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Abstract. Current WDM networks see the traffic burstiness only after it has 
been shaped by the aggregation process in upper layers (ATM or IP) and by 
the mapping process into a SDH transport layer. However, present trends 
point towards direct mapping of the IP layer into WDM. The mean residual 
waiting time of service by single servers of self-similar Pareto traffic is shown 
to dominate over the mean of any finite queue service time. It is derived in this 
paper that a sufficiently high number of wavelengths (multiple servers) used in 
pool will bring this mean to finite and even small values. However, higher 
moments of the residual waiting time distribution will always run away to 
infinity unless limits are placed on the wavelength holding time.  

1. Introduction 
The last decade has seen the emergence of the first bandwidth mining techniques, which 
have converged to wavelength division multiplexing (WDM). They have widened the 
transmission pipes in a much larger scale than the routing nodes. More and more 
pressure is then concentrated on the electronic processing capacity of such nodes, thus 
shifting the electronic bottleneck from transmission to routing functionalities. Easing 
this new electronic bottleneck has then become crucial to provide, or at least maintain, 
the expected quality-of-service (QoS) of applications carried by an ever increasing 
volume of aggregated traffic. 

Mitigating the electronic routing bottleneck is the aim of the emerging art of 
optical networking. Its purpose is to devise network architectures that combine, in the 
most effective way provided by current and new technologies, the functions that may be 
realized by electronics and by photonics. This is to be done for a traffic environment 
characterized: a) by an explosive growth in volume; and b) by profound changes in the 
nature of such traffic, due to bursty behavior of traffic sources and aggregation of traffic 
generated by applications with different QoS requirements. 

Characterization of burstiness has always been an elusive proposition. Classical 
models for data packet transmission have used markovian, memoryless traffic models, 
which have been considered adequate for many traditional applications. More recently, 
however, it has become clear that such models are not suitable to describe the behavior 
of traffic generated by emerging Web-based applications. Instead, it has been found that 
emerging data communication environments generate traffic with long-range 
dependence.  

 

 



The purpose of this paper is to put forward teletraffic approach for the emerging 
networking environments. The next Section discusses some of the main features (e.g. 
self-similarity, heavy-tailedness) vis-à-vis their impact on network resources. Section 3 
discusses the effect of such features on the WDM environment, taking the Pareto 
distribution as a paradigm for the heavy-tailedness of the Web file (and hence burst 
duration in a queueless environment such as WDM) size distribution.  Finally, Section 4 
discusses the networking implications of the results along with some of the evolving 
issues relating to IP over WDM. 

2. Self-similarity and Service Time Distribution in WDM Networks 
Let us consider N independent, identically distributed  (i.i.d.) random variables with 
mean µ and variance σ2. Their sum will have mean Nµ and variance Nσ

2. Their sample 
mean will have mean Nµ/N=µ and variance Nσ

2/N2=σ2/N. The standard deviation of 
the mean will therefore decrease with N as N-1/2. This simple result is imbedded in a 
well-known theorem from the theory of probability, called the law of large numbers, 
which also states that the distribution of the sample mean is asymptotically Gaussian. Its 
validity, however, is constrained to the case where the i.i.d. variables have a variance.  
Not all random variables have variance, though. An interesting class of distributions that 
do not have variance is the class of heavy-tailed distributions. Consider a random 
variable K for which the probability of K exceeding x falls off with x as cx-α, where 
0<α<2 is a shape parameter. If 0<α<1, T will have neither variance nor mean, but this 
case is not relevant to the framework of our discussion. If 1<α<2, however, K will have 
a finite mean but no second moment, hence no variance. In both cases, K is considered a 
heavy-tailed distribution. 

