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Abstract. In this paper we describe two meta-programming strategies that 
have been used to extend CORBA-based applications with minimal or no 
impact on existing application code: CORBA interceptors and aspect-oriented 
programming (AOP).  We compare the benefits of using AOP with those of 
exploiting interceptors to extend CORBA-based applications.  We present the 
main issues in which using AOP in this context is different from taking 
advantage of the existing CORBA interceptor mechanism. In order to 
illustrate our discussion we use a dynamic aspect-oriented language, 
AspectLua, and a meta-object protocol, LuaMOP, that supports dynamic 
weaving of CORBA components and aspects. 

1 . Introduction 
CORBA has been used as an underlying middleware platform for distributed application 
development for over a decade. The dynamic nature of current applications requires 
support for reconfiguration at runtime. Meta-programming mechanisms [Kiczales et al. 
1991] have been widely used to support the runtime adaptability of distributed 
applications with minimal or no impact on existing application code [Wang et al. 2001].  

 CORBA portable interceptors [OMG 2004] support meta-programming by 
providing hooks in which developers can register their code. The ORB will 
automatically execute this code upon the occurrence of relevant events [Baldoni 2003]. 
The code can extend the behavior of both applications running over CORBA and also 
the CORBA platform itself. This mechanism provides meta-objects to be invoked at 
predefined interception points. As operation invocations pass through these meta-
objects, application behavior can be adapted transparently by simply modifying the 
meta-objects.  

 Another mechanism that has gained popularity as an approach to support the 
adaptability of applications is aspect-oriented programming (AOP) [Elrad et al. 2001]. 
AOP defines a modularization mechanism that provides a high degree of separation of 
concerns in software development. The dynamic aspect-oriented approaches [Bouraqadi 
and Ledoux 2002][Sullivan 2001] use meta-programming as an underlying technology 



  

to support runtime aspect definition and dynamic weaving. Defining an aspect consists 
of specifying points of a component where a code should be inserted (join points), the 
moment that such code should be inserted (after, before or around the join point) as well 
as the code to be inserted (advice). A dynamic weaving process does the integration 
between components and aspects at runtime.  Thus, it makes feasible to adapt an 
application dynamically.  

 In this work we compare the benefits of using these two approaches to adapt 
CORBA-based applications. In order to illustrate the use of dynamic AOP in the 
development of CORBA-based application we combine the following dynamic tools: 
(1) a dynamic aspect-based language, AspectLua [Fernandes and Batista 
2004a][Fernandes and Batista 2004b] where AOP is built on top of the reflective 
features of an interpreted language, named Lua [Ierusalimsky et al. 1996]; (2) a meta-
object protocol, LuaMOP [Fernandes et al. 2004], which provides operations to inspect 
the internal structure of the language and to modify its behavior in order to glue 
components and aspects; (3) a binding between Lua and CORBA, LuaOrb [Cerqueira et 
al. 1999].    

 Thus, we compare the support for application adaptability provided by the 
CORBA interceptors with those provided by the use of LuaMOP and AspectLua in a 
CORBA platform.  

 This paper is organized as follows. Section 2 presents CORBA interceptors 
highlighting their support for dynamic adaptation of applications. Section 3 comments 
about aspect-oriented programming. This section also presents a set of tools that use 
AOP to handle dynamic adaptation of CORBA-based applications as well as some 
examples. Section 4 focuses on the comparisons between the two approaches. Section 5 
comments about some related works. Section 6 contains the final remarks.  

2 . CORBA Interceptors 
CORBA Portable Interceptors (PI) are objects invoked by an ORB in the path of an 
invocation to adapt its behavior transparently [Wang et al. 2001]. It provides support for 
a developer to define some code that will be automatically executed upon the 
occurrence of relevant events such as request/reply communication. 

 CORBA specification [OMG 2004] defines two types of PI:  request 
interceptors and interoperable object reference interceptors  (IOR interceptors). The 
goal of the Request Interceptors (RI) is to intercept the flow of a request/reply sequence 
through the ORB at specific points on clients and servers.  Using RI it is possible to 
verify information about a request and to manipulate the service context propagated 
between clients and servers. An IOR interceptor inserts information into IORs in order 
to describe objects. Since this interceptor is not used for adaptability purposes, we will 
only focus on Request Interceptors. 

