Grid-Aware Network Resources Allocation
using a Policy-Based Approach

Ricardo Neisse, Lisandro Z. Granville,
Maria Janilce B. Almeida, Liane Margarida R. Tarouco

Institute of Informatics - Federal University of Rio Grande do Sul
Av. Bento Gongalves, 9500 - Porto Alegre, RS - Brazil

{neisse, granville, janilce, liane @inf.ufrgs.br

Abstract. Computing grids require the underlying network infrastructure to be
properly configured for provisioning of appropriate communications among
their nodes. The management of networks and grids are currently executed
by different tools, operated by different administrative personnel. Eventually,
the grid communication requirements need corresponding support from the
network management tools, but such requirements are fulfilled only when grid
administrators manually asks the network administrators for the corresponding
configurations. In this paper, we propose a policy translation mechanism that
creates network policies given grid requirements expressed in grid policies. We
also present a system prototype that allows (a) grid administrators to define
grid policies, and (b) network administrators to define translating rules. These
translating rules are used by the translation mechanism proposed by this work
for the generation of the necessary underlying network configuration policies.

Resumo.Grids computacionais requerem que a infra-estrutura de rede
subjacente seja adequadamente configurada para o fornecimento apropriado
dos servicos de comunicag entre os nodos do grid. O gerenciamento da
rede e do grid atualmenteie executados atr&s de diferentes ferramentas,
operadas por diferente pessoal administrativo. Eventualmente, os requisitos de
comunica@o do grid precisam de um suporte de comun@zacorrespondente

das ferramentas de gerenciamento de redes, mas esses requisitos s@uoente s
atendidos quando os administradores do grid manualmente requisitam aos
administradores da rede as configuéss correspondentes. Este artigo pbep

um mecanismo de trad@g de poiticas que cria pdticas de rede a partir dos
requisitos do grid expressos nas fisias de grid. E apresentado taném um
protbtipo que permite (a) administradores de grid definiremifords de grid

e (b) administradores da rede definirem regras de tr@gucEssas regras de
traducao 40 usadas pelo mecanismo de trado@roposto neste trabalho para
gerag@o das pditicas necesaias para configurago da rede subjacente.

1. Introduction

Grids are distributed infrastructures that allow sharing of computing resources distributed
along several different administrative domains between users connected through a
computer network. Resources can be processing, memory, storage, network bandwidth,
or any kind of specialized resource (e.g. telescopy, electronic microscopy, medical

diagnostic equipment, etc.). Typical grid applications are: high performance computing,
data sharing, remote instrument control, interactive collaboration, and simulation.
Usually, applications that require powerful, specialized, or expensive computing resources
get benefits from the use of grid infrastructures. Most of these applications are latency and
jitter sensitive, and often require high network bandwidth and multicast communication
support. Thus, in order to manage a grid infrastructure, the management of the underlying
network that provides the communication support is also a requirement.

Besides the network requirements, other factor that may turn the grid management
complex is the resource distribution. Since the grid resources are distributed along
several administrative domains, the grid operations can only be supported through
grid management solutions that coordinately interact with each network administrative
domain. In this management scenario, two administrative figures come out: the grid
administrator and the network administrator. The grid administrator is responsible for the
management of the grid resources (e.g. clusters and storage servers), proceeding with
tasks such as user management and access control. The role of the network administrator
is to proceed with the network maintenance to allow the users to access the grid resources
through the communication network.

The management of the network infrastructure is important because grid users
access the shared resources through the network and, if the network is congested or
unavailable, such access is likely to be compromised. The configuration of the underlying
network allows, for example, reservation of network bandwidth and prioritization
of critical flows, which is generally proceeded with the use of a QoS provisioning
architecture such as DiffServ or IntServ. The current grid toolkits [Globus 2003]
[Steen et al. 1999] [AccessGrid 2003] do not interact with either the network QoS
provisioning architecture nor the network management systems. That leads to a situation
where the grid and network administrators are forced to manually interact with each other
in order to proceed with the required configuration of the communication support. Thus,
although the toolkits provide support to the grid resources management, the available
support for an integrated management of grids and networks is still little explored.