When N i.i.d. heavy-tailed variables with shape parameter α>1 are averaged, the 
deviation from the statistical mean does not  fall off like N-1/2 as prognosticated by the 
law of large numbers for lighttailed variables. Instead, it falls off like NH-1, where H=(3-
α)/2 is called the Hurst parameter of the self-similar cumulative process. Such averages 
(or sums) arise, of course, when we take the accumulated traffic generated by on-off 
traffic sources. It has been shown that an aggregation of on-off traffic sources will 
exhibit self-similarity if the duration distribution of either the on or off periods is heavy-
tailed [2]. The self-similarity property consists of the preservation of the distribution of 
a random process at different time scales, except for a normalization factor that is the H-
power of the time scaling factor. For H = ½, self-similarity reduces to the classic 
behavior prognosticated by the law of large numbers.  

Heavy-tailedness in the distribution of the time between new connection arrivals 
may also result in self-similarity of the traffic. However, if connection requests are 
generated by independent entities, the arrival process is expected to be Poissonian, so 
interarrival times are exponentially distributed. Since this seems to be the case with 
traditional Internet applications (e.g. ftp and telnet), traffic self-similarity has been more 
often associated with heavy-tailed service time distributions. However, the rapid 
emergence and predominance of Web-based applications has changed this picture. 
Typical Web usage is motivated by search in a “surfing” mode, in which one download 
operation (i.e. a “connection”) may lead to another in a concatenated fashion. This 
enhances both very short and very long (with respect to the mean) interarrival times, 
generating heavy-tailed inter-arrival time distributions [5]. 



The distribution of file sizes transferred through a network through Web-based 
applications has been surveyed [3]. The file sizes were found to follow a heavy-tailed 
distribution with α approximately 1.2 through at least three orders of magnitude. Future 
Internet-oriented transfer protocols in the WDM network will likely support such file 
downloads with some kind of flow switching or burst switching. In such protocols, the 
transfer is free from store-and-forward and buffering operations as much as possible, so 
that the file size is essentially proportional to the duration of an on period at some 
WDM server. The discussion of the nexus between traffic characteristics and 
networking performance has been mostly focused on the correct dimensioning of 
buffering resources in the context of ATM networks, and is still evolving. Two distinct 
methodologies are available for this purpose: simulation; and emerging mathematical 
theories, such as large deviation theory [7]. Classic networking frameworks are 
basically classified into two categories: queuing networks (i.e. data networking), and 
blocking networks (e.g. the telephone network). Currently emerging networking 
paradigms, however, do not fit well into any of these models. Newly defined 
frameworks should then be used in traffic performance studies. With the current shift in 
networking philosophy, new approaches are clearly needed to understand the 
implications of traffic shapes – and shaping - on performance.  

Fig. 1(a) brings an illustrative case for a WDM network that is being used to 
serve a connection (or bursts) from node 1 to node 3, which follows the route 
highlighted. In the meantime, a connection request from node 5 to node 4 arrives. This 
connection will demand one out of n-1 servers (wavelengths) available between node 5 
and 4 to use the route shown with the dashed line.  Suppose n=1, and this connection 
request may wait in a buffer until the ongoing connection (or burst) ends. Fig. 1(b) 
shows that the ongoing connection has been active for t0 seconds when the connection 
request arrives. This paper is particularly concerned with the ongoing connection 
residual lifetime seen by the connection request. This will allow, for instance, QoS 
polices to decide whether a connection request should be simply blocked or await 
resources to be freed based on inference of residual lifetimes (Z) of ongoing 
connections according to its elapsed time (t0). However, we show that there might be 
surprisingly large discrepancies between process residual lifetime itself (S), presented in 
Appendix 1, and the residual lifetime seen by the connection request (client view) 
addressed in Section 3.2 and 3.3. Moreover, we investigate the tradeoff between the 
number of servers (n) required for a QoS target and the minimum (tmin) and maximum 
(tmax) connection holding times.  
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Figure 1. Problem under analysis: (a) WDM network. (b) Intersected connection. 



