
Smart Proxies in LuaOrb: Automatic Adaptation and
Monitoring

Noemi Rodriguez , Hélcio Mello

1PUC-Rio, R. Marquês de São Vicente, 225, Gávea, Rio de Janeiro — RJ, Brazil

Abstract. The LuaOrb project uses reflective features offered by the Lua pro-
gramming language and by CORBA itself to create a platform that combines
simplicity and flexibility in its support for dynamic behavior. In this paper we
describe ongoing work on smart proxies. Smart proxies, based on simple QoS
descriptions and event-based monitoring facilities, substitute traditional stubs,
but automatically react to changes in run-time conditions, The paper also dis-
cusses support for dynamic stubs, which can implement generic adaptation pro-
cedures or performance-enhanced access to servers. Finally, we discuss an
example of dynamic adaptation with smart proxies.

1. Introduction

Over the last years, the need for adaptation in the context of mobile computing and em-
bedded systems has led to much work on new middleware platforms that allow their own
structure to be dynamically redefined [Ref, 2003, Mid, 2000]. In this work we explore a
slightly different approach: how to support adaptation with the reflective facilities avail-
able in a more traditional middleware platform like CORBA. As we have already dis-
cussed in [Batista et al., 2003], the CORBA specification contains a series of reflective
mechanisms that allow programs to query their run-time environments and determine
current properties and services. The dynamic invocation interface (DII) and the dynamic
skeleton interface (DSI) allow the structure of applications and services to be dynamically
redefined. However, due to the complexity of using and understanding these mechanisms,
few systems seem to take advantage of these facilities.

We have been studying for some time how the use of an interpreted lan-
guage with reflective features can help alleviate this problem. The LuaOrb bind-
ing [Cerqueira et al., 1998] explores reflective characteristics of CORBA and of the Lua
programming language [Celes et al., 1996] to create an environment in which CORBA
objects can be dynamically accessed in the same way as any other Lua object. Libraries
such as LuaRep and LuaTrading [Batista et al., 2003] use this binding to provide easy
access to CORBA information repositories. Using LuaOrb and these libraries, the pro-
grammer can build applications that monitor the environment and adapt to its conditions
by locating servers that are adequate to their needs.

In this work, we add further facilities to this platform: more specifically, the sup-
port for smart proxies, which act as stubs with internal adaptation behavior. Smart proxies
with standard adaptation procedures can easily be created, dynamically, from simple QoS
descriptions, but the (smart) programmer is also given the choice to code specific adapta-
tion actions. This is in line with our belief that a scripting language such as Lua is well
suited for different classes of users. Technically advanced users can use all the expres-
siveness of the language (and, in this case, of the libraries and tools) to code adaptation
procedures. Less sophisticated programmers can use the standard adaptation procedures
or the ones created by administrators for their specific applications and environment.

The use of an interpreted language such as Lua also allowed us to explore down-
loadable stubs (often mentioned here as dstub for short), similar to the ones used in Java
RMI, and their uploadable counterparts (also called ustubs in this paper). Although it is
possible to use them without any extra support, those stubs can also be combined with
LuaProxy, yielding an alternative, dynamic adaptation approach.

The paper is organized as follows. Section 2 reviews the existing platform, de-
scribing the LuaOrb binding and associated libraries. Section 3 discusses our implemen-
tation of smart proxies. The following section describes support for dynamic stubs. In
Section 5, we present an example of adaptation through smart proxies. Finally, sections
6 and 7 contain some final remarks and compare our work with similar ones found in the
literature.

2. Existing Environment
This work builds on several existing tools, most of them aimed at providing easy-to-use
interface layers above CORBA, as well as convenient means of performing adaptation-
specific activities, like monitoring.

2.1. LuaOrb
LuaOrb [Cerqueira et al., 1998] is a binding of the CORBA [Group, 1999] specification to
the interpreted language Lua [Celes et al., 1996]. One of the main design aspects of Lua
is its simplicity and flexibility. In Lua, variables are neither declared nor typed, although
the values they hold belong to a particular type, such as string, number, etc. Hence, the
same variable can be used to hold values of different types at different moments.

Two types in Lua deserve special attention: table and function. Tables implement
associative arrays, that is, their indices can be values of arbitrary types, not only numbers
as in ordinary vectors. A table can thus be used as a general-purpose container, and is
often used to emulate traditional object-oriented features.

Functions, in turn, are first-order values, i.e. they can be passed as arguments to or
be used as return values from other functions, and even be stored in a table. By doing so
one can implement an “object” by storing its methods (Lua functions) as fields of a table.