In this paper we propose a policy translation solution where network management
policies are created from the grid management policies. The main objective is to allow
an integrated management of the communication infrastructure required for the grid
operation. The proposed solution translates grid policies to network policies through
a translation architecture. In this architecture the network administrators, in each
administrative domain that composes the grid, define translation rules in order to control
how to create the network policies based on the grid requirements. We implemented a
Web-based prototype, to support the proposed architecture, where the grid administrator
is allowed to specify the grid policies, and the network administrators (in each domain)
can specify the translation rules.

The remainder of this paper is organized as follows. Section 2 presents related
work, where the management support provided by toolkits and an actual typical scenario
of grid management is detailed. Section 3 presents the proposed hierarchical policy-based
management architecture, and Section 4 shows the prototype developed based on such
architecture. Finally, the paper is finished in Section 5 with some conclusions and future
work.

2. Related Work

The management of grid resources is not a trivial work, since the grid resources can be
located along several different administrative domains. For example, the cluster of a grid
could be located in an company, and the storage servers could be located in a university.
However, both resources (processing and storage) belonging to the same grid are located
in different administrative domains. In this situation, each resource is maintained by
a different administrative entity, with different operation policies. Thus, a distributed
management coordination of the grid resources is required.

Typical grid management tasks that need to be coordinated in the grid distributed
environment are, for example, user authentication and resource scheduling. Considering
that most grid infrastructures need a common management support, software libraries,
called toolkits, were developed. These toolkits provide basic services and try to reduce
the initial work needed to install and manage a grid. Toolkit examples are Globus
[Globus 2003], Globe [Steen et al. 1999] and AccessGrid [AccessGrid 2003].

A commonly required network configuration in a conference grid, implemented
for instance with the AccessGrid toolkit [AccessGrid 2003], is to reserve network
resources for multicast audio and video flows. This configuration must be executed in all
administrative domains that are part of the grid, to guarantee a successful audio and video
transmission. The current version of the AccessGrid toolkit considers that all needed
configuration and network reservations for the grid operation were made, which is not
always true.

A toolkit that explicitly considers an integrated network infrastructure man-
agement is Globus [Globus 2003], through its Globus Architecture for Reservation
and Allocation (GARA) [Foster et al. 2002]. This architecture provides interfaces for
processor and network resources reservations. GARA was implemented in a prototype
where configurations are made directly in routers to configure queue priorities of the
DiffServ architecture. This implementation considers that the toolkit has permission to
directly access and configure the network devices.

Globus, in its management support, also explicitly defines the concept of proxy
(an important concept for the grid policy definitions to be presented in the next section).
A proxy represents a grid resource that runs determined tasks on behalf of the users and
have the same access rights that are given to the user. Globus implements proxies using
credentials digitally signed by users and passed to the remote resources. A possible proxy
configuration could be a user accessing a storage server through a process running in a
supercomputer. In this case, the supercomputer acts as a user proxy, since it requests
actions in name of the user.

Besides the management support provided by the toolkits, policy-based
grid solutions were also proposed by Sundaram et al. [Sundaram et al. 2000]
[Sundaram and Chapman 2002]. An example of such grid policies is showed in
Listing 1. This policy uses parameters to specify processor execution and memory usage
for a user accessing a server during a determined period of time. It is important to notice
that this approach for grid policy definition does not allow the specification of network
QoS parameters to be applied in the user-server communication and also does not support
explicitly the concept of user proxies.

