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Abstract. This paper investigates a system where a set of users that share a com-
mon network link are free to choose the transmission rate of multimedia data.
Users are assumed to be self-regarding and make their decisions with the sole
goal of maximizing the QoS they perceive. In order to understand this system we
develop an evolutionary game-theoretic model to evaluate equilibria points that
are reached by the users. Using our proposed model, we demonstrate analyti-
cally and numerically several interesting properties of the system equilibria. In
particular, we establish the relationship between states that have non-negligible
probabilities and Nash equilibria of the game. Techniques from the theory of
aggregation in Markov chains are used to prove this result.

1. Introduction

Congestion control is one of the most fundamental problems in computer networks and
has been widely studied for decades. In essence, congestion control is a resource allo-
cation problem, where bandwidth must be shared among different data flows traversing
a congested link. In today’s Internet, congestion control is handled solely by TCP, the
dominant transport protocol used for transferring data. TCP implements a window-based
congestion control mechanism which is responsible for regulating the data rate entering
the network. Users are usually oblivious to its functionality and simply rely on its opera-
tion.

However, it is generally accepted that TCP is not suited for transferring delay
sensitive data such as voice and video. With the increase in the demand for multimedia
applications, transferring this type of data effectively becomes important. To address this
problem researchers have advocated using the UDP transport protocol coupled with some
congestion control mechanism [Floyd et al., 2000, Rejaie et al., 1999]. The use of such
mechanisms is important because it can prevent a potential congestion collapse.

The deployment of congestion control mechanisms by multimedia application de-
velopers that adopt the UDP protocol is fully voluntary. In fact, competing developers are
likely to implement mechanisms that best suit their needs. One possibility is not to imple-
ment any congestion control mechanism and transfer the responsibility of regulating the
data rate to the users. Moreover, applications can deploy redundancy mechanisms (i.e.,
forward error correction) to masquerade packet losses in the network and improve media
quality. Again, the decision of how much redundancy the application should send can
also be transfered to the user. In this scenario, users are free to choose the rate at which
data is sent. In the context of voice and video applications for example, encoders already



allow users to choose the rate at which data is encoded [GNU, 2004]. Users can then de-
termine the data rates that maximize the perceived quality of the multimedia stream being
received.

This idea of allowing users to determine their data rates as a mechanism for con-
gestion control constitutes a broad field of research. In this scenario, users have an utility
function which depends on the characteristics of the data transfer (e.g., throughput) and
are assumed to beself-regarding. This latter assumption means that users are only inter-
ested in maximizing their own utility. Note that users are competing for a shared resource
and that decisions made by one user can affect the utility of all others. In this context,
game theory emerges as a natural framework to model and evaluate the performance of
such systems. Classical game-theoretic models have in fact been applied to this problem
[Hsiao and Lazar, 1987, Shenker, 1995, Johari and Tsitsiklis, 2004].

In this paper, we develop a dynamic game-theoretic model to evaluate equilib-
ria points that are reached by self-regarding users. Our model is based on evolutionary
models where users adapt their data rates based on the perceived quality of service. We
consider users’ utility functions that are closely tied to quality of service (QoS) metrics
for multimedia applications. Using the proposed model, we demonstrate several interest-
ing properties of the equilibria of this system. In particular, we show that in steady state
there exists a relationship between the states that have non-negligible probabilities and
the Nash equilibria of the game. Techniques from the theory of aggregation in Markov
chains are used to prove this result.

The remainder of this paper is organized as follows. In the next section we provide
a brief introduction to game theory. In Section 3 we discuss related work. In Section 4
we formally present the problem investigated and the proposed model. Sections 5 and
6 describe the analytical and numerical results obtained from our model, respectively.
Finally, Section 7 concludes the paper.

2. Game Theory Review

The main goal of game theory is to understand how players act when confronted with
a scenario where there are conflicts of interest. In a given conflict of interest scenario,
each player must make a choice from a given set of possible choices. In the game theory
nomenclature, this choice is known as the player’s strategy and the set of possible choices
the strategy set. The joint decision of all players will determine the outcome of the game
and each player has some preference over the set of possible outcomes. Classical game
theory assumes players have full knowledge of the game and exhibitrational behavior1.

We will introduce definitions and illustrate important concepts in game theory
using a simple example. Consider two players,A andB, that must share a single network
link in order to receive multimedia data. PlayersA andB have to their disposal two
possible data rates to choose from, a smooth and an aggressive one:{λs, λa}, with λs <
λa. The utility of each player represents the quality of service (QoS) experimented by the
player and depends on the outcome of the game.