Lua also supports meta-tables, a mechanism for handling some events like index-
ing non-existent fields of a table. When such events happen, a user-defined meta-method
is called to handle them. For example, for non-existing fields in a table the meta-method
could return a default value (eg. zero in sparse matrices). A detailed example of meta-
tables usage is beyond the scope of this paper, but they are the key to implementing prox-
ies in LuaOrb. LuaOrb implements a CORBA proxy by means of a table that employs
the meta-table mechanism to automatically and transparently fetch the remote method or
attribute in question. From the point of view of those who use the proxy, it behaves as the
remote object itself.

The traditional CORBA programming sequence consists in creating an IDL, com-
piling it to generate stubs and adding user-specific code. Because of the interpreted nature
of LuaOrb, however, there is no way to generate compiled stubs. Instead, LuaOrb uses
DII (Dynamic Invocation Interface) to invoke remote methods, building the necessary data
structures at run time. The meta-tables mechanism mentioned in this section shields the
users from low-level DII details, encouraging them to build more dynamic applications.

2.2. LuaRep & LuaTrading
The Interface Repository and the Trading Service are key CORBA services in the task of
providing the user with support for adaptive programming. The complexity of their inter-

faces makes their usage rather cumbersome; the programmer must make several method
calls, create complex data structures and sometimes perform some sort of post-processing
of the results.

LuaRep and LuaTrading [Batista et al., 2003] provide the user with mirror repos-
itories to the CORBA services. They are implemented as Lua tables associated with
meta-methods that transparently retrieve or update the information within those reposito-
ries. Many tasks can be carried out by simply reading from or assigning to a table. For
instance, in order to create a new service type, it suffices to write its description in the
table that mirrors the service types repository.

The meta-methods of those mirror repositories perform all low-level activities
such as translating user-supplied high-level arguments (e.g. “long” into “tk long”). Also,
additional methods that act on those repositories have been designed to use default argu-
ments. For instance, the following line of code imports all service offers of FOO service
type:

offers = importServiceOffers {type = "FOO"}

With similar simplicity it is possible to iterate over the Interface Repository, obtain
and modify interfaces descriptions as well as create new modules and interfaces.

2.3. LuaMonitor

In order to have applications that dynamically adapt to runtime conditions it is clearly
necessary to provide means for them to detect changes in the environment.

One approach towards that end is to use entities that continually inspect the value
of a given property, called monitors herein. The LuaMonitor library [Moura et al., 2002]
tackles this issue in the context of LuaOrb, maintaining a dynamic approach. It supports
the dynamic definition of objects that support basic periodic monitoring features, aspects
and event observers.

Aspects can be thought of as secondary properties that derive from the main ones
and possibly from other aspects as well. One possible use for aspects is to keep track
of statistical data about the main property, like average, variance, etc. Whenever the
monitored value is updated, so are all of the monitor’s aspects.

An event observer is an object responsible for taking notifications of certain
events. In practice, when an application wishes to be notified of a particular event, it
registers an observer at the monitor watching the property in question. When the event
happens the observer is notified and the application may react accordingly.

LuaMonitor runs asynchronally with respect to the client. Hence, while a monitor
periodically polls a property, the client may perform any other task. Only upon notifica-
tion the observer needs to worry about the monitored property. Also, because monitors
often run at the same host as the server which holds the property there are no polling
remote calls, thus saving network bandwidth.

The monitored property (or any of its aspects) can also be used as a dynamic
property in a trader service offer. That combination of monitoring and use of trading
service is very powerful. Typically, the exported service offers contain both the dynamic
property (or aspect) being monitored and a reference to its monitor. When a client imports
such offers it obtains access to the monitor and can register observers to be notified of
relevant changes of the property in question. Upon notification, the client may handle the
event as desired, for instance querying the trader for a new offer.

3. Smart Proxies

In distributed computing, the interaction between a client and a server usually takes place
by means of a proxy. This proxy is a local object from the client’s point of view, which
forwards all method calls to the remote object. Ordinary proxies behave in a rather “static”
fashion; they seldom support changing the remote object they refer to.

Under appropriate run-time conditions the above approach will yield acceptable
results. Many real applications, however, are liable to unexpected changes in the environ-
ment they run. Servers can be encumbered with an overwhelming quantity of both local
and remote requests, or even crash; networks can experience momentaneous traffic peaks,
partitions and so on. It is very difficult (or even impossible) to foresee all such hazards at
compile-time and properly handle them. Because of that applications should dynamically
adapt to overcome those problems. LuaProxy is the implementation of a “smart” proxy;
one capable of reacting to unpredicted conditions as the ones discussed above. While
a conventional proxy usually takes just a reference to the remote object, LuaProxy con-
structor needs extra arguments that specify what the desired QoS levels are and how to
adapt to relevant changes in available resources. These data structures are discussed in
the next sections.