            Figure 1 shows interception points of a Request Interceptor. Those points are 
divided in two groups according to their location: client-side and server-side. At the 
client-side there are five interception points: send_request, send_poll, receive_reply, 
receive_exception and receive_other.  send_request is used to get information about a 
request. It also allows the modification of the service context before sending the request 
to the server. send_poll  is used specifically in an asynchronous method invocation 
following the polling model. In this model the client invokes a method and receives a 
Poller valuetype from the server. receive_reply is used to intercept the reply of an 



  

invocation. This point can get information about a reply sent by a server before it 
reaches the client. receive_exception is invoked upon the occurrence of an exception at 
a method invocation.  Thus, it is possible to get information about an exception before it 
reaches the client.  Finally, receive_other is used to get information when the result of 
an invocation is of a different type from the previously mentioned invocation type 
(reply and exception).  Thus, this interceptor is invoked in case of Poller objects or 
replies regarding to a LOCATION_FORWARD exception.   

 
Figure 1: Request Interception Points from [OMG 2004] 

 At the server-side there are also five interception points as follows: 
receive_request_service_contexts, receive_request, send_reply, send_exception and 
send_other. The two first points act together in the same solicitation. 
receive_request_service_contexts is invoked before the servant manager. After that,  
receive_request is used. The difference between them is related to the data they provide.  
receive_request_service_contexts provides data about the service context while 
receive_request provides other data about the invocation such as the parameters.  
send_reply,  send_exception and send_other  are used to access and modify data related 
to the service context of a reply at three different moments:  when a reply is sent to a 
client, in the occurrence of an exception during the remote invocation, and when any 
other thing happens, for example, a GIOP Reply with a LOCATION_FORWARD. 

 To illustrate the use of CORBA interceptors we have implemented a case study 
of a banking application that allows objects replication. In this case, the replication will 
be inserted in the application using interceptors. The application has been designed with 
two different components: a client and a server.  

Client

Bank Server 2

Bank Server 1

Bank Server 3

deposit(5)
deposit(5)

deposit(5)

 
Figure 2: Replication Process 

 Figure 2 shows how the replication process works. A client invokes the deposit 
method in BankServer2. BankServer2 processes the invocation and, through an 



  

interceptor, forwards the request to BankServer1 and BankServer3. This replication 
implies that all the servers must contain the same value. This approach is interesting for 
fault tolerance because if BankServer2 is unavailable, the client-side interceptor can be 
invoked to forward the request to BankServer1 or BankServer3. 

 In order to illustrate how this application has been implemented, we show the 
interceptor code of the client and the server as well as the code to initialize the server 
interceptor. Client and server implementations will not be detailed because the 
replication code is at the interceptors. Servers implement a MyBank interface with a  
deposit method.  

 To apply an interceptor at a client or server class it is not necessary to insert 
code inside these elements. It is necessary to register a class as an interceptor to 
invocations of a given class. For instance, to register ClientInitializer class as an 
interceptor to invocations of demo.client class the following command must be used: 
java -Dorg. omg. PortableInterceptor. ORBInitializerClass. 
ForwardInit. demo. interceptors.ClientInitializer demo.client  
 
1 public class ServerInitializer extends org.omg.CORBA.LocalObject  
implements ORBInitializer 
2 { 
3   public ServerInitializer() {   } 
4   public void post_init(ORBInitInfo info)  
5   {  
6    NamingContextExt nc=NamingContextExtHelper.narrow(info.resolve_initial_references  
                                                                      ("NameService")); 
7  info.add_server_request_interceptor(new ServerInterceptor(nc, (info.arguments())[0]); 
8   } 
9   public void pre_init(ORBInitInfo info) { } 
}  

Figure 3: Source code of the server interceptor 

 ClientInitializer class must implement post_init and pre_init methods of 
ORBInitializer interface. An example of the class used to register a server-side 
interceptor is illustrated in Figure 3.  
 