Tables 1(a) and 1(b) illustrates two different games. The value in the cell of the
matrix indicates the QoS received by playersB andA, respectively. For example, if

1By rational we mean that a player has consistent preferences and acts to maximize its long run benefits.



playerA choosesλs and playerB choosesλa, their QoS in the game defined by Table
1(a) will be5 and15, respectively. The game defined by Table 1(a) illustrates a scenario

A playsλs A playsλa

B playsλs 5,5 5,15
B playsλa 15,5 15,15

A playsλs A playsλa

B playsλs 5,5 1,15
B playsλa 15,1 4,4

(a) (b)

Table 1. Two strategic games.

where a larger data rate yields a larger QoS for each player. In this case, the network
link being shared does not become congested when both users choose to receive atλa.
Table 1(b) illustrates the case where the network link becomes congested when both users
choose to receive atλa. Note that the QoS experimented by both players in this case
is worst than the one experimented formerly when both players choose to receive atλa.
Having presented an example, we now formally introduce the concept of a strategic game
[Osborne and Rubinstein, 1994]:

Definition 1 A finite strategic gameis characterized by〈N, (Ai), (ui)〉, which consists
of • (i) a finite setN of players• (ii) for each playeri ∈ N a non empty finite setAi

(the set of choices available to playeri) • (iii) for each playeri ∈ N an utility function
ui : A = ×j∈NAj → < (the utility function of playeri).

The fundamental problem in game theory is understanding how players will act when
faced with a particular game. In particular, one is interested in determining the choices
that players will make, which is sometimes referred to as thesolutionof the game. How-
ever, there are several solution concepts defined within game theory. We will adopt the
most common one, known as a Nash equilibrium. A Nash equilibrium is a set of choices,
one choice made by each player, where no individual player can improve his utility by
unilaterally changing his choice. More formally, we have:

Definition 2 A Nash equilibriumof a strategic game〈N, (Ai), (ui)〉 is a vector choices
a? = (a?

1, . . . , a
?
N) ∈ A = ×j∈NAj, one choicea?

i for each playeri, such that for each
i ∈ N , ui(a

?
−i, a

?
i ) ≥ ui(a

?
−i, bi) for all bi ∈ Ai wherea?

−i = (a?
i )i∈Nr{i} (i.e., a?

−i is a
vector of choices, one choice for each player, except playeri).

In our previous example, the games defined by Tables 1(a) and 1(b) both have a single
Nash equilibrium which is given by(λa, λa). Note that in the game 1(b) both players could
obtain a larger QoS if they both choseλs. However,(λs, λs) is not a Nash equilibrium
because one player can obtain a higher QoS by unilaterally changing toλa. This last
observation motivates the definition of equilibria points that yield high utility values to
all players. In fact, a Pareto equilibrium is a set of choices such that there does not exist
another set of choices where all players receive a higher utility. More formally, we have

Definition 3 A Pareto equilibriumof a strategic game〈N, (Ai), (ui)〉 is a vector choices
a? = (a?

1, . . . , a
?
N) ∈ A = ×j∈NAj, one choicea?

i for each playeri, such that there is no
b ∈ A that satisfiesui(b) > ui(a

?) for all i ∈ N .

Returning to our example, the Pareto equilibrium of the game defined by Table 1(a) is
given by(λa, λa), while in the game defined by Table 1(b) is given by(λs, λs). Note that
in the first game the Pareto equilibrium coincides with the Nash equilibrium, while in the
second game they differ.



The fact that the Nash equilibrium frequently does not coincide with the Pareto
equilibrium constitutes one of the core issues in game theory. Much research has been
done in understanding this phenomena and quantifying the difference in utility between
the two equilibria. This phenomena is usually associated with two basic premises of
classical game theory. First, the assumption that players are perfectly rational and have
full knowledge of the game. Second, that the game is played only once and that players
make decisions that are definitive.

Another fundamental problem in game theory is determining how players reach
their decisions. In particular, the question of how can players arrive at Nash equilibrium
is of ultimate importance. Classical game theory usually assumes players are capable
of determining the Nash equilibrium that will be played. However, for some games this
requirement is too stringent as determining the Nash equilibrium can have a very high
complexity cost and multiple Nash equilibrium can co-exist.

2.1. Evolutionary game theory

Evolutionary game theory has emerged as an alternative perspective to classical game the-
ory. One of its main advantages is the dismissal of the assumption that players must be
rational. Although players still want to maximize their utility, the reasoning process by
which players decide their strategy is usually trivial. Another advantage of evolutionary
game theory is that equilibria are usually determined by the result of the evolutionary pro-
cess. In other words, how players reach and select an equilibrium is part of the modeling
framework.