In order to gain an insight into these issues, consider a collection of objects with 
i.i.d. sizes following a random variable T for which the probability of T exceeding x 
falls off with x as cx-α. If the objects are disposed on a linear (e.g. time) axis, the 
probability of a point in this axis belonging to an object with size larger than x is 
proportional:  

a) to the probability cx-α of T exceeding x; and  
b) to the size of the sampled object, that exceeds x.  

Hence it must fall off at least as slow as c’x-α+1. However, any p.d.f. must fall off 
faster than x-1, otherwise it would not be summable. Therefore, α must be at least 2 in 
order that the objects may be feasibly accommodated along a one-dimensional axis. 
This means that the probability of sizes being larger than x must fall off by at least a 
factor of 100 when x increases by a decade (factor of 10). Therefore, the rate of 
occurrence of sizes must decrease by at least 1000 times per decade. Because current 
pricing methods in the Internet do not punish users for requesting very large objects, 
such strongly diminishing rates for the occurrence of large sizes cannot be expected to 
occur, and indeed they do not occur. For this reason, this kind of traffic cannot be 
accommodated by a single server (n=1). Section 3 will show that multiple servers (n>1) 
can do it, but some higher moments of the queue length will still run away to infinity, 
causing high traffic variability. Alternatively, traffic shaping (or even policing) may 
impose a limit for the object sizes on the WDM network. While tmin can be used to make 
minimum holding time worth compared with the time spent setting up and tearing down 
connections, tmax might prove useful in reducing the number of servers required in order 
to bringing down waiting times.   

3. Pareto Servicing, Residual Lifetimes, and Waiting Time in Queues  

3.1. Truncated Pareto Distribution for Connection Servicing Time 
The Pareto distribution is usually specified by its cumulative distribution function 
(c.d.f.), given by: 
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The positive parameters tmin and α specify the distribution. The probability 
density function (p.d.f.) may be obtained by differentiation of (1) and it can be truncated 
at tmax: 
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If and when it exists, the mean τ of the Pareto truncated distribution is given by: 
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Clearly, the mean does not exist if α<1. For this reason, we will assume that 
α>1 in the ensuing discussion. This assumption implies some loss of generality, but no 
loss of practicality in the framework of our discussion.  

Let us now consider the second moment of the distribution: 
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By the same token as for the mean, the second moment, and hence the variance, 
will also be infinite for 2≤α  for r→0 (tmax→∞). However, we are not willing to 
disregard this case, since the empirical evidence indicates that it is exactly the case of 
the Internet traffic. If 2≤α , we will say that the Pareto distribution when r→0 is heavy-
tailed and has no variance (or that it has infinite variance). 

Let us consider a single server that is servicing a connection (burst or packet) at 
some time and has another finite queue of connections (burst or packets) to be served at 
the moment when a new connection request arrives. Let q be the number of requests in 
the queue, i.e. the queue length. Let us normalize all waiting times with respect to the 
mean service lifetime τ by making τ = 1. According to residual lifetimes presented in 
Appendix 1, the mean waiting time the new connection will have to wait to be serviced 
is effectively proportional to: q+1/2, if the service time is deterministic; q+2/3, if the 
service time is uniformly distributed; q+1, if the service time is exponential (markovian 
case); q+∞ = ∞, if the service time is heavy tailed Pareto (α < 2); and q+1, if the service 
time is light tailed Pareto with α ≅ 2.4142.  

Comparing the five cases considered above, one can see that, except for the 
heavy-tailed Pareto case, in all other cases one can assume that the total waiting time is 
dominated by the queue length q whenever q >> 1. This is of course the reason why 
classic queueing system analysis is so much focused on characterization of queue 
lengths. When the packet duration distribution is heavy-tailed Pareto, however, waiting 
time in a M/P/1 queue is not dominated by the queue length for any finite queue, but 
rather by the single connection (or packet) that is currently being served. Therefore, the 
classic focus on queue length is not warranted in this situation.  