1 public class ClientInterceptor 
2    extends org.omg.CORBA.LocalObject  
3    implements ClientRequestInterceptor{ 
4    private NamingContextExt namer = null; 
5    public ClientInterceptor(NamingContextExt nc){namer = nc;} 
6    public String name() {return " ClientInterceptor";} 
7    public void destroy(){} 
8    public void receive_exception(ClientRequestInfo ri)  
       throws ForwardRequest{ 
9        MyBank bank = null; 
10        BindingIteratorHolder bi = new BindingIteratorHolder();  
11        BindingListHolder bl = new BindingListHolder();  
12        BindingHolder b = new BindingHolder();  
13        namer.list(0, bl, bi);  
14        if (bi.value != null) {  
15          while ( bi.value.next_one(b) )   {  
16            bank=MyBank.narrow(namer.resolve(namer.to_name(b.value. binding_name[0].id))); 
17              break;   } 
18        throw new ForwardRequest( bank ); 
19    } 
20 public void send_request(ClientRequestInfo ri) throws ForwardRequest { 
21           byte[] data = {(byte)(1)};  
22        ServiceContext sc = new ServiceContext(); 
23         sc.context_id = 1; 
24         sc.context_data = data; 
25         ri.add_request_service_context(sc,false);  
       } 
. . . 
} 

Figure 4: Source code of the client interceptor 



  

 In this example post_init method is invoked at ORB initialization time: when 
ORB.init(args) method is invoked. post_init method first gets the reference for the 
naming service and then invokes the add_server_request_interceptor method to register 
with the ORB the ServerInterceptor interceptor. Such interceptor receives, as 
parameters, the naming server reference and a number (passed as command-line 
argument) that identifies the server. 

 The client-side of the fault tolerance process is done by the interceptor shown in 
Figure 4. In this interceptor the receive_exception method is invoked whenever a client 
method cannot finish an invocation. In this case study we have assumed that this 
problem occurs due to server unavailability. Then, the code from line 10 to 15 searches 
for available servers. Their references are obtained at line 16. Finally, the invocation is 
forwarded to the first available server by using the FowardRequest exception.  

 In this particular application, servers need to distinguish between client calls and 
server calls to the deposit method. This is achieved by adding a byte with value one to 
the context of the call. This byte, which is added by the send_request method, will be 
used to indicate to the server the receipt of a client invocation, and then, it must be 
replicated. If this byte is 0, the request is from a server and thus it does not need to be 
replicated. 
 
1 public class ServerInterceptor 
2    extends org.omg.CORBA.LocalObject  
3    implements ServerRequestInterceptor 
4 { 
5    private NamingContextExt namer = null; 
6    private String servernum; 
7    private int flaginvocation = 0;    
8    public ServerInterceptor(NamingContextExt nc, String servernum) 
9            { namer = nc;   this.servernum = servernum;} 
10    public String name(){ return "ServerInterceptor";} 
11    public void destroy(){} 
12      
13    public void send_reply(ServerRequestInfo ri ) 
14         
15                 {  
16             String operation = new String(ri.operation()); 
17             if ((operation.equals("deposit"))&&(flaginvocation == 1)) 
18              { 
19                    BindingIteratorHolder bi = new BindingIteratorHolder();  
20                   BindingListHolder bl = new BindingListHolder();  
21                    BindingHolder b = new BindingHolder();  
22                    namer.list(0, bl, bi);  
23                    if (bi.value != null)  
24                       while ( bi.value.next_one(b) )  
25                       {  
26                          String cond = new String(b.value.binding_name[0].id); 
27                          if (!(cond.equals("bankserver"+servernum))) 
28                           { 
29                        MyBank bank = MyBankHelper.narrow( namer.resolve(   
30                                  namer.to_name( b.value.binding_name[0].id))); 
31                               bank.deposit(5);  
32                            }  
33                       } 
34               }  
35         } 
36    public void receive_request_service_contexts(ServerRequestInfo ri ) 
        throws org.omg.PortableInterceptor.ForwardRequest    
37       { 
38           ServiceContext sc = ri.get_request_service_context(1); 
39             byte[] data = sc.context_data; 
40           flaginvocation = data[0]; 
41        } 
42 } 
                                      . . .               