3.1. QoS Descriptors

Each application may require different constraints over a set of QoS parameters, such as
delay, bandwidth, etc. QoS descriptors allow programmers to specify lists of constraints,
called QoS attributes. Typical examples of such attributes are “delay < 30”, “bandwidth
> 80”, and so on. Optionally, they may also be followed by a comma and a priority, like
in “delay < 30, high”, where a delay under 30 ms is required with a high priority.

A QoS descriptor can also inherit from others, so as to facilitate descriptor reuse.
The constructor syntax makes that straightforward: it takes a sequence of strings (the QoS
attributes) and the descriptor parents. For instance, if d1 and d2 are valid descriptors then

d3 = QoSDescriptor (d1, d2, "delay < 30")

creates a new descriptor that inherits from both d1 and d2 and adds the atribute “delay <
30”.

The rules concerning the inheritance mechanism are simple: if an attribute is ab-
sent at a given descriptor then it is recursively sought for in the descriptor’s parents, in a
depth-first algorithm. The parents are inspected in the same order they were supplied to
the constructor.

QoS descriptors provide a simple preliminary solution for QoS specification. The
inheritance mechanism described here still does not take into account possible conflicts
such as “delay < 20” and “delay > 30”. More complex applications may need additional
features, and are the target of future research, as discussed in Section 7.

3.2. Adaptation Procedure

LuaProxy’s adaptation procedure is usually triggered by the violation of a QoS parameter.
The monitor associated with that parameter notifies LuaProxy’s observer, which in turn
adds the violation to an event queue.

The next time the proxy is invoked, it handled events in the queue, and must then
adapt to the QoS violation. The default adaptation behavior is to select another server
from the trading service (Section 3.2.1).

In order to benefit from service-specific features, LuaProxy accepts a table that
maps each possible event to an adaptation procedure, called QoS implementation. If a
given event is not mapped, then it is handled by the default adaptation routine.

By means of a QoS implementation the user may customize the adaptation pro-
cedure for a particular application. Because QoS implementations can be organized as
libraries, new ones can easily be created by inheritance, in the same fashion of QoS de-
scriptors. The derived QoS implementation can override the adaptation procedure for any
event or define new ones as desired.

An example of user-specific adaptation routines lies in video on demand. If the
server runs out of bandwidth, its monitor will signal the bandwidth decrease event, thus
triggering LuaProxy adaptation. The QoS implementation could handle that event by re-
quiring the video server to diminish the frame rate or the color density. That would reduce
the bandwidth requirements of the application without the user’s intervention. Of course,
the adaptation procedure may deem such reconfiguration unacceptable (for instance, if
the video is already playing under this scarce-resource scenario) and choose to replace
the video server instead.

3.2.1. Selection algorithm

When the user’s QoS constraints can no longer be met and all adaptation routines fail,
the LuaProxy select () method is invoked to search for a new server in the trader. Here,
LuaTrading (Section 2.2) plays an important support role, as service offers can be im-
ported with a single line of code, and the low-level issues (such as the use of iterators) are
properly handled.

The trader is queried according to the QoS descriptor (Section 3.1) specified by
the user. The query constraint is the conjunction of all its QoS attributes (devoid of their
priorities). For instance, if the QoS descriptor holds “delay < 20, high” and “bandwidth
> 70, low” as its attributes the query constraint will be “delay < 20 and bandwidth >
70”. Because a QoS descriptor may hold several attributes, it is possible that no available
service offer meets them all. In that case, the trader is queried again, but without the
low priority attributes. If the query still does not return any offers, a final attempt will be
made to satisfy only the high-priority attributes. If again no server is found, an exception
is raised.

In order to select the best suitable server, the query is set to sort its output so that
the first offer yields the maximum quality. This quality is the result of the evaluation of
a quality expression, such as “5 × bandwidth”, which yields greater results for higher
bandwidth values, thus valuing servers with most available bandwidth. The default qual-
ity expression used by LuaProxy is a weighted sum of the quality of each QoS parameter,
according to the priority of each parameter (see Section 3.1). The quality of a param-
eter, in turn, is an increasing function of the parameter in question if it was requested
to be greater than a specific value, and a decreasing function otherwise. For example,
if “bandwidth” was required to be greater than a certain value in a QoS descriptor then
its increase will likely make the offer more attractive. Likewise, if a parameter (such as
“delay”) is expected to be under a given limit then its decrease will probably make the
offer look more suitable to the service in question.