When a newcomer connection request (client) arrives at a queue shown in Fig. 
1(a) that is waiting for one or more such entities to be served, we will say that the 
newcomer intersects each ongoing service interval at some age t0 (see Fig. 1(b)). The 
client view for the case of a single server (n=1) is presented in Section 3.2 while 
generalization for the multiple servers (n>1) to represent WDM networks will be 
addressed in Section 3.3. 

3.2 – A Client View of Single Server 
Let Y be the total duration of the intersected interval, and let pY(y) be its p.d.f.. 

The probability pY(y)dy of Y belonging to the {y,y+dy] interval must be proportional: 

a) to the probability pT(y)dy that y<T<y+dy, since Y is drawn from a 
population of intervals with distribution pT(.); and 

b) to the duration y of the intersected interval, since a randomly 
chosen time will be proportionately more likely to intersect longer intervals. 

One may then write: 



( ) ( )yAypyp TY =  ,     (4) 

where A is a normalization constant, which may be determined by simple 
integration: 

( ) ( )∫ ∫
∞

∞−

∞

∞−

=== τAdyyypAdyyp TY1  

( ) ( )yypyp TY
τ

1
=∴  (5) 

Without knowing about the residual lifetime paradox [4], one might be led to think that 
a randomly arriving newcomer would see a mean residual lifetime equal to one half of 
the mean lifetime at birth. Actually this is true only for periodic traffic (fixed duration). 
However, in all other cases, there is a discrepancy between these two values. Suppose 
pT(.) is exponential with mean τ. As a result, (5) yields E(y) = 2τ. This result is a 
paradox since the client is intersecting connections with residual lifetime τ, as seen in 
Appendix 1. The discrepancy is only a factor of 2 in the Markovian case (exponential 
distribution), and a factor of 4/3 for uniformly distributed durations. Therefore, the 
mean waiting time for the residual lifetime may in general be considered of lesser 
importance when compared with the waiting time for large queues. In the case of heavy-
tailed durations, on the other hand, the paradox has much stronger implications: the 
discrepancy runs away to infinity, making the residual lifetime contribution to the 
waiting time more important than the queue itself. 

Now let us consider what the intersected interval p.d.f. will be when the i.i.d. 
queued intervals are α-Pareto (i.e. Pareto distributed with shape parameter α). From (2), 
(3) and (5): 
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Eq. (6) states that if the i.i.d. intervals are α-Pareto with tmax→∞, then the 
intersected interval will be (α-1)-Pareto with the same minimal duration tmin. If 1<α<2, 
the i.i.d. intervals will have finite mean τ and infinite variance when r→0, but the 
intersected interval will have infinite variance and mean. Therefore, the mean residual 
lifetime after any finite age must be infinite, For α>2, we have from (3) and (6): 
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 For the light-tailed Pareto (α>2) case, (6) will yield a finite mean for Y. In 
addition, if α>3, Y will have a finite variance. In general, α>j+1 assures the existence of 
a finite j-th moment of residual lifetime even with tmax→∞. 

The intersected interval distribution (5) is the effective duration of the ongoing 
process as seen from a newcomer client. Therefore, it may provide a basis for analyzing 
residual lifetime by averaging over the time axis, and not over the more cumbersome 
sample space as done in the Appendix 1. 



If Z is the residual lifetime (see Fig. 1(b)) of the process when it was intersected 
at age t0, we may write [4, Chap. 5]: 

YZt =+0       (8) 

Since the intersection time is uniformly chosen in time, Z is uniformly 
distributed between 0 and Y for any known value of Y, so: 
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The mean residual lifetime will then be: 
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The second integral on the right-hand side is not summable for α<2 and tmax→∞, 
indicating that the mean residual lifetime will be infinite for heavy-tailed Pareto traffic. 
On the other hand, finite mean residual lifetime is obtained when connections are 
truncated at finite tmax. For α>2, (11) may be further manipulated to yield: 
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This reconciles the intuitive notion that the mean residual lifetime should be one 
half of the mean lifetime at birth. But it shows that this idea is correct only when 
referred to the intersected interval (y), and not to a randomly picked interval (t) seen in 
Fig. 1(b). 