Figure 5: Source code of the server interceptor 



  

 Figure 5 illustrates the interceptor code applied to the server. Lines 36 to 41 
show the implementation of receive_request_service_contexts that obtains the 
service_context from the invocation and sets the variable flaginvocation with the value 
of context_data. At line 13 there is the definition of the send_reply function. This 
function replicates the client invocation to others servers. Since an interceptor captures 
all invocations, it is necessary to define which methods will be replicated and to check 
if the replication has not applied yet. At line 17 we define that only invocations to the 
deposit  method with  flaginvocation set to one should be replicated.  The code from 
line 19 to 27 gets all servers registered with the naming service and then searches for a 
server different from the one that received the invocation. When the condition defined 
at line 27 is satisfied, the server reference is obtained and the deposit(5) method is 
invoked to replicate the client invocation. 

3 . Aspect-Oriented Programming 
Aspect-Oriented Programming (AOP) emphasizes the need to decouple concerns related 
to coding computational components from those related to non-functional aspects of an 
application. This decoupling is often supported by proposing the use of different 
languages for programming these two types of activities [Papadoupoulos and Arbab 
1998]. For instance, Java programmers write the functional code in Java and the aspect 
code in a Java extension for aspect-oriented programming such as AspectJ [Elrad et al. 
2001]. A special compiler does the integration between Java and AspectJ programs. 

 Although there is no consensus about the terminology of the elements that make 
part of AOP, in this work we use the terminology used in AspectJ because it is the most 
traditional aspect-oriented language. Aspects are the elements designed to encapsulate 
crosscutting concerns and take them out of the functional code. Join Points are well-
defined points in the execution of a program. Advices define code that runs at join 
points. They can run at the moment a joint point is reached and before the method 
begins running (before), at the moment control returns (after) and during the execution 
of the joint point (around). 

3.1  LuaMOP 

LuaMOP is a meta-object protocol that offers a meta-object for any instance in the Lua 
environment. Lua is an interpreted extension language developed at PUC-Rio 
[Ierusalimsky et al. 1996]. It is dynamically typed: variables are not bound to types 
although each value has an associated type. Lua includes conventional features, such as 
syntax and control structures similar to those of Pascal, and also has several non-
conventional features, such as the following: (1) Functions are first-class values, which 
means they can be stored in variables, passed as arguments to functions, and returned as 
results. Functions may return several values, eliminating the need for passing 
parameters by reference; (2) Lua tables implement associative arrays, and are the main 
data structuring facility in Lua. Tables are dynamically created objects and can be 
indexed by any value in the language, except nil. Lua stores all elements in tables 
generically as key-value pairs. Many common data structures, such as lists and sets, can 
be trivially implemented with tables. Tables may grow dynamically, as needed, and are 
garbage collected.  

 LuaMOP provides three categories of meta-objects: variables, functions and 
tables. Such categories are organized in a hierarchical way where MetaObject is a base 



  

meta-class. Derived from this meta-class is the Variables meta-class. Then, derived 
from this meta-class there are two other meta-classes: Table and Function meta-classes. 

 To start using LuaMOP the method getInstance(instance) should be invoked. 
This method returns the meta-object corresponding to the object with name or reference 
described by the instance parameter. This meta-object is an instance of one such meta-
classes: Variable, Table or Function. For each meta-class there are methods to describe 
and modify the behavior of a meta-object. LuaMOP methods will be described in this 
paper when used in AspectLua.  