machine : /O=Grid/O=Globus/OU=sp.uh.edu/CN=n017.sp.uh.edu
subject : /O=Grid/O=Globus/OU=sp.uh.edu/CN=Babu Sundaram
login : babu

startTime : 2001-5-1-00-00-00

endTime : 2001-5-31-23-59-59

priority : medium

CPU : 6

maxMemory : 256

creditsAvail : 24

Listing 1. Grid Policy

Sahu et al. [Verma et al. 2002] define a management service where global grid
policies are combined with policies of each local domain. The local policies have high
priority, which means that if a global policy defines a 20GB disk allocation in a server,
but the local administrator defines a policy that allows only 10GB, the local policy is
chosen and only 10GB is allocated. Grid policies in each administrative domain can
be influenced by local network policies that can, for some reason (e.g. critical local
application), indicate that a local resource or service should not be granted to a grid
member. Here, potential conflicts of interest between the grid and network administrator
can exist and impact in the definition of grid and network policies. Therefore, for a
proper grid operation, the local network administrator and the global grid administrator
are supposed to have some kind of common agreement regarding the grid and network
resources on the local domain.

Another proposal that uses policies for network configuration aiming grid support

Is presented by Yang et al. [Yang et al. 2002]. The solution specifies an architecture
divided in a policy-based management layer (that follows the IETF definitions of PEPs
and PDPs [Westerinen et al. 2001]), and a layer that uses the concept of programable
networks (active networks) represented by a middleware. With this middleware, the
network devices configuration are done automatically. However, the Yang et al. work
does not specify how grid and network policies for the proposed multi-layer architecture
are defined.

Sander et al. [Sander et al. 2001] propose a policy-based architecture to configure
the network QoS of different administrative domains members of a grid. The policies
are defined in a low level language and are similar to the network policies defined by the
IETF [Yavatkar et al. 2000]. The Sander et al. approach defines an inter-domain signaling
protocol that sequentially configures the grid domains that are member of an end-to-end
communication path (e.g. a user accessing a server). The signaling protocol allows the
communication between bandwidth brokers located in each grid domain. Such brokers
exchange information with each other in order to proceed with the effort to deploy a
policy. Although the proposed architecture is based on policies, it does not present any
facility to allow the integration with the grid toolkits presented before: it is only an inter-
domain, policy-based QoS management architecture.

Considering these solutions we identified a typical scenario of grid and network
management. In this scenario the grid administrator coordinate the grid operation
using the support provided by the toolkits, and manually interact with the network

administrators in each domain to guarantee that the needed network configurations for
the grid operation is executed. Analyzing this scenario, it is possible to notice that every
time a grid requirement that imply in a new configuration in the network infrastructure is
changed, a manual coordination between the grid and network administrators is needed.
The support provided by the toolkits to solve this situation is very limited and, in most
cases, it does not even exist. Actually, most toolkits consider that the network is already
properly configured for the grid operation, which is not always true.

3. Translation of Grid Policies to Network Policies

The solution presented in this paper defines a translation mechanism where network
policies are created by translation rules using as input data information retrieved from the
grid policies. Figure 1 shows a general view of the translation process. First, at the top,
grid management policies are defined by a grid administrator. The translation mechanism,
based on the translation rules defined by the network administrators, creates the network
policies. In our solution the network administrator is not supposed to define static
network policies anymore, he or she is now supposed to define the translation rules of
the translation mechanism. The network policies generated by the translation mechanism
are then translated to network configuration actions executed by Policy Decision Points
[Westerinen et al. 2001] of a regular policy-based management system.

Grid management policies , High
e RO -
' level
i -- Translation defined by the network administrator - / -i \ --- --/— l ------------ E
Network management policies <> <> <> <> i
----- Policy deployment via PDPs ~ ------ -l------i\-\-l\- ----
Configuration actions into devices /\ /\ /\ /\ /\ E
, v

Figure 1. Hierarchy for policy translation

To define grid policies we used an hypothetical language, which is based in
previous work on grid policies [Sundaram et al. 2000] [Sundaram and Chapman 2002].
In this language we defined a set of elements to allow the expression of grid
policies regarding users, resources, proxies and network QoS requirements. Such
elements are not present together in any the current grid policy languages. Some
grid policy solutions provide policies to control proxy instantiation and lifetime
[Sundaram et al. 2000], but does consider network reservations. The support for grid
policies definition could be accomplished by actual established policy languages such as
Ponder [Damianou et al. 2001] and PDL [Lobo et al. 1999]. For simplicity we decide in
do not use any this languages.