 

 



3.3. WDM Networks 
Let us now consider a queue generated by Poissonian arrivals and Pareto service time 
duration, with n servers as a simplified, i.e. one hop connection request, model for the 
WDM network illustrated in Fig.1. The waiting time for the first server to be released is 
the minimal residual lifetime of the n busy servers intersected by the newcomer client. 

Let Z1, Z2, ..., Zn be the residual lifetimes of the n processes intersected by the 
new arrival. The effective waiting time for a server to be released will then be: 

[ ]nZZZZ ,...,,min 21=                                                                                         (13) 

The random variables Zi, i=1, 2, ..., n, are i.i.d. with p.d.f. given by (10): 
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If )(}{ zF n
z is the cumulative distribution function (c.d.f.) of Z, we have: 
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From (14), we then have: 
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4. Implications on Networking 
The implications of these traffic analyses on networking principles and guidelines are a 
much tougher issue. Early appraisals of the evolution of the WDM network seemed to 
imply that it might lead to the supply of dedicated wavelengths to bandwidth-hungry 
customers. However, it is shown in this Section that our results on the M/P/n queue 
suggest that a dedicated wavelength is not a good deal for a client with Pareto traffic, 
nor very likely to any client with long-range dependent traffic. Instead, sharing a pool of 
wavelengths with other clients with the same kind of traffic is probably more effective 



to fight the self-similarity syndrome that would otherwise plague each of these clients. 
We also suggest the use of traffic shaping (or policing) limiting holding time to tmax in 
order to reduce the number of wavelength needed to mitigate the instability effects in 
networks operating with 2≤α .    

4.1. Unbounded Holding Time  

From (16) one can see that in order for Z to have a finite mean for r→0, we must then 
have: 
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and in order that Z has a second moment and a finite variance: 
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In general, we need k/(α-1) servers for the waiting time to have a finite k-th 
moment. For example, if α = 1.2, we need more than 5 servers for the waiting time to 
have a finite mean, more than 10 servers for a finite variance, and over 15 servers for a 
finite third moment, and so on. Increasing the size of the wavelength pool would first 
produce a finite mean waiting time, then make it reasonably small, and then do the same 
to higher moments of the waiting time distribution. However, although larger and larger 
wavelength pools would bring higher and higher moments of the waiting time 
distribution to finite values, there would always be some sufficiently high moments 
running away to infinity. The effect of the infiniteness of such high moments of the 
residual waiting time on the queuing behavior is not clear yet, but it seems reasonable to 
expect that both waiting times and queue lengths would become more predictable as 
more and more moments are brought down to finite values. 

4.2. Bounded Holding Time 

Traffic shaping (or policing) may impose tmax as the maximum holding time allowed in 
the network as a means of bringing moments to finite values with fewer servers. Fig. 2-
4 show mean and variance for the residual lifetime (assuming tmin=1s) for tmax= 100, 
103,104, and 106 s. For a network under traffic with α=1.2, suppose there is limit, set at 
10s, connection requests, on average, can wait to be served due to QoS constraints. 
Fig.2 shows that a single server could cope with this requirement provided the 
maximum holding time of connection is kept below 100s while 6 servers are required in 
the unbounded case.  
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Figure 2. Residual Lifetime for α = 1.2. (a) Mean and (b) Variance   

 Even in cases connections are allowed to be held for very long periods compared 
with tmin, e.g. 106 which corresponds to eleven days and a half, the QoS requirement can 
be matched with just 4 wavelengths. As expected, variance reduction in Fig. 2(b) is less 
sensitive to the increase in the wavelength pool. However, limiting tmax is proving an 
effective way to bring down variance in case this is a QoS issue.  
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Figure 3. Residual Lifetime for α = 1.5. (a) Mean and (b) Variance   
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Figure 4. Residual Lifetime for α = 2.0. (a) Mean and (b) Variance   

           As it could be expected, when the number of servers reaches values found in (17) 
and (18), tmax becomes irrelevant for mean and variance, respectively.  This can be 
clearly seen in networks under less demanding traffic features, e.g. n≥3 in Fig. 3(a), n≥2 
in Fig. 4(a), and n≥3 in Fig. 4(b). Nevertheless, limiting the holding time remains a 
relevant issue as far as reducing higher moments is concerned. 