Evolutionary game theory considers a dynamic scenario where players are con-
stantly interacting with one another and adapting their choices based on the utility they
receive. The adaptation process is a fundamental component of evolutionary games and
is usually interpreted as an evolutionary or learning process. In its simplest form, players
are assumed to be symmetric, in that they have identical set of choices and identical utility
functions. An evolutionary game can be formally defined as follows:

Definition 4 A symmetricevolutionary game〈N, (A), (u), σ(t),S (t), D〉models the in-
teraction of players over time, and is composed of the following:• (i) a finite setN of
players• (ii) a non empty setA (the set of available choices for each player), withk = |A|
• (iii) an utility function u : A = ×j∈NAj → < (the utility function of each player)•
(iv) a vector of values between 0 e 1,σ(t) = (σ1, . . . , σk)(t), whereσj(t) is the frac-
tion of the population selecting the choiceaj ∈ A at time t (the state of population at
time t) • (v) an ordinary gameS (t) = 〈O, (A), (u)〉 (the “stage game” at timet) •
(vi) a dynamic process of strategy adjustment, which is a function (possibly stochastic)
D : (σ(t),S (t), t) → σ(t + ∆t) (the dynamic selection process).

In essence, players are repeatedly matched in groups ofO, usually randomly, in order to
play the stage gameS (t) at timet. The stage game is played in accordance withσ(t),
the fraction of the population selecting each choice. Given the utilities obtained, players
adjust their choices according to the dynamics ofD .

The definition of the game dynamics,D , can be deterministic or probabilistic.
The initial evolutionary game theory models had a deterministic game dynamics, based
on differential equations. A popular dynamics in this context is know as thereplicator
dynamics. More recent models adopt a probabilistic game dynamics, many of which are



based on Markov chains. In this case, the state of the Markov chain is usually given by
a vector representing the number of players making a given choice [Kandori et al., 1993,
Young, 1993].

Returning to our example, we now describe it in the context of an evolutionary
game. LetN be the total number of players and assumeN is even. We assume that the
players interact two at a time and that the stage gameS is given by Table 1(b). Let time be
divided into discrete slots and between timet andt+1 all players are matched up in pairs
randomly to play the stage game and adapt their choices based on the utilities received.
Since the stage game considered is bidimensional, the utility obtained by a player when
the population state isσ(t) is u(σ(t)) =

∑k
j=1 u(aj)σj(t) whereu(aj) corresponds to the

utility received by a player when the entire population has chosenaj ∈ A. Finally, we
must defineD , the process for strategy adjustment. For example, we can stipulate that
a player should switch his strategy between timet and t + 1 if he could have received
a higher utility had he played the other strategy. If we assume the initial state of the
population isσ(0) = (1, 0) – all the players chooseλs, then at time 1 we haveσ(1) =
(0, 1) – all players chooseλa.

3. Related Work

Several papers have approached the congestion control problem in computer networks
using a game theoretic formulation. The idea that game theory could be applied to con-
gestion control was first noted in [Nagle, 1985]. An extensive analytical study with focus
on characterizing Nash and Pareto equilibria under different service disciplines is pre-
sented in [Shenker, 1995]. In [Akella et al., 2002], the authors use simulation to evaluate
the performance of the network at the equilibria of “TCP games”. However, these prior
studies have focused on a static scenario and have not considered the general problem of
how Nash equilibria can be attained by network users sharing a FIFO bottleneck queue.

The problem of reaching an equilibrium in the context of dynamic network games
was investigated in [Greenwald et al., 2001] through extensive simulations. However, the
congestion control problem is only briefly discussed in the context of simple learning
algorithms with small number of players. Although there are substantial differences be-
tween [Greenwald et al., 2001] and our work, this work is closely related to ours.

Our work is the first to develop and apply evolutionary game-theoretic models to
the congestion control problem in the context of multimedia data streams and to consider
user-level performance metrics (e.g., QoS). We also provide both analytical and numerical
treatment to the our modeling framework.

Evolutionary game-theoretic models have been widely studied in the economics
literature. Two prominent models are the works of [Kandori et al., 1993, Young, 1993]
(generalized by [Samuelson, 1997]), which provide strong analytical results on theNash
equilibrium selectionproblem. Although these two models share a common basis,
they differ considerably in the details. Both consider a finite player population and
a discrete time model where at each step players are randomly paired to play a bi-
dimensional stage game. However, the dynamics of the strategy selection process differs.
In [Kandori et al., 1993], players change their strategies based on the “best response” to
the current population. In [Young, 1993], a more complex structure is considered where
players change their strategies according to their short-term memory of previous games



played. In both models, it is assumed that players can make mistakes when selecting their
strategies.