In the definition of the grid policy elements we first identify that grid policies
must be defined not only based on grid users and resources, but also based on proxies and

network QoS requirements. We suppose here that a grid policy language supports both
proxies and network QoS following the condition-action model from the IETF, where a
policy rule is composed by condition and an action statements. A condition is a list of
variables and associated values that must evolve to true in order to turn the rule valid
and an action is a list of variable attributions triggered when the rule just turned to be
valid. Thus, in our approach, a grid policy is composed by a conditional stateihént (
containing conditional elements related to grid usaser(), proxies proxy), resources
(resource), and time constrainsfartTime andendTime).

if (user == "mity" and
resource == "Cluster" and
startTime >= "11/25/2003 00:00:00" and
endTime <= "11/25/2003 23:59:59")

allowAccess = true;

login = gridUser;

maxProcessing = 50%;

networkQoS = remoteProccessControl;

}

if (user == "mity" and
proxy == "Cluster" and
resource == "Data Server" and
startTime >= "11/25/2003 00:00:00" and
endTime <= "11/25/2003 23:59:59")

allowAccess = true;
maxAllowedStorage = 40GB,;
networkQoS = highThroughputDatalntensive;

Listing 2. Grid policies examples

In the grid policy rules presented in the Listing 2 the uséy is able to access
during a specific period of time a grid clust@ster). The user is able also to access
through the cluster a storage serveata Server). In this example the user does not
have direct access to the data server, but he or she is able to store information generated by
the cluster in the server. In each one of the rules different QoS requirements are defined
in the policy actions: remoteProcessControl and highThroughputDatalntensive.

Two different network paths are used when deploying rdreoteProccess
Control and highThroughputDatalntensive network classes of services. For
remote process control, the intermediate network devices from the user host and the
LabTec cluster are supposed to be configured in order to allow a proper remote operation.
In the second case, the network devices betweerLab&ec cluster and theJFRGS
Data Server should be configured to support a high throughput of data transfer. It
is important to notice that no specific network device configuration will be executed in
the path between the user host and the storage server, since no policy directly binding the
user to the storage is defined.

The grid policy language supports rule nesting and domains
[Sloman and Moffett 1989]. Rule nesting allow one inner rule to be defined in the

context of another outer rule and domains allows the definition of classes of resources,
users and proxies in the policy conditions. The internal rules will be considered only
when the conditions of the external rule become valid, which optimizes the policy
evaluation process. Using domains the administrator is allowed to define , for instance,
that the useneisse can access only one grid cluster and two storage servers, but does
not designate what specific cluster and storage servers will be used.

In order to define network management policies we used the same language
present for grid policies. Listing 3 presents an example of such network policy. This
policy states that the traffic generated by host 143.54.47.242 sent to host 143.54.47.17,
using any source port (*), addressed to the HTTP port (port 80 over TCP), and with any
value as DSCP (*) will have 10Mbps of bandwidth, will be marked with value 1 in the
DS field, and will gain priority 4. We define in our work a translation model where the
network administrator is able to define a translation rule to generate a network policy
given a grid policy and the QoS requirements definition.

if (srcAddress == "143.54.47.242" and
srcPort == " " and
dstAddress == "143.54.47.17" and
dstPort == "80" and

DSCP == "+" and proto == "TCP" and
startTime >= "11/25/2003 00:00:00" and
endTime <= "11/25/2003 23:59:59")

{
bandwidth = 10Mbps;
DSCP = 1;
priority = 4;

Listing 3. Network policy example

Until now, the grid policies presented state the required network QoS through
the networkQoS clause and an associated class of service identification (e.g.
remoteProccessControl and highThroughputDatalntensive). Behind these
identifications, a set of QoS-related parameters is found. We suppose that the following
parameters are available in defining new classes of services: minimum bandwidth,
required bandwidth, minimum loss, maximum loss, priority, and a sharing flag that
indicates if the bandwidth used by the class of services will be shared among the users
(other network-related parameters can be supported depending on the underlying QoS
provisioning architecture). The classes of services are supposed to be defined by the grid
administrator and stored in a repository to be further used when new grid policies are
defined.

