

QoSYNC: Quality of Synchronization for Clocks on
Networked Computers

Arthur de Castro Callado1, Judith Kelner1, Alejandro C. Frery2

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851 – 50732-970 – Recife – PE – Brazil

{acc2,jk}@cin.ufpe.br

2Departamento de Tecnologia da Informação – Universidade Federal de Alagoas
57072-970 – Maceió – AL – Brazil

frery@tci.ufal.br

Abstract. The Network Time Protocol, an over 2-decade old and always
improving algorithm for synchronizing networked computer clocks, still finds
problems for its efficient operation. Many applications need a trustable time
system to function correctly (e.g., banking and distributed database servers).
With the advent of Quality of Service in computer networks, this problem can
be elegantly approached and solved. This article suggests a framework for
dealing with clock synchronization on DiffServ Domains, introduces a novel
treatment to packets and validates this proposal on a case-study done with live
application metrics in a network emulation environment.

1. Introduction
Clock synchronization in computer networks is very important to ensure the proper
functioning of systems, and is fundamental for the integrity of time-sensitive services.

 The accuracy of clocks synchronized through computer networks depends on the
algorithms used, on the delays the synchronization packets are submitted to and on the
variation of such delays (the jitter). Therefore, guaranteeing minimum and stable delays
when transporting these packets is a way of ensuring better clock precision. The most
used clock synchronization algorithm, the Network Time Protocol (NTP), works over IP
and has been accepted as the Internet “de facto” standard.

 Some statistical techniques are used to yield an acceptable solution for the
problem, but there had been no proposal to improve the quality of synchronization based
on quality of service (QoS). With QoS it is possible to offer guarantees about delay and
jitter to the synchronization mechanism, benefiting all the applications that depend on it.

 In this work, we analyze of the benefits quality of service may bring to clock
synchronization, including measuring QoS parameters on NTP. The 2nd section
describes clock synchronization on Computer Networks with NTP. The 3rd section
mentions some QoS architectures and details the Differentiated Services (Diffserv)
architecture. The 4th section describes the QoSYNC Framework proposal for ensuring
Quality of Synchronization for clocks over the Internet. The 5th section comments on the
results and the 6th section brings conclusions and cites some future works.

2. Clock Synchronization in Computer Networks
The Network Time Protocol (NTP) [1][17], standardized by the Internet Engineering
Task Force (IETF), has been the “de facto” standard for clock synchronization for over
two decades and has been improved over time. Nowadays, a huge number of time-
servers [17][23] around the world utilize it to replicate its time to other machines.

2.1. NTP Hierarchy

NTP uses a hierarchical and distributed algorithm to share time [16]. Physical clocks
[15] are used as references of time and can be of any type. Atomic, radio wave-based
and GPS-based (Global Positioning System) clocks are the most common. Each of these
is attached to a computer called stratum 1 [17]. These computers serve a very trustable
time, but costly and require special skills to install and configure.

 Any computer that synchronizes using a stratum 1 computer as a reference is
called stratum 2, and may serve time to stratum 3 ones and so on up to stratum 15,
forming a synchronization tree. Therefore, the stratum measures the distance to a
physical clock, in network nodes. Each computer has an internal clock (normally a
quartz oscillator) to keep time, called local clock, which is less dependable but
inexpensive, since the leaves the tree do not need a high time precision. User machines
are commonly stratum 4. If an accurate machine is needed (e.g., for banking or
distributed database servers) moving up in the synchronization tree is required as, for
instance, connecting directly to a physical clock or synchronizing time to a stratum 1
through a low jitter path (one would better buy a good clock than pay the extra link). An
unsynchronized computer is called stratum 16. The NTP interaction with a server is
called association (it is not connection-oriented).

2.2. Clock Selection Algorithms and Synchronization Process

A computer is normally configured with many reference clocks, but utilizes statistical
techniques along with polling to choose the best ones. A mathematical description of the
problem can be found in [14] and some used clock-selection algorithms can be found in
[14][16]. The stochastic process of clock synchronization is modeled in [14] and [5].

 Synchronization requires periodic message exchanges between client and server.
A single message exchange i is performed in 4 steps. First, the client generates a
timestamp iT1 and includes it in a message to the server. Then, the server receives the
message and generates another timestamp, iT2 . After user authentication and packet
processing, the server generates another timestamp iT3 and sends a message back with
all three timestamps. Finally, the client receives the responding message and generates
another timestamp iT4 . The timestamps are used to compute estimations for clock offset
δ and roundtrip time θ , as follows:

)()(2314 iiiii TTTT −−−=δ
2

)()(4312 iiii
i

TTTT −+−
=θ

 NTP feeds the clock discipline algorithm (compute corrections) with δ and θ .
NTP can use authentication to prevent unauthorized access to a clock or generation of
undesired network load [16]. This is beyond the scope of this paper.