Although our model draws on ideas exposed by [Kandori et al., 1993,
Young, 1993], there are some fundamental differences which make our model more suit-
able to the congestion control problem considered here. First, our model is asynchronous,
which means that users change their strategies one at a time. The two previous models
are synchronous, which means that all users can change their strategy at each time step.
Second, our model assumes continuous time, which means that at any point in time one
(and only one) user can change its strategy. The two previous models assume discrete
time. Third, our model considers anN player stage game, where all users simultaneously
participate in the game. The previous models assume random pairing of users and a bi-
dimensional stage game. Fourth, the payoff of the stage game is given by a performance
model which depends on the strategies of all users (in this paper we consider an M/M/1/k
queue to obtain performance metrics, but any other performance model could be used as
well). Finally, the strategy selection process we consider is also very different from those
in the previous models.

4. The model

We consider the problem where a set of self-regarding users transmitting multimedia data
must share the bandwidth of a common network link. We assume that no congestion
control protocol is deployed and that users are free to choose the bandwidth at which data
is transmitted. This problem, for instance, appears when a set of client users access a set
of multimedia servers which are capable of delivering data at various rates. This scenario
is illustrated in Figure 1(a).

It is well known that despite the fact that multimedia applications can tolerate
packet losses and delays [Kurose and Ross, 2004], the quality of the audio/video per-
ceived by the user (e.g., user level QoS) can vary drastically with these variables. We will
assume users have a well defined quality of service (QoS) function. Multimedia appli-
cations can also adapt the rate at which data is transmitted (i.e., through different coding
algorithms), trading smaller bandwidth requirements for lower QoS. We will assume ap-
plications offer users a few different data rates to choose from.

In this scenario, users must now determine the application data rate that maximizes
their utility function. However, since users share a common network link, decisions of one
user affects the quality of service perceived by all others, and consequently the decisions
the others will make. Hence, this problem naturally leads to a game-theoretic model
where the payoffs represent the QoS that each user perceives.

It is important to note that we are interested not only in the final outcome of the
game, but also in the dynamic process by which users change their choices to arrive at a
final decision. In fact, in this work we focus on modeling this dynamic process using an
evolutionary game-theoretic model that we now describe in detail. LetX = {X(t) : t ≥
0} be a continuous time Markov chain (MC) used to model the dynamics of how users
change their choices (i.e., strategies in the game theory jargon) as a function of the time.
Let A be the set of data rates that available to the users2. SetA is known as the strategy

2We assume that all users choose a strategy from the same setA. However, different sets of strategies
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Figure 1. From left to right: (a) The system overview; (b) model snapshot.

set. The model has a finite state spaceS and each state represents the number of users
adopting each of the available strategies. Every state inS induces a performance model
that will determine the characteristics of the shared network link. This model yields the
appropriate performance metrics, such as packet loss and delay, which are then used to
calculate the QoS perceived by the users. In the examples that follow we use a simple
M/M/1/K performance model to illustrate the basic ideas of our approach. The state
transition rates of the MC are then calculated based on the QoS perceived by the users in
each of the states. Figure 1(b) illustrates this two-level model.

In our model, users can change their current strategy when they perceive that a
change in the data rate will yield a higher QoS for them. This induces “Darwinian”
adjustments, in which users gradually move toward a state in which no single user can
improve his QoS by making further changes. This state is considered to be a Nash equi-
librium. Note that if the model has more than one Nash equilibrium, the one which will
be selected in the long run depends on the initial distribution of the population. This is
called “path dependence”.

We also assume that “perturbations” are possible in our model. Users have a non-
zero probability of making a wrong decision and choosing a strategy that yields a lower
QoS than the current strategy. For instance, this could occur if users do not correctly infer
the impact of changing their data rates. Therefore, at each state, each user can not only
select a strategy that will improve its QoS, but can also select a strategy that will decrease
its QoS. However, the probability of changing from the present strategy to another is
proportional to the QoS gains that result from the change, while the probability of making
a mistake is taken to be small. As a consequence of introducing “perturbations”, it can be
shown that the resulting MC is ergodic. Therefore, the problem of the “path dependence”
does not exist since the steady state solution does not depend on the initial conditions.