3.2  AspectLua 

AspectLua explores the power of Lua tables and uses it for the definition of aspects, 
pointcuts and advices. These elements are defined using the Lua features and no special 
commands are needed. AspectLua defines an Aspect object that handles all aspects 
issues. This object defines a function to create a new aspect: the new function. After 
creating an aspect, it is necessary to define a Lua table that contains the aspect elements 
(name, pointcuts and advices). Figure 6 illustrates the generic code for aspect definition. 
The first parameter is the aspect name. The second one is the Lua table that defines the 
pointcut elements: its name, its designator and the functions or variables that must be 
intercepted. The designator defines the pointcut type. The extension supports the 
following type: call for function calls, callone for those aspects that need to be executed 
just once, introduction for introducing functions in tables (objects in Lua) and get and 
set applied upon variables. The list field defines functions or variables that will be 
intercepted. This list can use wildcards. For instance Bank.*  means that the aspect 
should be applied for all methods of  the Bank class. Finally, the third parameter is a 
Lua table that defines the advice elements: the type (after, before, around) and the 
action to be taken when reaching the pointcut. In Figure 6, the logfunc function will act 
as an aspect to the deposit function.  For each deposit function invocation, logfunc 
function will be invoked before it in order to print the deposit value.   
 
function deposit(amount) . . . end 
function logfunc(a) print('It was deposited: ' .. a) end 
a = Aspect:new() 
a:aspect( {name = 'logaspect'},  
          {pointcutname = 'logdeposit', designator = 'call',  list = {'deposit'}}, 
          {type = 'before', action = logfunc} ) 

 

Figure 6: Generic code to aspect definition 

 A dynamic weaver is responsible for integrating aspect code and the application 
code.  These two codes are weaved by the LuaMOP protocol. Then, the final code is 
executed. 
 
function interceptFunction(list, adType, adAction) 
 for _,fn_name in ipairs(list) do 

local name = fn_name    
metaobject=LuaMOP:getInstance(name) 
  if adType == 'before' then   metaobject:addPreMethod(adAction) 
  elseif adType == 'after' then metaobject:addPosMethod(adAction) 
  elseif adType == 'around' then metaobject:setAroundMethod(adAction)   end 

 end 
end 
 

Figure 7: interceptFunction function 



  

 Aspect creation consists of defining aspects properties. Aspects can intercept 
functions, and also intercept set and get functions applied upon variables. It also allows 
the introduction of new methods in a program. Function interception specification is 
done through the definition of the function to be intercepted and the action (advice) that 
will take place when such function is invoked. This issue is supported by an AspectLua 
function (Figure 7) that uses the following LuaMOP functions: getInstance, 
addPreMethod, addPosMethod and setAroundMethod .  getInstance function returns the 
metaobject correspondent to the name passed as a parameter. For a metaobject of type 
function the following methods can be invoked: addPreMethod, addPosMethod and 
setAroundMethod. These methods insert a function before, after or around the target 
method. 

 It is also possible to introduce new functions in a running program. Lua tables 
containing methods and properties represent functions. An aspect can be defined using 
the designator introduction to specify the function to be introduced in an object. The 
introductionFunction in AspectLua implements this facility getting the instance of the 
destination object using the LuaMOP getInstance function. After that, the setField 
function is called to introduce the function.  
 
 
function checkRights() ... end 
a:aspect( {name = 'secaspect'},  
          {pointcutname = 'verifyRights', designator = 'call', list = {'deposit'}},          
{type = 'before', action = checkRights } ) 
local order = Aspect:getOrder('deposit') 
Aspect:setOrder('deposit', { order[2], order[1]}) 
 

Figure 8: Defining order to aspects invocations 

 To control the execution order of aspects in a given pointcut, AspectLua offers 
getOrder and setOrder functions.  getOrder  is used to get the list of aspects associated 
with a variable or function. It receives as a parameter the name of the variable or the 
function. It returns a list with the current aspect invocation order. setOrder is used to 
modify this order. This function receives the following parameters: variable or function 
name and the new execution order. In Figure 8 the deposit method has two aspects that 
will be executed before it. By default, the execution order is the order of aspect 
definition. Therefore, logfunc will be executed before checkRights. To modify this 
order,  setOrder can be used with  the following parameters: deposit and a table 
defining a different order. In order to get information about a variable or function, 
getOrder function is invoked receiving as a parameter its name.     

3.3 . Combining CORBA components and Aspects 

As we have already mentioned, AspectLua uses the same language constructions of 
Lua. So, there is no need to change or use another interpreter. The Lua interpreter is 
used to execute the component part as well as the aspect code. This adds a great 
flexibility for using AOP via Lua.  