Thus, one possible quality expression would be “5 × bandwidth + 100 / delay”,
because the higher the bandwidth and the lesser the delay, the higher the quality expres-
sion will evaluate to. Of course, specific applications may need a better tuning of those
constants. The user is allowed to override how those formulae are generated for specific

module LuaProxy {
enum LangEnum {LUA, C, JAVA};
typedef sequence<octet> OctetSeq;

struct Stub {
LangEnum Language;
OctetSeq Encoding;

};

interface DStubProvider {
Stub getStub (in LangEnum lang);

};
};

Figure 1: IDL for supporting downloadable stubs.

QoS parameters, but that is beyond the scope of this paper.

4. Dynamic Stubs

Although LuaProxy itself can already achieve dynamic adaptation to some degree, ad-
ditional features based on code mobility are also being investigated in our work. This
section introduces dynamic stubs that allow client and server to transfer code between
each other at run-time, according to code on demand and remote evaluation paradigms
[Fuggetta et al., 1998].

4.1. Downloadable stubs

Although QoS implementation objects allow the user to have practically full control over
the adaptation procedure, it is possible that a server may have valuable information about
implementation details hidden behind the IDL interfaces. To take advantage of their pecu-
liar features, remote servers may provide their clients with downloadable stubs (or simply
dstubs for short).

To provide this facility, a server must implement the LuaProxy::DStubProvider in-
terface (partially shown in Figure 1). LuaProxy detects whether the server supports dstubs
by invoking the standard is a () pseudo-operation against the LuaProxy::DStubProvider
interface. If a dstub is available then it is automatically fetched and installed.

The stubs are simple structures that hold two fields: an enumeration that specifies
the stub language and a sequence of octets that contains the stub code. The language field
allows the stub to be implemented in any language that can interface with Lua, like C and
Java. Based on that field, LuaProxy will perform the necessary steps to integrate the stub,
such as loading the code as a C dynamic library or treating the octets as a chunk of Lua
code. The current LuaProxy implementation deals with Lua implementations only.

After being downloaded, the stub is merged into the smart proxy at run time and
acts as a broker to the remote object. From then on, all method calls will be intercepted
by it. The stub may choose to either forward the call directly to the server or perform
some pre- or post-processing activity. Possible uses include providing extra features such
as caching, compression of transmitted/received data, etc.

Figure 2 shows a simple example of a dstub. When a proxy is created for the
MyServant object, the dstub is fetched and installed in that proxy. As can be seen in
the figure, the dstub overrides the foo () method, prints a message and then invokes the
original method.

More interestingly, the downloadable stub can also be designed to actively partic-
ipate in the adaptation procedure, i.e. intercept LuaProxy’s adapt () method. By doing

MyServant = {
foo = function (self)

print ("Inside foo ()")
end,

getStub = function (self, lang)
return {

Language = "LUA",
Encoding = [[{

foo = function (self)
print ("Inside dstub.")
self._proxy:foo ()

end
}]]

}
end

}

Figure 2: Dstubs usage example.

module LuaProxy {
interface UStubHolder {

long insertStub (in Stub stub, in string ifname, out Object extobj);
void removeStub (in long id);

};
};

Figure 3: IDL for supporting uploadable stubs.

so the stub may decide whether to invoke its own adaptation routine for a given event or
leave it to be handled by LuaProxy. Another possibility is to allow state transfer when
LuaProxy switches to a new server. A stub can accomplish that by overriding LuaProxy’s
method for server selection (select ()). It should then select a new server itself, transfer
the state from the former to the new server, and finally return the new server to LuaProxy.
Section 5 demonstrates both of these techniques in a case study.

4.2. Uploadable Stubs

It is well known that communication latency is usually responsible for the greatest part of
the execution time of remote calls. When several method calls must be issued on the same
remote object, significant performance increase can be achieved by uploading code to the
server. This technique is often referred to as remote evaluation [Fuggetta et al., 1998], and
could also be employed, for instance, when a program runs where resources are deemed
scarce.

Adaptation routines could benefit from this approach by uploading performance-
critical code to the server, thus reducing the reaction time between the QoS violation
and the corresponding system adaptation. The uploaded code would then either override
methods in the server or simply extend its interface with the uploaded methods.

Uploadable stubs (ustubs) have therefore been developed to endow LuaProxy
adaptation routines with code upload capability. The target server must implement the
LuaProxy::UStubHolder interface, shown in Figure 3. In order to make supporting us-
tubs easier, LuaProxy offers a default implementation that servers may inherit from.