The dynamic process adopted by users to choose their strategies are based on the
following observations: (i) not all users react instantaneously to their environment (in-
ertia hypothesis); (ii) when an user reacts, the reaction is myopic (myopia hypothesis);
(iii) there is a small probability that the users change their strategy in the wrong direc-
tion (“perturbation” hypothesis); (iv) users are concerned only with their own QoS when
choosing a strategy (self-regarding hypothesis). All these observations are reflected in our
model and were also discussed in [Kandori et al., 1993]. The inertia hypothesis means
that users react asynchronously when changing their strategies. The myopia hypothesis
means that users have a limited reasoning capability and do not take into consideration

can be associated with different groups of users as well.



the long run implications of their choices. To summarize, at any point in time users are
faced with a strategic game. However, only a single user makes a decision to change his
strategy – this yields an asynchronous evolutionary model. For simplicity, we assume
that when a user changes his strategy, all other users become aware of the new state of the
game, instantaneously.

We now give the details of the evolutionary game-theoretic model, as established
in Definition 4. As stated earlier, the dynamic process of strategy adjustment is given
by D , a continuous time Markov chain. Letk = |A| denote the number of strategies
available to the users. Therefore, each state hask different payoffs which correspond
to the QoS value that each user will receive when playing a given strategy. Letsi =
〈n1, . . . , nl, . . . , nm, . . . nk〉 and letsj = 〈n1, . . . , nl−1, . . . , nm +1, . . . nk〉 be two states
of the MC, wherenl, 1 ≤ l ≤ k represents the number of users playing strategyl. The
process transitions fromsi to sj when a user changes his strategy froml to m. The
transition rate fromsi to sj is a function of the difference in the QoS received in these two
states. LetU(l, i) be the QoS (the utility function) perceived by a user playing strategy
l at statesi, n

(i)
l be the number of users insi playing strategyl, andσ

(i)
l = n

(i)
l /N the

corresponding fraction of users playingl at si. The transition rate fromsi to sj is given
by {

n
(i)
l ×

[
U(m, j)− U(l, i)

]
if U(m, j) > U(l, i)

n
(i)
l × ε otherwise

(1)

Recall that users can make mistakes and transitions fromsi to sj can occur even if
the QoS perceived atsi is greater than that insj. This occurs with rateε, which
is a parameter of the dynamic processD . The utility function has the general form
U(l, i) = Q(delay, throughput, loss ratio,. . .) whereQ is an arbitrary function which
measures the QoS perceived by a given user. There have been several proposals in estab-
lishing an accurate QoS function that maps network performance to the perceived user-
level quality when using a multimedia application. For instance, the ITU-T E-Model,
assumes that performance measures are additive [ITU, 2003], while other recent work
have attempted to obtain different QoS functions [Mohamed and Rubino, 2002]. For sim-
plicity, we will consider additive quantities in our QoS function.

Without loss of generality, we choose only two network performance metrics to
influence the QoS perceived by users, one that increases and another that decreases with
an increase in the data rate chosen by users: delay and goodput. The utility function is
then given by:U(l, i) = α.φ1(d(l, i))+β.φ2(g(l, i)) whered(l, i) is the mean packet delay
andg(l, i) is the mean goodput seen by users that play strategyl in statei, respectively;
φ1 andφ2 are decreasing and increasing functions, respectively. In other words, the utility
function of a user playing strategyl in statei is given by a weighted average of two
utility functions. α andβ are the weights of the marginal utility functions. Depending
on the concavity ofφ1 andφ2, we say that the users are risk-averse or risk-loving on a
specific QoS parameter [Gintis, 2000]. Ifφ2 is concave, for instance, the user is risk-
averse regarding the goodput achieved. In that case, a good candidate forφ1 andφ2 is
φi = k0× (k1 +k2 log(k3 +k4x)) where theki’s are normalization constants. Note thatφ1

andφ2 are mainly used to normalize the performance metrics to the[0 − 1] range and to
establish how risk-aversive or risk-loving are users when considering each performance
metric.



It remains to show how we can obtaind(l, i) andg(l, i). In general, these met-
rics could be generated via simulation or via an analytical performance model. We adopt
the latter strategy. Referring to Figure 1(a) letK be the total buffer space at the bot-
tleneck link,µ the capacity of this link,λ(l) the actual transmission rate of associated
with strategyl, λ?(i) =

∑
l n(l, i)λ(l) the aggregate transmission rate at statesi and

ρ(i) = λ?(i)/µ. For the examples in this paper, we use the simple M/M/1/K formulae
[Kleinrock, 1975] to obtain the performance metrics of interest. Denote byp(i) andL(i)
the loss ratio and mean queue size at the M/M/1/K queue when the MC that represents
the system dynamics is in statei. Thend(l, i) = L(i)

λ?(i)(1−p(i))
, g(l, i) = p(i)λ(l) and:

{
p(l, i) = ρ(i)K(1−ρ(i))

1−ρ(i)K+1 L(i) = ρ(i) (1+Kρ(i)K+1)−(K+1)ρ(i)K

(1−ρ(i))(1−ρ(i)K+1)
if λ?(i) 6= µ

p(l, i) = 1
K+1

L(i) = K
2

otherwise
(2)

whered(l, i) does not depend onl in our particular dynamics due to the PASTA property.