 A configuration file is used to configure the application. This file contains 
invocations to components and aspects that compose the application.  It is submitted to 
the Lua interpreter that interprets the aspects definitions and does the association 
(pointcut and join points that must be intercepted) between what was defined and the 
component. AspectLua achieves this association using the LuaMOP functions.  



  

 Applications developed in Lua can use CORBA components due to the support 
of  LuaOrb binding. This binding relies on the CORBA dynamic invocation interface 
(DII) to handle dynamic access to CORBA components in the same way as using any 
Lua object. LuaOrb also uses the CORBA dynamic skeleton interface (DSI) to handle 
dynamic installation of Lua objects as a CORBA server.  When the interpreter finds a 
code related to CORBA objects, it invokes LuaOrb to handle this invocation. Then, 
LuaOrb calls the proper object in the CORBA platform. To invoke a CORBA method 
via LuaOrb it is necessary to create a proxy to the remote object. This is done by using 
the createproxy method. This method receives two parameters (a remote object 
reference and its interface) and returns a proxy to be used to invoke methods of such 
remote object. 

 Figure 9 illustrates the role of each component (Lua, LuaORB, AspectLua and 
CORBA) as well as the way they are combined to compose an application development 
environment. 

LuaOrb

ORB
Name

Service
Trading
Service

Lua
AspectLua

Lua
code

Aspects
code

 
Figure 9: Architecture of AspectLua with LuaOrb    

 The adaptation capability provided by the integration of components and aspects 
will be illustrated in this section using the same case study discussed in section 2. This 
will allow us to compare interceptors and AOP support for adapting CORBA 
applications. 

 Figure 10 illustrates the deposit method invocation of the bank object. In this 
case, if the bank object becomes unavailable, the application will fail.  
 
 
bank = luaorb.createproxy(readIOR("./account.ref"),"IDL:Account:1.0") 
bank:deposit(5) 
 

Figure 10: Client code 

 To overcome this problem, we insert an aspect in the bank object for searching 
other implementations instead of returning an error to the client.  

 Figure 11 shows the code of trynewreferences function. At line 2 the client 
creates a generic connector [Batista et al. 2000]. At line 4, it invokes, , the deposit 
method. The function of the generic connector is to find an implementation that offers 
the deposit method. At line 7, an aspect that will act on the deposit method of the bank 



  

object is defined. It will execute the trynewreferences function instead of executing the 
deposit method.  
 
 
1 function trynewreferences(self, ...) 
2        newbank = Generic() 
3        table.remove(arg, 1) 
4        newbank:deposit(unpack(arg)) 
5  end 
 
6 client = Aspect:new() 
7 client:aspect({name = clienteIntercept'}, 
   {name = 'replicationMethods', designator = 'call', list = { '    bank.deposit'} }, 
   {type = 'around', action = trynewreferences }) 
 
 

Figure 11: Client code 

 Figure 12 shows bank_impl table that represents the implementation of the 
IDL:Account:1.0 CORBA interface. The deposit method is described by the code at line 
4. Finally, at line 6, the bank_impl implementation is registered at the searching 
mechanism. 

 
 
1 bal = 0 
2 bank_impl = { 
3    deposit = function(self,amount) 
4          bal = bal + amount 
5    end} 
6 source_server,id = ls_createservant(bank_impl, "IDL:Account:1.0")  

Figure 12: Server code without replication – coreServer.lua 

 
1 os.execute("idl  --feed-ir -ORBIfaceRepoAddr inet:localhost:15000 account_rep.idl") 
 
2 dofile("AspectLua.lua") 
3 function replication_deposit(self,amount) 
4   local proxy_Discovery=luaorb.createproxy(  readIOR("./search.ref"),       
                             "IDL:CosDiscovering/SearchComponents:1.0") 
5   proxy_Lookup = proxy_Discovery.getLookup 
6   search_result = {} 
7   search_result = proxy_Lookup:search("(operationame == 'deposit_rep') 
                                      and(offerId != "..id..")") 
 