The insertStub () method uploads and installs a stub in the remote object, return-
ing an ID for eventual stub removal. The server remains intact, but the uploaded stub
encapsulates it, yielding an extended object. Lua’s meta-table mechanism is set to auto-
matically forward a method call to the original server in case the ustub does not override
it. Finally, a reference to the resulting extended object is returned as the out parameter.

The ustub may define methods originally not present in the server, extending its
interface. In this case the extended object interface should inherit from both the server

interface Matrix
{

double getAij (in unsigned long i, in unsigned long j);
long getn ();

};

Figure 4: Matrix interface.

interface NewMethods {
typedef sequence<double> DoubleSeq;
DoubleSeq getMainDiagonal ();

};

Figure 5: Exemple of interface extension.

interface (so that the extended object still provides the former server functionality) and
the one that holds the extensions. The latter is supplied as the second argument of insert-
Stub (). LuaProxy automatically creates a new interface that inherits from those two at
run-time. If it is not necessary to extend the server’s interface (just override its methods)
then an empty string can be used instead.

Figure 6 shows how to extend a server with a ustub. The server implements the
Matrix interface shown in Figure 4. Assuming p initially holds a reference to such server,
the ustub augments its interface with a method to get its main diagonal (Figure 5). The re-
sulting extended object is then used to get the diagonal with a single method call. Without
the ustub, it would be necessary to invoke getAij () n times.

It is important to note that the reference to the original server remains valid, as
it probably should. If it did not, other clients of that server would also be affected by
the upload, which is usually not desired. Should several clients need to interact with the
extended object, its reference could easily be shared by other means (e.g. CORBA naming
service).

The server extensions provided by ustubs offer a new adaptation approach for
QoSImplementation objects. They can create extended servers as needed, and the ustub
behavior is neither known nor noticed by the server. Among the possibilities, the server’s
interface could be augmented with data compression or encryption features, as shown in
the next section.

ustub = {
Language = "LUA",
Encoding = [[{

getMainDiagonal = function (self)
local diag = {}
for i = 1, self:getn () do

table.insert (diag, self:getAij (i, i))
end
return diag

end
}]]

}

id, obj = p:insertStub (ustub, "NewMethods")
obj = luaorb.narrow (obj)
diag = obj:getMainDiagonal ()
p:removeStub (id)

Figure 6: Using the extended object.

5. Case Study

In order to test LuaProxy, a small application program has been created: LuaEmpire. It
is a very simple strategy game where players can build spaceships to attack enemy fleets
or conquer planets. The goal of the game is to conquer all enemy planets without losing
your own.

In order to join a game, one logs in a remote server that hosts an ongoing match.
The player can then issue commands (such as ship construction) in a graphical interface.
The interface then translates user interaction (like pressing buttons) into remote method
calls.

Those methods update the server state, i.e. a snapshot of the solar system and
its fleets. The changes (updates) are periodically sent back to all players logged in, so
that they can update their internal states and redraw any changed objects on the player’s
screen.

This application uses LuaProxy to find a suitable server running a match and to
adapt to resource shortage during gameplay. The fluctuation of QoS parameters is simu-
lated by a test script, so that the monitors in question trigger the adaptation procedures.

The test scenario proposed here consisted of two servers and two clients. Both
servers support dstub and ustub features, but one of them initially had more available
resources, so that both players selected it as their initial server.

During the match, the players created some ships and moved part of them to some-
where in space. In the meantime the server’s available bandwidth was explicitly reduced,
making the clients automatically request that the state updates be compressed. Because
the server’s interface had originally no support for compression at all, an ustub has been
installed for that purpose.

Next, the players’ hosts had their response times raised (simulating, for instance,
the user running additional processes) so that they could not redraw the players’ screen
as often as before. The adaptation mechanism reacted to this event by buffering and
merging every two consecutive updates into a single one, which was then delivered to the
application. That task was carried out by means of a dstub, without user intervention.

As a final test, the server in use was manually shut down, forcing LuaProxy to
select another one. Server crash detection is currently done by means of the standard
CORBA pseudo-operation non existent (). Although we acknowledge it is not a good
fail detector, it served our prototyping purposes well.

Once again, the application-specific behavior of the downloadable stub played an
important role. After the new server had been selected, its initial state was set to reproduce
the last game state held by one of the players. After a negligible delay, the crashing server
was replaced with another one that carried out the computation task from the point it was
interrupted.

5.1. Code Details

The most important tasks the clients must perform are creating an instance of LuaProxy
and redrawing the game screens as the server reports changes in the solar system. Cre-
ating the proxy is straightforward: the user simply states the desired interface (LuaEm-
pire::Server in this case) and the QoS requirements.