A nice analytical property of the proposed ergodic Markovian model consists on
the fact that it is hierarchical (see Figure 1). On the upper layer, we model user behavior
and their strategy selection, while in the lower layer, we model the effect of network
performance metrics on user’s QoS. This resembles the modeling paradigm employed in
performabilityanalysis [de Souza e Silva and Gail, 2001].

Another interpretation for our model is that it describes not actual users but adis-
tributed congestion control algorithm. This algorithm attempts only to maximize the QoS
that its user will perceive. Each end-host running this algorithm continuously executes a
mechanism to detect the QoS perceived by the user as a function of network performance
metrics such as packet loss, delay and goodput. The algorithm then chooses different
transmission rates in the attempt to obtaining a higher QoS for its user. However, the
transmission rate cannot effectively be changed at a high frequency without causing loss
of QoS, for instance, without causing flickering in a video. Thus, the probability of mak-
ing a change in the rate is proportional to the attained increase in QoS. The transitions
made at rateε model the measurement inaccuracy or possible decision “errors”. These
perturbations are also applied in “simulated annealing” in order to prevent the system to
remain in a local optimum.

5. Model Analysis

In this section we evaluate the main analytical results obtained for the proposed model.
Please, refer to [Menasché et al., 2004] for the proofs.

Definition 5 Letε be the perturbation rate which is one of the parameters of the dynamic
processD , as explained in the previous section. A quasi-absorbing set of statesSa is one
that, for each stateso ∈ Sa, any transition fromso to a statesd /∈ Sa is equal toε.

Note that, since our model is ergodic, it does not contain absorbing sets. However, it
contains quasi-absorbing sets. According to Definition 2 (see also [Samuelson, 1997]),
the Nash equilibrium of a dynamic evolutionary game is a collection of strategies that
are optimal when the resulting deviations from the present strategies are evaluated in the
closest possible worlds. In the proposed model the notion of closest possible worlds is
equivalent to that of adjacency between states. In what follows, we relate quasi-absorbing
sets with Nash equilibria.



Definition 6 The support or carrierC(q) of a probability distributionq ∈MN consists of
the states which receive positive probability onq : C(q) = {i ∈ Z|qi > 0}.
Let S1, S2, . . . , Sn and T be a partition of the state space of the model whereSi are
minimal quasi-absorbing sets, andT is the set of the remaining states.

Proposition 7 Whenε → 0, a states is a Nash equilibrium of our proposed gameG if
and only if it is a singleton quasi-absorbing set.

Proposition 8 For each statet ∈ T there is at least one path fromt to a states ∈ Si

which does not contain any transition with rate equal toε.

Proposition 9 Suppose gameG with dynamic modelD has at least one Nash equilib-
rium. Whenε → 0 let states be contained in the support of the steady state distribution
of D . Then: (i)s is contained in one of the setsSi (ii) if Si is a singleton, thens is a pure
Nash equilibrium.

Proposition 10 Depending on the dynamicsD , the Nash equilibria ofG which are on
the support of the steady state solution ofD whenε → 0 may receive arbitrarily different
probabilities.

Proposition 9 establishes relations between the Nash equilibria of the gameG with the
states on the support of the stationary distribution. Proposition 10 then indicates that even
though gameG may admit more than one Nash equilibrium, not all the equilibria nec-
essarily receive high probability in steady state. What determines the probability that a
Nash equilibrium will receive in steady state is the dynamics of the system. So, in many
cases it is possible to understand the expected behavior in steady state, whenε → 0, even
when more than on Nash equilibrium is present. Propositions 9 and 10 concerning our
game dynamics are in accordance with results from other dynamical models of evolution-
ary game theory. Similar propositions have been proved, for instance, in the context of the
replicator dynamics. [Gintis, 2000] shows that stable fixed-points (evolutionary equilib-
ria) of the replicator dynamics correspond to Nash equilibria of the characterized games,
although not all Nash equilibria will be related to a stable stationary point.

6. Numerical Examples

In this section we present three examples to illustrate a few of the properties of our model
and its applicability. The numerical computation was performed with the Tangram-II
tool, [Carmo et al., 1998]. The examples analyze the impact of the utility function on the
behavior of the agents in steady state, when the error rateε is small.

