bouraqadi, N. and Ledoux, T. (2002) Aspect-Oriented Programming using Reflection.
Technical Report. Ecole d’Ingénieurs Center de Recherche Mines de Douai. 2002.

Cacho, N., Batista T. and Elias, G. (2004) Um Serviço CORBA para Descoberta de
Componentes. 18th Brazilian Symposium on Software Engineering (SBES’2004).
Brasília, DF. 2004.

Cerqueira, R., Cassino, C. e Ierusalimschy R. (1999) Dynamic Component Gluing
Across Different Componentware Systems. In: DOA'99 — International Symposium
on Distributed Objects and Applications, Edinburgh, Scotland, 1999.

Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., and Ossher, H. (2001) Discussing
Aspects of AOP. Communications of the ACM, Vol. 44, No. 10, pp 33-38, October
2001.

Fernandes, F. A. and Batista, T. (2004a) Dynamic Aspect-Oriented Programming: An
Interpreted Approach. Proceedings of the 2004 Dynamic Aspects Workshop (DAW
04), Aspect Oriented Software Development Conference 2004 (AOSD’04),
Lancaster, England, March 2004, 44-50.

Fernandes, F. and Batista T.(2004b) A Dynamic Approach to Combine Components and
Aspects. 18th Brazilian Symposium on Software Engineering. Brasília, DF, Brazil.
2004.

Fernandes, F., Cacho, N. and Batista, T. (2004) LuaMOP – A Meta-object Protocol for
Dynamic Weaving. First Brazilian Workshop on Aspect-Oriented Software
Development (WASP’04), 18th Brazilian Symposium on Software Engineering
(SBES’2004). Brasília, DF. 2004.

Ierusalimsky, R., Figueiredo, L. H., and Celes, W. (1996) Lua – an extensible extension
language. Software: Practice and Experience, 26(6):635-652. 1996.

Kiczales, G., des Rivieres, J. and Bobrow, D. (1991) The Art of the Metaobject
Protocol. MIT Press.

OMG (2004) Common Object Request Broker Architecture: Core Specification
Technical Report Revision 3.0.3,

 Papadoupoulos, G. and Arbab, F. (1998) Coordination Languages and Models, In:
Advances in Computers. Academic Press.

Pichler, R. and Ostermann, K. (2002) On aspectualize component models. Software
Practice and Experience.

Sullivan, G. T. (2001) Aspect-Oriented Programming using Reflection.
Communications of the ACM, vol 44, n. 10, pages 10-14. 2001.

Wang, N., Parameswaran, K., Schmidt, D. and Othman, O. (2001) The Design and
Performance of Meta-Programming Mechanisms for Object Request Broker
Middleware. Proceedings of the 6th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), San Antonio, Jan/Feb, 2001.

Zhang, C. and Jacobsen, H. (2003) Re-factoring Middleware Systems: A Case Study.

	4. Interceptors versus AOP