Our translation architecture is presented in Figure 2. Each step in a grid policy
translation is identified with the numbers from 1 until 9 and are described bellow:

1. the grid administrator defines grid policies and required associated network classes
of services through a grid policy editor and stores them in a global grid policy
repository;

2. the network administrator of each administrative domain defines a set of
translation rules using a translation rule editor and stores them in a local rule
repository;

3. once the grid administrator wants to deploy a policy, the translation engine
retrieves such policy from the global grid policy repository;

4. the translation engine also retrieves the set of translation rules from the local rule
repository;

5. the translation engine translates the grid policies based on the translation rules and
consults the toolkit to discover network addresses and protocols information;

6. once the translation engine builds up new network policies related to the local
domain, these policies are stored back in a local network policy repository;

7. then, the translation engine signals a set of PDPs in the local domain in order to

deploy the just created network policies in a set of PEPSs;

. the signalled PDPs retrieve the network policies from the local repository;

9. the PDPs translate the network policies to configuration actions in order to deploy
such policies in the local domain PEPs.

0o

0,0
Grid policy L» Grid

- . repOSItory Toolkit

Grid domain OO o QO

Grid policy
- ediitor OO
Grid Rule <> o T Jati
administrator epositol ranslation

<> 9 [p s engine

5 | Translation rule Network policy /
editor repository

AE‘A/O 1% >

1
1 1
H 1 1
1
Network domain oDP oop / : |
IETF PBNM ' :
architecture i <z§> Translation rules !
o | :
' 1
: A Network policies '
PEP PEP PEP | !
HTTP/HTTPS s .

Figure 2. Policy Translation Architecture

We suppose that only one grid administrator is responsible for creating grid
policies using the previously presented grid policy language. Although the figure presents
just one network administrator several network administrators may interact with the
architecture to define the translation rules. An object-oriented/condition-action language
(further presented) is used to create the translation rules, which are very similar to policies,
except that in this case they control the translation process. Thus, the translation rules may
be taken as meta-policies that govern the translation processes of grid policies to network
policies.

Translation rules are defined dealing with a set of policy objects that addresses
both original grid policies and network policies to be created. Four global objects are
implicitly instantiated before a translation rule evaluatigehedule , srcResource
dstResource , andrequiredQoS . These objects identify a grid communication pair and
hold, respectively, the period in which the communication has to be considered, the source

grid resource, the destination grid resource, and the QoS required from the underlying
network. The four implicitly instantiated objects have their content values retrieved from
the grid policy being translated, and can be used in the conditions or in the actions of a
translation rule.

The translation engine evaluates a translation rule parsing its code and accessing
the values provided by the four implicitly instantiated objects. At the end of the translation
process, the translation engine will provide a set of new network policies. Sometimes,
however, the engine is forced to block the translation process if all information required
to produce new network policies is not available. That happens because the original
grid policy and the translation rule do not always provide all the information required to
resolve the communication pairs. The remainder information (not found in the grid policy
and in the translation rule) needs to be retrieved from the grid toolkit. Listing 4 presents
the evaluation algorithm used in the grid policy deployment by the translation mechanism.
In this process the mapping engine resolves the communication pairs defined in the grid
policy and executes all the mapping rules defined in the domain for each communication
pair.

function onApplyGridPolicy (gridPolicy policy) {
Array communicationPairsList = resolveCommunicationPairs(policy);
Array translationRulesList = retrieveDomainTranslationRules();
for (int i=0; i<sizeof(communicationPairs); i++) {
for (int n=0; n<sizeof(translationRules); n++) {
translationRule[n].exec(communicationPairs[i]);

}
}

Listing 4. Algorithm for translation rule execution

In a translation rule, when dealing with network policies, a fifth class called
NetworkPolicy is used. To create new network policies, a translation rule must first
instantiate aNetworkPolicy = object, and proceed manipulating its content in order to
define the network policy conditions and actions. @HdCondition andaddActions
methods ofNetworkPolicy help building up the new policy. Listing 5 presents an
example of a translation rule that creates two new network policies from a single grid
policy.