8   replication = Generic() 
9   for i,refid in ipairs(search_result) do 
10      replication:deposit_rep(amount)("offerId == "..refid) 
11   end 
12 end 
 
13 function deposit_rep(self,amount) 
14    bal = bal + amount 
15 end 
 
16 a = Aspect:new() 
17 a:aspect({name = 'AccountDeposit'}, 
   {name = 'replicationMethods', designator = 'call', list = {     'bank_impl.deposit'} }, 
   {type ='after', action = replication_deposit}) 
18 a:aspect({name = 'AccountDeposit_rep'}, 
   {name = 'replicationMethods', designator = 'introduction', list = {  
     'bank_impl.deposit_rep'} }, 
   {type ='after', action = deposit_rep}) 

Figure 13: Replication aspects – aspectServer.lua 

 In order to dynamically adapt the server to include replication we define two 
aspects. The first aspect defines that all invocations to the deposit method of bank_impl 



  

should be followed by the execution of the replication_deposit method. This method 
performs information replication. Another aspect is necessary to introduce the 
implementation of the deposit_rep function. This function will be invoked to replicate 
the information. This method is necessary to avoid recursion among several servers. 
Since deposit_rep method does not exist in the original Account interface previously 
defined, the IDL with this function must be loaded. This is done in the first line of the 
code of Figure 13. The replication_deposit function represents the replication process.  
Lines 4 and 5 get the reference of the discovery service [Cacho et al. 2004]. At line 7 
the search function is used to find out servers that have the deposit_rep operation and 
whose id is different from the current server id (expressed by the offered variable). 
Next, the deposit_rep method is invoked for all servers described at the search_result 
table.  

 After defining the aspect code, the next step is to specify the application 
configuration file. This file defines the elements that compose the application: the 
server code (coreServer.lua) and, optionally, the replication code. The user can choose 
to include replication or not (Figure 14). In this example, dynamic reconfiguration takes 
place via an aspect that can be inserted in the application according to user selection. 
The configuration file can also implement a more automatic approach that does not 
request user intervention.  

 
dofile("coreServer.lua") 
print("Would you like to use replication ?(y,n)") 
answer = io.read() 
if (answer == "y") then 
   dofile("aspectServer.lua") 
end 

Figure 14: Application configuration file 

4. Interceptors versus AOP 
In the previous sections, two approaches for handling replications and fault tolerance 
have been presented. In both cases, it was not necessary to modify the application code. 
Both provide support for adapting CORBA applications in a non-intrusive way. In this 
section we present a comparison of these approaches, in particular their advantages and 
disadvantages.   

 Figure 1 illustrates interceptors points defined by OMG. As we illustrated in 
section 2, each point requires different information such as: method name, parameters,  
service_context and so on. This introduces a great complexity in using interceptors. In 
contrast, the aspect definition using the environment we propose in this paper is very 
simple. 
 
Although OMG has opened the ORB a bit by allowing the interception of messages at 
certain defined places within an ORB [Wegdam 2000], an important drawback is that 
the interceptors points defined in the current specification [OMG 2004] are only 
implemented by few ORBs. For instance, Mico implements another sequence of 
interceptors points that does not match with the current specification. JacORB does not 
support  access to arguments, results, and exception related to an invocation. Some 
ORBs have similar proprietary mechanisms (for example filters in Orbix and Visigenic) 
[Wedgam 2000]. In this way, portability, that could be an advantage of interceptors, is 
not achieved. 



  

 Another drawback is that using interceptors it is not possible to constraint 
objects and methods in which an interceptor will act. Besides, since interceptors are 
defined inside the ORB, every invocation mediated by the ORB is captured by 
interceptors. For instance, the interceptor described in Figure 4 is invoked to handle the 
remote functions called by the receive_exception method, such as: list, next_one, 
to_name, resolve and deposit. To avoid problems regarding to infinite recursions, the 
implementation constraints remote invocation by using the ForwardRequest exception.  

 Using AspectLua it is possible to insert aspects before, after or around functions 
executions or operations upon variables. The place where the aspect will act is defined 
using a pointcut definition such as bank_impl.deposit or using wildcards, such as 
bank_impl.*. So, it provides more flexibility than interceptors. 