5. Conclusion 
We have derived some properties regarding moments of the residual lifetime 
distribution when the process duration is Pareto-distributed, and have suggested that 
such residual lifetime may have an important role in the behavior of waiting time in 
queueing systems, in accordance with reported simulations of unstable behavior of such 
queues [3]. Current WDM networks operate only on the wavelength granularity, so they 
can see the traffic burstiness only after it has been shaped by the aggregation process in 
upper layers (ATM or IP) and by the mapping process into a SDH transport layer.  

The current trend towards direct mapping of the IP layer into WDM, however, 
will change this picture. A likely evolution will replace the current overlay model with a 
peer-to-peer networking philosophy in which IP routers, enabled by MPLS, will do both 
traffic routing and wavelength assignment and routing. This will create an opportunity 
to combine traffic routing and network configuration into the same functionality, for a 
more effective optimization of traffic in the network. New algorithms must then be 
devised in order to explore this extended capability. Good traffic modeling may be 
critical to reliably evaluate these algorithms. One important feature of emerging 
networks is the aggregation of traffic with different QoS requirements. Appropriate 
service disciplines must be designed to conciliate these requirements between 
themselves and with the efficient utilization of network resources. Several studies have 
shown that some service disciplines are able to drastically reduce waiting time in queues 
of objects with heavy-tailed size distribution [6].  

 

 

 



If WDM networks are considered bufferless and transmitted payload is known in 
advance (e.g. as in file downloads), session duration is also known at admission time. 
Under this framework, traffic scheduling is possible, either to accomodate competing 
QoS requirements or to improve network utilization, or both. This is one emerging 
networking framework to be considered for future algorithmic studies.  
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Appendix 1. Residual Lifetimes 
Pareto residual lifetime distribution is here considered as a function of the elapsed time 
t0.  For the sake of comparison, we will discuss the residual lifetimes for some other 
duration distributions more commonly found in classical frameworks. The residual 
lifetime S of a process with duration T after an elapsed time t0 is the remaining duration 
of the process after it has already lasted a time t0. Given the p.d.f. pT(t) of the process 
duration T, the p.d.f. pS(st0) of the residual lifetime S will be: 
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We will often be interested in the mean residual lifetime, given by: 
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Let us derive the mean of ( )0ts  over the distribution p0(t0) of the “age” t0 of the 
processes. This distribution depends also on the inter-arrival time distribution, i.e. on the 
statistical regime that rules the birth of new processes. Let us assume, for the sake of 
simplicity, that arrivals are poissonian, with a rate of λ arrivals per second. Then, the 
average number n(t0)dt0 of surviving processes (in sample space) with age between t0 
and (t0+dt0) at any given time t is the number of processes born between (t- t0-dt0) and 
(t- t0) that are still active at t, i.e. that have lifetimes longer than t0: 
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Normalization of (A3) yields the age p.d.f.: 
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The global mean residual lifetime will then be: 
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Let us now apply Eqs. (A1)-(A5) to a few examples in Table 1.  

 

 

 



Table 1. Mean residual lifetime ( ( )0ts ) and global mean residual lifetime ( s ) for 
some distributions.  
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Numerical examples are also given in Fig. (A1) in order to illustrate the behavior 
of the expected residual lifetimes against elapsed time. Pareto distribution bears α = 1.2, 
and tmin = 5s, while truncated Pareto bounds the same distribution at 100s (tmax). The 
other distributions use τ found for the truncated Pareto using the parameters above, i.e. 
13.9s.  
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Figure A1. Expected residual lifetime vs. elapsed time. τ is the mean lifetime at 
birth 