The first and third examples use as parameters for the utility function the loss
ratio and the goodput, while in the second example the utility for each user is given as a
function of the delay and the goodput. The values for parameters used in all the examples
are shown in Table 2. In this table, QoS parameters with an overline were normalized to
the range(0, 1). Consider the scenario characterized in row 1 of Table 2. In this case the
utility is a function directly proportional to the goodput and inversely proportional to the
loss rate: utility= αφ1(loss ratio) + βφ2(goodput). The shapes ofφ1(·) andφ2(·) are
shown in Figures 2(a) and 2(b) respectively.

Figure 2(c) plots the steady state solution of the model whenβ varies, forα = 10.
The impulses in the figure illustrate the values of the probabilities. For instance, when



Table 2. Parameterization of the Examples.
# K strategies µ users QoS parametersα β φi

(λ) i param. i k0 k1 k2 k3 k4

1 loss ratio 1 0.14 7 1 1.001 -1
1 10 (7, 8) 80.4 20 10 0.4 . . . 2

2 throughput 2 0.14 7 1 0.001 1
1 delay 1 0.56 -0.6 -1 -1.4 100

2 2 (5, 10, 20) 80.4 4 1 0.5 . . . 0.53
2 throughput 2 0.29 -4.5 1 100 100

4000 1 loss ratio 1 0.14 7 1 1.001 -1
3 100 (8, 18.4 64) (bg traffic 40 500 1 . . . 180

of 1400) 2 throughput 2 0.14 7 1 0.001 1

Table 3. QoS table for example 1 when β = 0.8. The bold state is the unique Nash
equilibrium.

state QoS

1: 20 0 ( 10.7140, —– )
2: 19 1 ( 10.6246, 10.7152 )
3: 18 2 ( 10.5309, 10.6249 )
4: 17 3 ( 10.4325, 10.5302 )
5: 16 4 ( 10.3288, 10.4305 )
6: 15 5 ( 10.2192, 10.3252 )
7: 14 6 ( 10.1027, 10.2136 )

state QoS

8: 13 7 ( 9.9785, 10.0947 )
9: 12 8 ( 9.8452, 9.9672 )
10: 11 9 ( 9.7012, 9.8298 )
11: 10 10 ( 9.5445, 9.6806 )
12: 9 11 ( 9.3725, 9.5170 )
13: 8 12 ( 9.1814, 9.3357 )
14: 7 13 ( 8.9662, 9.1319 )

state QoS

15: 6 14 ( 8.7196, 8.8988 )
16: 5 15 ( 8.4298, 8.6257 )
17: 4 16 ( 8.0778, 8.2947 )
18: 3 17 ( 7.6275, 7.8725 )
19: 2 18 ( 6.9986, 7.2846 )
20: 1 19 ( 5.9384, 6.2962 )
21: 0 20 ( —–, 0.8454 )

β = 0.4 Figure 2(c) shows that the steady state probability for state 1 is approximately
1. This indicates that state 1 is the expected steady state Nash equilibrium in the long run
for this scenario. Note that all other states in the model have a very small probability, so
small that their correspondent impulses are not visible. In this example, we observe that,
for any value ofβ, the probability distribution concentrates most of its mass in a single
state.

The example is particularly interesting in order to show the “loss of efficiency” due
to miscoordination and the absence of a central authority. Consider the valueβ = 0.8.
In this case, there is just one Nash equilibrium for this game, namely state 3. However,
the Nash equilibrium is extremely inefficient. State 1, which corresponds to the Pareto
optimum, gives a better payoff for all the twenty players. But state 1 cannot be an equi-
librium point in this non-cooperative scenario because, in this state, a selfish agent would
be inclined to change to the aggressive strategy (see Table 3). Therefore, for state 1 to
be an equilibrium state, some kind of negotiation between the players (or the use of a
central authority) would be required to produce incentives for the players to stay in that
state. In summary, the greater the impact of the goodput on the global utility, the greater
the number of agents playing aggressively in the long run. As a consequence, due to the
absence of a central authority the players tend to play aggressively and do not reach the
best strategy for the group.

Consider a second scenario, where four agents share a bottleneck, each with three
available strategies to choose from. In this example the utility is a function of the delay
and the goodput. Figure 2(d) shows that, as the goodput influence on the utility function
increases, state 15 concentrates almost all the probability mass, and this is the state where
all agents play aggressively.
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Figure 2. The first 3 figures correspond to case 1 (a) maps loss probability to
QoS; (b) maps throughput to QoS; (c) the steady state solution as a function of
β; (d) steady state solution for case 2.