In our test we required the bandwidth to be greater than 56 kbps and the response
delay to be lower than 10 ms. The proxy can then be constructed as follows (units are
implicit):

module LuaEmpire {
interface Client {

oneway void update (in string changes);
};

interface Server {
string login (in string nick, in Client cb);
void clock ();
void loadState (in string state);

};
};

Figure 7: Part of LuaEmpire IDL.

d = QoSDescriptor ("bandwidth > 56", "delay < 10")
proxy = LuaProxy ("LuaEmpire::Server", d, qosimpl)

The above proxy will both work like an ordinary one and show adaptive behavior.
The qosimpl argument holds the QoSImplementation to be used, possibly got somewhere
else, like a library.

5.1.1. Game Architecture

Figure 7 shows the most relevant methods of LuaEmpire IDL. It defines two interfaces:
Client and Server. The latter contains methods to allow players to login, interact with the
solar system (creating and moving ships), etc. In order to join a match (login ()), a player
must supply a callback object that implements the update () method. The server uses this
method to report changes in the state of the solar system. login () also returns an initial
state to the player.

Alternatively, loadState () can be used to resume a match from the last known
state (held by any player). It should be noted that all states and updates are encoded as
strings. They hold Lua table descriptions that are interpreted by the clients, yielding a list
of objects in the solar system and their attributes. For instance, if a solar system contained
a single object the game state could be represented as “{[1] = object description}”.

Transmitting data in that way has two major advantages. First, it is possible to
update the state of a player or load the state of a server with a single method call, instead
of one call for each object. Moreover, this data is not a simple raw sequence of bytes; it
is structured data organized as a stringified Lua table, which is easier to handle. Second,
compressing long data streams yields better compression ratios than several chunks ones
one by one. An analogous benefit would be achieved if encryption were used, because a
malicious user would have to additionally identify objects boundaries within the stream.

The clock () method is automatically called by a control process and serves as a
synchronization point for players, like short game turns. All methods invoked by players
only affect server state when clock () is called. At that time, all objects changed since last
turn are reported back to players by means of Client::update () method.

5.1.2. Adaptation Code

Before any player-related task is carried out, initialization regarding adaptation proce-
dures takes place. When a new server is imported from the trader, LuaProxy notifies its
QoSImplementation object, so that it can install a ustub in the new server and remove the
one installed in the former server.

At that time, the server is augmented with a method that switches the compression

function login (self, nick, callback)
callback.formerUpdate = callback.update
callback.update = self.newUpdate
callback.CompressUpdates = false

self.Callback = callback
return self._servant:login (nick, callback)

end

function setUpdateCompression (self, on)
self.Callback.CompressUpdates = on

end

function newUpdate (self, changes)
if self.CompressUpdates then

changes = compress (changes)
end

return self:formerUpdate (changes)
end

Figure 8: Ustub code uploaded to LuaEmpire.

SkipOddFrames = false; SeqNumber = 0; LastUpdate = nil
oldUpdate = nil -- Holds user’s update () method.

-- Intercepts login ()
login = function (self, nick, callback)

-- Replaces the callback update () method
oldUpdate = callback.update
callback.update = newUpdate

-- Invokes server
return self._proxy:login (nick, callback)

end

-- Replaces the callback update ()
newUpdate = function (self, changes)

SeqNumber = SeqNumber + 1

if SkipOddFrames and isOdd (SeqNumber) then
-- Buffers this update
LastUpdate = changes

else
-- Merges the two updates and passes the result to the old update ()
oldUpdate (merge (LastUpdate, changes))

end
end

Figure 9: Dstub code provided by LuaEmpire servers.

of game updates on and off. Additionally, the ustub overrides the login () method in order
to capture the player’s callback object. The ustub then logs in on behalf of the player, but
it intercepts the callback forthcoming update () method calls, to compress game data if
that feature is activated by then. Figure 8 summarizes the ustub code.

Dstubs also play an important role in LuaEmpire. When LuaProxy detected the
servers supported them, it fetched and installed the dstubs as expected. The dstub also
overrides the login () method to capture the player’s callback object. Its update () method
is redefined to adapt to excessive client-side delay by buffering server updates. For each
two updates, they are merged into a single one, which in turn is passed to the player’s
original update () method. Hence the player’s screen is redrawn only once every two
updates. A simplified version of the dstub code is shown in Figure 9.