This translation rule defines the network policies and p2 to mark packets
and allocate bandwidth in the underlying network, operating with the IETF DiffServ
architecture. Howevepl andp2 are only created if the original grid policy states that
the source resource is located in the local network (143.54.47.0/24) and the destination
resource belongs to another network, different than the local one. The networkyblicy
verifies the local and remote addresses, the remote port (80), and the transport protocol
(TCP) of the network packets in order to mark the DS field with the DSCP 2. The policy
p2, on its turn, only verifies the DSCP to guarantee the required bandwidth determined in
the original grid policy.

In a conventional policy-based network management system, the network
administrator is the one responsible to determine in which devices of the managed
network the policies will be deployed. The selection of these devices triggers the policy
deployment, although the policies are activated only at scheduled times, due to the time

constraints in the policy rule conditions. In the case of our policy-based grid management,
the network devices in which the created network policies will be deployed can not always
be determined except when the grid policies become valid. Thus, a mechanism to support
the selection of target network devices is supposed to be provided in order to automate
this process. We provide such mechanism introducing in the translation rule language the
support for dynamic domains [Ceccon et al. 2003]. Such domains are defined through
selection expressions introduced in the translation rules. In the example from Listing 5,
the previous policyl is deployed in the ingress interface of the first router, while policy

p2 is deployed in the egress interface of all routers in the path (including the first router).

if (srcResource.address/24 == 143.54.47.0/24 and
dstResource.address/24 = 143.54.47.0/24 and
dstResource.port == 80 and
dstResource.protocol == TCP)

pl = new NetworkPolicy();
pl.addCondition(startTime,">=",schedule.startTime);
pl.addCondition(endTime,"<=",schedule.endTime);

pl.addCondition(dstProtocol,"==","tcp");

pl.addAction(DSCP,2);

inPEPs = select pep
.within[srcResource.address, 143.54.47.1]
.direction["in"]

from

device.type["DiffServDevice"];

inPEPs[0].deployPolicy(pl);

p2 = new NetworkPolicy();

p2.addCondition(DSCP,2);
p2.addAction(bandwith,requiredQoS.requiredBandwidth);
OUtPEPs = select pep
.within[srcResource.address, 143.54.47.1]
.direction["out"]
from
device.type["DiffServDevice"];
outPEPs.deployPolicy(p2);

Listing 5. Translation rule example with policy deployment

4. System Prototype

The translation architecture was implemented in a Web-based prototype where the grid
administrator can define grid policies, grid class of services and the location of the several
translation engines dispersed through the network administrative domains that compose
the grid. We provide in the prototype also an interface to allow the network administrator
to create translation rules an configure the translation engine, for instance, specify
which grid toolkit is used. The prototype is a module of the QoS-Aware Management
Environment, a Web-based network management system developed in the PHP language
at the Federal University of Rio Grande do Sul.

The Web browser snapshot in figure 3 shows the translation rule editor. In order
to define translation rules the network administrator must only select a list of pre-defined
language constructors in the user interface. This interface act as a wizard to allow the
definition of the translation rule without previous knowledge of the mapping rule language
syntax.

The information model used in the implementation is presented in the UML model
of figure 4. We extended the core classes of PCIM schema and implemented policies,
policy conditions and policy actions for grid and network management. We modelled and
implemented also a set of classes to deal with the translation process, regarding grid class
of services, grid communication pairs and the grid toolkit interface. Using this model it
is possible to provide further extensions to new grid policies to deal, for instance, with
network security and also to support other toolkits implementations.