Table 4. QoS table for example 2 when β = 0.52. Bold states are Nash equilibria.

state QoS

1: 4 0 0 ( 1.270, 0.000, 0.000 )
2: 3 1 0 ( 1.036, 1.126, 0.000 )
3: 3 0 1 ( 0.771, 0.000, 0.955 )
4: 2 2 0 ( 0.883, 0.972, 0.000 )
5: 2 1 1 ( 0.684, 0.772, 0.867 )

state QoS

6: 2 0 2 ( 0.554, 0.000, 0.736 )
7: 1 3 0 ( 0.771, 0.860, 0.000 )
8: 1 2 1 ( 0.613, 0.701, 0.796 )
9: 1 1 2 ( 0.503, 0.590, 0.684 )
10: 1 0 3 ( 0.420, 0.000, 0.600 )

state QoS

11: 0 4 0 ( 0.000, 0.772, 0.000 )
12: 0 3 1 ( 0.000, 0.641, 0.736 )
13: 0 2 2 ( 0.000, 0.546, 0.640 )
14: 0 1 3 ( 0.000, 0.471, 0.565 )
15: 0 0 4 ( 0.000, 0.000, 0.504 )

A state where all agents play the same strategy is called aconvention. Consider
the valueβ = 0.52. From Table 4 we can observe that all the conventions are Nash equi-
libria of the game. However, from Figure 2(d) we see that in this scenario just one state
receives a probability close to one in steady state. This observation confirms Proposition
10. Although we have more than one Nash equilibria, the dynamics of the system will
determine the state which will receive greater probability in steady state [Young, 1993].
This example serves to illustrate how our model dynamics answers the problem of the
Nash Equilibrium selection: if more than one Nash equilibrium is present in the game,
which one will be played most frequently in the long run?

Voice over IP applications are becoming common in the Internet. Applications
such as Skype, freephone and VivaVoz [Figueiredo et al., 1997, Duarte et al., 2003] and
free voice codecs, such as Speex [GNU, 2004], are presently available. Using Speex, for
instance, users may choose to transmit/receive compressed voice in the range from 2.4
kbps to 24.8 kbps or choose PCM encoding at 64 kpbs, based solely on the perceived QoS.

 2250

 2300

 2350

 2400

 2450

 2500

 2550

 0  20  40  60  80  100  120  140  160  180

m
ea

n 
ag

gr
eg

at
e 

th
ro

ug
hp

ut

beta

""

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0  20  40  60  80  100  120  140  160  180

lo
ss

 r
at

io

beta

""

""

 0  20  40  60  80  100  120  140  160  180
beta  854

 855
 856

 857
 858

 859
 860

 861

state

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

prob

Figure 3. Results for case 3 (a) mean aggregate throughput as a function of β; (b)
mean loss ratio as a function of β; (c) steady state solution.



For the third example we consider a bottleneck link with capacity 4 Mbps which is shared
by 40 users using a VoIP application. The link is also shared by other applications that
generate a background traffic at a rate of 1.4 Mbps (see third line of Table 2). As before,
all the parameters values are maintained fixed except forβ. Figures 3(a) and 3(b) show
the average aggregate throughput and loss rate withβ, respectively. Figure 3(c) shows
the evolution of the steady state model solution withβ. In the figure, the model states are
ordered with increasing mean aggregate throughput. Based on these figures, we conclude
that, in this scenario, the average aggregate throughput of the Nash equilibrium chosen
in the stationary distribution increases monotonically with the weight of the throughput
on the users’ utility function. However, the loss probability also increases, and the steady
state depends on the relative importance of these measures on the QoS.

Finally, one of the interesting properties of our model is the small sensitivity of the
equilibrium with respect to small perturbations in the adjustment process of the agents.
This is an indication of the robustness of the model. Refer to [Menasché et al., 2004] for
details.

7. Conclusion and future work
It is a standard procedure in the literature of economics to try to model the behavior of
the human being in order to predict market outcomes [Mas-Colell et al., 1995]. In the
literature of networks, this area is rapidly growing. However, until now game theory
has been used by the computer networking community mainly as a normative exercise to
investigate how decisionsshouldbe made. In this work, we try to bring a new insight
into the problem, and propose a dynamic model to investigate the impact generated by
how decisionsare made. We consider users who make their choices based on the QoS
they perceive usingtrial and error. This is why we adopt an evolutionary game theoretic
modeling framework [Samuelson, 1997].

We proposed a dynamic model to analyze the scenario where there are no guide-
lines imposed on users when determining the rate at which data should be transfered,
except for their perception of quality. We believe this is an interesting approach to model-
ing the congestion control problem, specially when considering multimedia applications,
such as voice and video. We do not claim that our model is the most accurate representa-
tion of the dynamic process by which users choose their rates. However, this is an initial
effort in shedding some light into the new research area of behavioral game theory applied
to computer networking.
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