6. Related Work
The idea of a smart proxy is not new. Similar approaches have been proposed in several
works. The BBN Quality Objects (QuO) architecture [Bakken et al., 1995] from which

we borrowed some ideas, defines entities that map to the ones in LuaProxy to some degree.

In LuaProxy, the desired QoS requirements are stated by QoS descriptors (Section
3.1) and adaptation is triggered by LuaMonitor notifications. The smart proxy then adapts
to reported conditions the next time the user issues a method call on it. Likewise, in QuO,
system condition objects measure QoS parameters and contract objects evaluate them into
active QoS regions. QuO delegates then perform the necessary adaptation based on those
regions.

However, QuO contracts are specified in CDL (Contract Description Language)
and then converted into Java code, which in turn must be compiled against application-
specific code. Thus, if the contract changes, its code must be regenerated and recompiled.
The separation of concerns and the interpreted nature of Lua yield more run-time flexi-
bility to LuaProxy, allowing QoS descriptors, implementations and monitors to be bound
to the smart proxy or even be modified at run time. Actually, the adaptation procedures
themselves are allowed to dynamically modify the QoS descriptor in use as they see fit
(for instance, in order to reduce the requested bandwidth if data compression is activated).
If manual changes to LuaProxy elements (QoS descriptors and implementations) are re-
quired, not even the running application needs to be halted; a few commands in a Lua
console will do.

Both QuO and LuaProxy aim at providing the user with Quality of Service (QoS)
features, although LuaProxy is still in an initial phase of development. It is important
to note that QuO offers a complete infrastructure for QoS provisioning that can support
applications with rigid requirements of reliability. We have focused on offering flexi-
bility and ease of use, but in an environment more fit to applications with less stringent
requirements.

The downloadable stubs have partly been inspired by Jini [Edwards, 1999]. Jini
does not interact directly with CORBA, but it is possible to make a CORBA object visible
to a Jini client [Newmarch, 2000]. In short, a Jini service is created to behave as a CORBA
client. This service is then able to forward method calls between a CORBA object and
a Jini client. LuaProxy, in turn, is CORBA-native and thus needs no bridges to interact
with other CORBA objects. Also, a downloadable stub may be written in any language
that interacts with Lua, not only Java.

The approach published in [da Silva e Silva et al., 2003] consists in a framework
implemented in Java to support adaptation in applications for mobile devices. It employs
a monitoring mechanism similar to LuaMonitor that triggers adaptation routines, but the
adaptation is also initiated if certain client-server interaction patterns are detected, as ob-
served by interceptors.

An additional work [Chang and Karamcheti, 2000] measures the effects of vari-
ous adaptation mechanisms on a single application before it is deployed. Based on the
results, the application can automatically select which adaptation technique is the best
suited to react to a given change in the execution environment. LuaProxy QoS implemen-
tations currently require the developer to decide which adaptation approach to use when
more than one applies to the same resource shortage event. On the other hand, applica-
tions that use LuaProxy do not need to undergo any performance testing before they are
deployed; moreover, because any modification to the application may potentially invali-
date the performance tests, LuaProxy seems to be more adequate for projects that either
evolve rapidly or are prototyping-based.

A recent publication [Bialek and Jul, 2004] presents a framework for updating
component-based applications on-the-fly. It is applicable to existing applications with

little or no impact on them, and supports state transfer and interface modifications. The
application discussed in this paper employs LuaProxy’s facilities to perform similar tasks
with little intervention of the developer.

We are currently unaware of any project that gathers a monitoring/adaptation
mechanism with code mobility in both directions and implements that in a flexible en-
vironment like ours, although similar mature proposals built on a more static fashion (like
QuO) already exist.

7. Final Remarks
Although LuaProxy is still in a initial state of development, we believe it is a promising
approach for supporting adaptation. The creation of smart proxies from QoS descriptors
and implementations, as well as the server-specific code from the downloadable stubs,
allow simple adaptation techniques to be used with hardly any cost to the programmer.
The knowledgeable programmer, on the other hand, maintains the possibility of writing
her own adaptation scripts.

Additionally, uploadable stubs may extend the server interface with new methods,
as well as intercept existing ones. If an adaptation script employs ustubs it will be able
to benefit from features such as encryption and compression, even if the original server
was not designed to offer such facilities. With support for ustubs, the client could also,
for instance, dynamically switch its behavior between that of a “fat” and that of a “thin”
client.

It will be necessary to develop more self-adaptive applications to further evaluate
the LuaProxy facilities. We are interested in looking at mobile applications, where down-
loadable stubs can be specially important in interacting with different servers as a system
moves among different geographical areas.