2.3. Clock Discipline Algorithms

The clock discipline algorithm corrects the local clock (variable frequency oscillator -
VFO), compensates for intrinsic frequency error and adjusts various parameters
dynamically in response to measured network jitter and oscillator frequency stability
(called oscillator wander). It is based on a feedback control system.

2.4. Quality of Synchronization

Some interesting (and often confusing) metrics can be used for time synchronization
[16]. The stability of a clock is how well it can maintain a constant frequency, while
accuracy is how well the frequency compares to time standards and precision is how
precisely these quantities can be maintained on a system (maximum error estimation).
The offset of two clocks (here, an NTP client and a server) is the time difference
between them. The skew represents the frequency difference between them (computed
as the first derivative of offset with time) and the drift is the variation of skew (second
derivative of offset with time). Room temperature changes are the main causes of drift.

 According to Mills [15] NTP yields better results (i.e., offset can be measured
with the smallest error) when the network load is not high. That is not a problem
because network links generally spend very little time with high loads, but during high
and even low load periods, due to the lack of control over packets bursts that generate
jitter (because of queuing) and loss, NTP loses synchrony and the machine depends
solely on its local clock to keep the time. Then, it must wait until the network behavior
stabilizes and NTP [15] synchronizes again (which takes many minutes).

 Clock synchronization depends on the reference clock quality, local clock
stability and network delay and jitter [16]. Therefore, by guaranteeing minimum and
stable network delay for request packets one guarantees permanently good
synchronization for computers that use NTP to synchronize their clocks. A simple
application that easily shows the benefits of good clock synchronization is a network
analyzer that measures one-way network metrics called IPstat [2].

3. Quality of Service
Many architectures for QoS provisioning have been proposed to deal with different
network service requirements. The most important ones [26] are Differentiated Services
(Diffserv) [3], Integrated Services (Intserv) [4] and Multiprotocol Label Switching
(MPLS) [1]. Diffserv was chosen for the task of controlling such traffic since it is the
most used and implemented architecture in academic networks, it is the easiest to
implement in the Internet and it perfectly adapts to the service requirements.

3.1. The Differentiated Services Architecture

Diffserv was designed to have a smooth implementation in current Internet by being
able to work with legacy applications and network topologies. Only router update is
actually required and can be done on a per-network basis.

 The IPv4 header has a byte-long field named “Type of Service” (TOS), designed
to select different treatment to packets marked by applications, especially network
control. The “IP Precedence” used 3 of the 8 bits so that applications could signal the

need for low delay, high throughput and low loss. The other bits were unused. The main
idea in Diffserv is to map each configuration (a Diffserv Code Point - DSCP) of the
TOS byte (now called “DS Field”) to a different packet forwarding treatment, named
Per Hop Behavior (PHB). Since the number of PHBs is limited by the size of the field,
Diffserv routers treat only aggregated traffic flows, formed by a group of microflows.

3.1.1. Per Hop Behaviors

Some PHBs have been standardized, as explained below.

 The Best Effort (BE) PHB is the current treatment used on the Internet. It
delivers fairness (among packets of the same class) without guarantees. It was not
specifically standardized for Diffserv, and its old definition from [21] is still valid.

 The Assured Forwarding (AF) [7] is a Behavior Aggregate (BA) that offers
discard priority guarantees within a class. There are 4 AF classes, each with 3 different
drop precedence values, making a total of 12 DSCPs for AF. It can be used by an
application with different traffic flows (with flows more important than others, e.g.,
layered video transmission) or by many applications with differentiated importance.

 Expedited Forwarding (EF) [9] guarantees no loss and delays close to the
minimum possible. EF traffic should be independent of other traffic on the same router.

3.1.2. Diffserv Network Topology

The Diffserv network topology may have four elements [26]. The most important is the
Core Router (CR), which is a Diffserv-aware router that can treat packets with PHBs
according to its DSCP markings. The Edge Router (ER) is a core router also responsible
for packet classification, marking, policy enforcement and traffic shaping. It is generally
used at the borders of a DS Domain. With so many tasks to perform, ERs are the
bottleneck [26] of a Diffserv domain and must be well equipped (being, therefore,
expensive). Packet markings can be trusted to applications, but since any network can
use private markings (besides standard PHBs), some remarking may be necessary
between DS Domains.