 Since it is possible to define a lot of aspects or interceptors for a function, 
sometimes it is necessary to define the precedence order among aspects or interceptors.  
To handle this feature, AspectLua offers the setOrder function. This function can be 
used to define the execution order of aspects for a certain method. On the other hand, 
interceptors do not address this issue. Then, using interceptors the execution order is 
unpredictable.   

 Besides, while separation of concerns is one of the main goals of AOP, it is not 
an issue in the interceptors proposal. Interceptor code is inserted into the ORB. AOP 
code is  independent.  

5. Related Work 
There are other mechanisms that support adaptability in the context of CORBA, such as 
smart proxies and servant managers.  

 Smart proxies are application-defined stub implementations that transparently 
override the default stubs. The disadvantage of smart proxies is that, to take advantage 
of their support for modifying the behavior of an interface, it is necessary to implement 
smart proxy class and register it with the ORB. Besides, smart proxies only address 
client applications. In contrast, interceptors and AOP handle both client and server 
applications.  

 Servant Managers, provided by the CORBA POA specification [OMG 2004], 
allow server applications to register objects that activate servants on demand. Unlike 
interceptors and AOP, servant managers are tightly coupled with POAs and servant 
implementations [Wang 2001]. 

  [Wang 2001] also discusses a comparison among meta-programming facilities to 
adapt applications. It focuses on smart proxies and interceptors. Considering that smart 
proxies act only at the client side, we choose to analyze approaches that handle both 
client and server adaptation.  

 There are some works [Pichler 2002, Zhang 2003]  that address the use of AOP 
in the context of middleware platforms. Zhang [Zhang 2003] mentions that AOP is a 
promising way to handle complexity of middleware architecture because it addresses 
separation of concerns and avoids scattering phenomena in the code. In this work we 
also use AOP in middleware platform, but analyzing it as an adapting mechanism.   

 Baldoni [Baldoni 2003] analyzes a particular class of interceptors: CORBA 
request interceptors. The paper focuses on the request redirection and piggybacking that 



  

are the main mechanisms provided by PIs. In this paper we focus on the role of 
interceptors and AOP in supporting application adaptation.  

6. Final Remarks 

In this paper we have discussed two meta-programming facilities to support adaptation 
of CORBA-based applications: interceptors and aspect-oriented programming. Using 
these mechanisms, it is possible to improve the adaptability of distributed applications 
with minimal or no impact on existing application code.  We have chosen to compare 
interceptors with AOP for some reasons. First of all, interceptors are standardized 
mechanism available inside the ORB.  Second, AOP is an approach that has gained 
attention as an important mechanism for handling adaptability. 

 We have presented the CORBA interceptors mechanism as well as the aspect-
oriented programming concepts. In order to exploit AOP to dynamic adaptation, we 
have defined an AOP dynamic environment composed of the following dynamic tools: 
the Lua language, the LuaOrb binding, AspectLua and LuaMOP.  We have applied the 
two approaches in a same case study in order to illustrate the power of each of them. 

 Although interceptors are useful facilities inside ORB, it presents some 
disadvantages when compared with dynamic AOP:  they do not allow the definition of 
constraints regarding to objects or method affected by them; they capture every 
invocation at pre-defined ORB interception points regardless of what operation is 
invoked; interceptors execution order is unpredictable. The AOP environment discussed 
in this paper is more flexible than the interceptor approach and it overcomes these 
drawbacks of CORBA interceptors. Besides, it is easier to use because it is not 
necessary to know the internal details of the middleware.  

 While interceptors are tightly coupled with ORB, the AOP environment is 
independent and located on a high abstraction level. On one hand, this independence is 
an advantage because it avoids that developers deal with the burden of middleware 
internal mechanisms.  On the other hand this independence can be seen as a 
disadvantage because it is not a standardized mechanism of the middleware platform. 
So, portability is not achieved. As previously mentioned, interceptors portability is not a 
reality yet because most middleware implementations do not offer all interceptors 
points proposed by the current CORBA specification.   
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