Another concern regarding dynamic stubs is security. Downloadable stubs could
run in a protected execution environment (sandboxing), as Java applets do. Optionally
they could be transferred from trusted servers only. Digital certificates could be used
for that purpose. Admission control, as well as the sandboxing technique, should be
applied to uploadable stubs as well. All these possibilities will be considered in our next
development steps.

It is also interesting to contrast the approach of adaptation through smart prox-
ies, which is based on a “greedy” behavior of each application, with policy-driven ap-
proaches [Lupu et al., 2003], in which a global system view is enforced. For the latter,
there is the need for mechanisms which allow the structure of the application to be exter-
nally manipulated. The use of CCM (CORBA Component Model) [omg, 2002] is already
being explored in this context, for instance for introducing dynamic support for fault toler-
ance [Favarim et al., 2003]. We intend to use the LuaCCM tool [Maia et al., 2004], which
provides a binding between Lua and CCM, and experiment with the integration of both
approaches.

8. Acknowledgments
Both authors have been supported by CNPq (the Brazilian Research Council).

References
(2000). Workshop on Reflective Middleware. held in conjunction with Middleware’2000.

(2002). CORBA Component Model - Version 3.0. Object Management Group, Needham,
EUA. document: formal/2002-06-65.

(2003). 2nd Workshop on Reflective and Adaptive Middleware. Held in conjunction with
Middleware’2003.

Bakken, D., Schantz, R., and Zinky, J. (1995). Overview of quality of service for dis-
tributed objects. Utica, New York. BBN Technologies, Fifth IEEE Dual Use Confer-
ence.

Batista, T., Cerqueira, R., and Rodriguez, N. (2003). Enabling reflection and reconfig-
uration in CORBA. In 2nd Workshop on Reflective and Adaptive Middleware, pages
125–129, Rio de Janeiro, Brazil. held in conjunction with Middleware’2003.

Bialek, R. and Jul, E. (2004). A framework for evolutionary, dynamically updatable,
component-based systems. In The 24th IEEE International Conference on Distributed
Computing Systems Workshops, pages 326–331, Hachioji, Tokyo, Japan.

Celes, W., Figueiredo, L., and Ierusalimschy, R. (1996). Lua - an extensible extension
language. Software: Practice and Experience, 26(6):635–652.

Cerqueira, R., Ierusalimschy, R., and Rodriguez, N. (1998). Using reflexivity to interface
with CORBA. In International Conference on Computer Languages, pages 39–46,
Chicago, IL. IEEE.

Chang, F. and Karamcheti, V. (2000). Automatic configuration and run-time adaptation of
distributed applications. In Ninth IEEE International Symposium on High Performance
Distributed Computing, pages 11–20, Pittsburg, Pennsylvania.

da Silva e Silva, F. J., Endler, M., and Kon, F. (2003). Developing adaptive distributed
applications: A framework overview and experimental results. In Meersman, R., Tari,
Z., and Schmidt, D. C., editors, CoopIS/DOA/ODBASE, volume 2888 of Lecture Notes
in Computer Science, pages 1275–1291. Springer.

Edwards, W. K. (1999). Core Jini. Prentice Hall PTR.

Favarim, F., Fraga, J., and Siqueira, F. (2003). Fault-tolerant CORBA components. In
2nd Workshop on Reflective and Adaptive Middleware, pages 144–148, Rio de Janeiro,
Brazil. held in conjunction with Middleware’2003.

Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Understanding Code Mobility. IEEE
Transactions on Software Engineering, 24(5):342–361.

Group, O. M. (1999). The common object request broker: Architecture and specification.
OMG document formal/99-10-07. v2.3.1.

Lupu, E., Lymberopoulos, L., and Sloman, M. (2003). An adaptive policy-based frame-
work for network services management. Journal of Networks and Systems Manage-
ment, 11(3):277–303.

Maia, R., Cerqueira, R., and Rodriguez, N. (2004). An infrastructure for development of
dynamically adaptable distributed components. In On the Move to Meaningful Internet
Systems 2004: CoopIS, DOA, and ODBASE: OTM Confederated International Con-
ferences, Proceedings, Part II, volume 3292 of Lecture Notes in Computer Science,
pages 1285–1302, Agya Napa, Cyprus.

Moura, A., Ururahy, C., Cerqueira, R., and Rodriguez, N. (2002). Dynamic support
for distributed auto-adaptive applications. In Proceedings of AOPDCS - Workshop on
Aspect Oriented Programming for Distributed Computing Systems (held in conjunction
with IEEE ICDCS 2002), pages 451–456, Vienna, Austria.

Newmarch, J. (2000). A Programmer’s Guide to JINI Technology. APress.