2} QAME - QoS-Aware Management Environment (Skin Color GUT) - Microsoft Internet Explorer -3l x|
J File Edit ¥iew Favortes Tools Help | ;'f’
10-0 -R@ ks
Jnddress I http:finoc,metropoa,tche, br/neisse/game. php j
=/
‘]f ||~ E Translation Rules
Instructions:
Network Map ; Agd nner rule
Network Admin x E :t
Grid Communications belete
Translation Rules .
Toolkit WS Canf + Mew Translation Rule
MNetwork Policies
Logout Id Translation Rule
/7 Give high priority to SS5H grid flows
if (srcResource.address!="143.54.47.0/24" AND
dstResource . address '=143.54.47.0/24" LND
dstResource.port=:z2 AND
dstResource.protocol = "TCPry +HX
i
:. hdd: Metwork Policy | PEP Selection | Policy application . :
CEX -+
| pl = new NetworkPolicw(); |
| pl.addCondition("3tartTime", ">=",schedule.startTime) ; |
| pl.addCondition("EndTime", "<=",schedule.endTime) 7 |
1 | pl.addCondition("Destinationiddress", "=",dstResource.address); |
| pl.addCondition("DestinationFort”, =", dstResource.port); |
| pl.addiction("DiffServCodePoint","2"); |
QOHEX -+ -
| peps = select pep.address["143.54.47.1"] frow device; |
OEX -+
| NetworkPolicy.deployipl,peps): |
¥ =
& [4 tkernet 7

Figure 3. Grid Translation Rule Editor

The distributed operation of the prototype is presented in figure 5. The figures
shows the grid and network administrator interaction and, policy and translation rules
repositories and the mapping engine location. The prototype stores the grid and
network policies in a LDAP repository following our information model schema derived
from the IETF Policy Core Information Model (PCIMe) [Moore 2003]. Each network
administrator defines the corresponding mapping rules in he or she domain considering
the network architecture and topology, the grid resources, and the local network policies.

After the definition of the grid policies and translation rules, the translation
engines, distributed over the network administrative domains, are able to create the
network policies. Each network administrative domain has a local network policy
repository and must have the translation engine running to a proper configuration of

% PCIMe GridCondition
<|7 PolicyGroup PolicyTimePeriodoCondition
PolicySet
%77 NetworkCondition

jl I PolicyCondition<|7 SimplePolicyCondition

Policy NetworkPolicyAction

PolicyRule

GridPolicy Policyvariable Policyvalue

PolicyAction < |—————— SimplePolicyAction
i

NetworkPolicy

— GridPolicyAction
T 1 gy e L

networkCoSValue T TrandationEngine GridToolkitMDS
GridCommunicationPair NetworkPolicy TransgationRule K >——
GlobusMDS
GridResourceValue GridPolicy Schedule PolicyTimePeriodoCondition PepSelectionExpression

Figure 4. Information model for policy translation (UML)

% QAME QAME % ﬁ % QAME

g
0=~ Yo S

QAME PBNM Grid domain
System (PHP
\\ Y (PHP)
NA| Grid policy Grid poli Globus G'_I'3 MDS
Grid editor P repository (LDAP) (Web Service/XML)
administrator ’
4
Translation . .
P ule editor > Transl:zltalf'l;)Englne
System files
Network
administrator PDP Network policy
(Java) repository (LDAP)
HTTP/HTTPS /
i @ @ Network domain
FreeBSD ALTQ Routers

Figure 5. Prototype implementation

the network to support the grid communication. The extra information required by
the translation engine to create the communication pair objects, for instance, resources
address and protocols, are queried in the Monitoring and Discovery Service (MDS) of a
Globus toolkit version (GT3), implemented in our prototype as a Web Service.