 The Bandwidth Broker (BB) makes Service Level Agreements (SLAs) with
network entities automatically to request services on-demand according to specified
requirements (bandwidth, maximum delay/jitter, maximum drop probability, etc). Based
on the obtained agreement it informs the affected routers within its domain of the
necessary changes. A DS Domain is any network that can treat Diffserv traffic. It can
also interact with other non-DS Domains, but then no guarantees can be made.

3.1.3. Service Level Agreements

The Diffserv architecture does not define a protocol for the applications to reserve any
resources in Diffserv routers. The customer must have a Service Level Agreement (SLA)
with its provider to specify the services required, the guarantees offered, the method of
billing for the service and the contingencies and penalties for not respecting the
guarantees. SLAs are also made between providers (DS domains). SLAs can be static
(described by a signed document) or dynamic, through the use of BBs. Due to the
aggregated treatment of traffic, Diffserv routers cannot make guarantees on microflows,

e.g., a drop guarantee of less than 3% for an AF service does not mean that every
application that makes use of this service will experience less than 3% packet drops. It
just guarantees that the average will be respected.

 BBs are a tendency as well as a requirement for the acceptable use of a Diffserv
network. When analyzing the necessary time for network provisioning, one realizes that
waiting for people to agreeing and signing a document (even a digital document) is not a
reliable way of doing provisioning or capacity planning. The cost of installing a better
infrastructure than what is momentarily needed is surpassed by the costs of updating it.

4. QoSYNC Framework Proposal
In this paper we propose a configuration scheme for improving quality of clock
synchronization (QoSYNC) with the use of NTP and the Diffserv architecture.

 To our knowledge there has been no work on the analysis of the performance of
synchronization algorithms on the light of quality of service architectures.

4.1. Diffserv Configuration

In a network that will serve NTP traffic, this work compares the use of two PHBs: the
Expedited Forwarding or our proposed Hot-Potato Forwarding described next.

4.1.1. The Expedited Forwarding PHB

The EF PHB can be used to deliver NTP packets. Due to its efforts for providing
minimum delay and no loss NTP would have good stability. But NTP does not need the
loss guarantees of EF and the delay guarantees could be slightly improved. In spite of
the guaranteed bandwidth of outgoing EF traffic being big enough to accommodate all
the incoming EF traffic [9], due to simultaneous arrivals and small bursts it is common
to have a little queuing of EF traffic. This can hurt synchronization.

 In order to configure the routers to transport NTP traffic, there should be a good
estimation of how much NTP traffic will be served (or the exact number, if using a
Bandwidth Broker interacting with applications). The EF configuration proposed must
be done by a system administrator (either a person or a software) by adding to the
reserved EF bandwidth of a link the bandwidth that will be used by NTP. This necessary
bandwidth will depend on the configurations of NTP associations, where the standard
behavior is to use 76-byte packets (or 96-byte packets with authentication) every 1024
seconds, giving approximately 0.6 bps (or 0.75 bps with authentication) per association.

 However, the average bandwidth will not be equal to the peak bandwidth, since
routers will not receive uniformly sparse requests. However, practice shows that on
reasonably loaded NTP servers traffic peaks are rarely more than twice the average.
Therefore, system administrators must reserve twice the average bandwidth for NTP
traffic. If the way the EF PHB is implemented at a router can starve other traffic [9], the
router must also use a token bucket (or a functionally equivalent mechanism) to limit the
rate of EF at the reserved bandwidth. If the DS Domain does not have a broker, periodic
measurements on Edge Routers (connected to other DS Domains or to customer
networks) can show the necessity of NTP traffic and should estimate future necessities.
 EF packets carrying NTP traffic can have their DSCP remarked to a different

DSCP when entering another domain [9], as long as it is treated by a PHB that satisfies
the EF PHB specification. In case of tunneling of EF packets with NTP traffic, the
encapsulating packet must also be marked as EF.

4.1.2. The Hot-Potato Forwarding PHB

This work introduces The Hot-Potato Forwarding (HPF) PHB, intended to be the ideal
PHB to treat packets with strong delay requirements and without delivery requirements.