5. Conclusions and Future Work

We presented in this paper an architecture that translates grid policies to network policies
through a translation engine. In order to operate, such engine uses translation rules
defined by network administrators locate along the administrative domains of a grid.
Since each domain has its own network administrator that defines local translation rules,
which are different than the rules defined by other administrator, a single grid policy
is potentially translated to different network policies in each administrative domain.
Although the translation rules are flexible, this forces the network administrators to learn a
new language to define more adequate translations. We believe that visual wizards would
ease the definition of translation rules. We also argued that grid policies are supposed
to be defined by grid administrators, instead of network administrators. To do so, we
presented a set of grid policy definition elements to be used by grid administrator in
defining grid policies. The grid policies defined with such elements, compared to the grid
policy definition languages found today, express richer rules, because such grid policies
support the concept of proxies and explicitly express network QoS requirements used in
the translation process.

The translation engine, besides receiving grid policies and translation rules, needs
to interact with both grid toolkit and policy-based network management system in order
to build and deploy the expected network policies. We presented a system prototype that
uses the QAME management system and the Globus toolkit. Concerning Globus, just a
subset of the grid policies can be effectively used, since the toolkit does not support the
grid policy language presented. The current communication between QAME, Globus and
the translation engine is achieved using Web Services.

Currently, we are investigating the use of more sophisticated user graphical
interfaces in order to reduce the complexity of defining grid policies and translation
rules. Also, bandwidth consumption investigation is required, although performance
and scalability observations of the translation engine seems to be more critical, primarily
concerning the number of grid rules, levels of rule nesting, and the number of translation
rules defined by the network administrator.

References
Globus, “The Globus project”, 2003, http://www.globus.org.

M. Steen, P. Homburg, and A. S. Tanenbaum, “Globe: A wide-area distributed system”,
IEEE Concurrencypp. 70-78, Jan. 1999.

AccessGrid, “The Access grid (ag) user documentation”, 2003, http://www-
fp.mcs.anl.gov/fl/ accessgrid.

I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler, “End-to-end quality of service for
high-end applications"EEE Computer Communications Special Issue on Network
Support for Grid Computing?2002.

B

B

D

K

A.

V.

R

N

M

M

. Sundaram, C. Nebergall, and S. Tuecke, “Policy specification and restricted delegation
in globus proxies”, irSuperComputing 2000

. Sundaram and B. M. Chapman, “Xml-based policy framework for usage policy
management in grids”, ikrid’02 3rd International workshop on Grid Computing
2002.

. C. Verma, S. Sahu, S. B. Calo, M. Beigi, and |. Chang, “A policy service for grid
computing”, inGrid Computing - GRID 2002, Third International Workshaer.
Lecture Notes in Computer Science, pp. 243-255, Nov. 2002.

. Yang, A. Galis, and C. Todd, “Policy-based active grid management architectote”,
IEEE International Conference on Netwoy2902.

Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, and S. Waldbusser, “Terminology for policy-based
management”, Request for Comments: 3198, IETF, Nov. 2001.

Sander, W. Adamson, I. Foster, and R. Alain, “End-to-end provision of policy
information for network gos”,10th IEEE International Symposium on High
Performance Distributed Computing001.

. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy-based admission
control”, Request for Comments: 2753, IETF, Jan. 2000.

. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy specification
language”, inPolicies for Distributed Systems and Netwqrgsr. Lecture Notes in
Computer Science, vol. 1995. LNCS, pp. 18-38, Jan. 2001.

. Lobo, R. Bhatia, and S. Naqvi, “A policy description language”ABRAI/IAAIL pp.

291-298, 1999.

. Sloman and J. Moffett, “Domain management for distributed systemsitagrated
Network Management pp. 505-516, 1989.

. B. Ceccon, L. Z. Granville, M. J. B. Almeida, and L. M. R. Tarouco, “Definition and
visualization of dynamic domains in network management environments”. Lecture
Notes in Computer Science, vol. 2662. LNCS, pp. 828-838, 2003.

B. Moore, “Policy core information model (pcim) extensions”, Request for Comments:

3460, Updates RFC 3060, IETF, Jan. 2003.