 The Hot-Potato Forwarding PHB can be used to construct a lossy, very low
latency, very low jitter service through DS Domains. It is like a person receiving a hot
potato on his or her hands: in order not to get the hands burnt, he or she cannot keep
holding it and should immediately pass it on to the next person. Otherwise, he or she
should simply drop it. Applications that need to send time-sensitive information, like the
exchange of high-resolution timestamps (NTP) or the monitoring/metering of physical
links delay (with the philosophy that monitoring should not hurt operation and losses are
acceptable) can make good use of such a service. HPF suits these applications better
than EF due to the limited predictability of delays in the latter. And with the loose
bandwidth requirements of HPF, it will not disturb EF traffic.

 It is not recommended that a DiffServ router serves a significant amount of HPF
traffic. The general idea is that HPF traffic should not utilize more than 0.1% of a link,
except on very special cases (e.g., a link to a public time server or an administrator-
driven metering of a possibly problematic link). Since EF PHB has very strict rules, the
implementation of HPF must always be done with care, in order not to break the
guarantees of EF.

4.1.2.1. Definition of the HPF PHB

The HPF PHB provides forwarding treatment for a particular DiffServ aggregate called
HPF traffic. HPF packets arriving at any Diffserv router should be immediately
forwarded or dropped. No HPF packet should wait longer than a packet time (the time to
send a packet in the outgoing network interface) to be sent. This assures a limited
minimum jitter, based on the number of nodes and on the packet serialization delays.

 No bandwidth reservations are necessary or even desired. But a maximum
bandwidth is important so that misuse of HPF will not affect other PHBs, notably EF.
The HPF traffic should not break guarantees of other PHBs. The decision of discarding
or scheduling an HPF packet must be based on the guarantees of other traffic. A
DiffServ router implementing HPF should not use traffic shaping of HPF traffic other
than discarding nonconforming packets.

4.1.2.2. Implementation of the HPF PHB

Some types of scheduling mechanisms can be used to deliver a forwarding behavior
similar to the one described in the previous section. Two mechanisms have shown to be
capable of providing the necessary means to accomplish all the required guarantees
within a proper DS Domain: priority queue (PQ) and class based queuing (CBQ).

 With PQ, the HPF traffic can be served by a separate queue with the highest
priority among all queues. If the queue size is measured in packets (it may be different

depending on router architecture), it should have the size of one packet. If its size is
measured in bytes, it should have the size of the biggest packet it is supposed to accept.
In order to prevent HPF from starving EF traffic, a token bucket must be used to limit
HPF rate and two consecutive HPF packets should not be sent when an EF is waiting.

 Using CBQ, there are many possibilities of configuration. A recommended one
is to use a queue for HPF (with a mechanism to discard out-of-profile traffic, e.g., a
token bucket) and a queue for EF, where the HPF queue will have a higher priority and
be sized to a packet (if the queue is measured in packets) or to the size of the biggest
packet expected (if measured in bytes). Again, if an HPF packet arrives when another
one is being sent and there’s an EF packet waiting, the HPF should be discarded. Other
recommended possible implementation is to use a high priority class (no other class
should have a higher priority) with two subclasses controlled using weighted round
robin (WRR): one for HPF (a single-packet queue) and another for EF, where both HPF
and EF have the same weight and a maximum transmission of one packet per turn (to
avoid waiting longer than a packet to transmit). This WRR must be non-work
conserving, i.e., if a queue has no packets on its turn, the other queue can transmit.

 When the HPF PHB is used on a DS Domain, the recommended DSCP is
010011 (binary), which is in a local use DSCP range [18]. No efforts are made towards
compatibility with legacy TOS field markings [21], except the recommended [18]
compatibility with the IP Precedence [21], where 010xxx represents immediate service.

 HPF can be employed on any DiffServ router that implements any other PHBs,
as long as the HPF specification is respected. If two DS Domains exchange HPF traffic,
they should agree on the DSCP for HPF or should do packet remarking (mapping into
an equivalent PHB, according to the HPF definition). If HPF packets are tunneled, the
encapsulating packet must be also marked as HPF. Even though no reliability guarantees
are made, a router should only discard an HPF packet if it really has to, in order to avoid
starvation of HPF. Though no bandwidth is reserved, the fact that HPF must have the
highest priority makes it interfere with the jitter observed by other traffic, especially BE.

4.2. Network Time Protocol Configuration

Some relevant issues must be discussed to gain insight into the aspects that influence
clock synchronization. Some applications have strong requirements of time precision
and the configuration of their synchronization infrastructure must attain to each detail.
Any serious time-keeping purposes will require local network dedicated time servers
(running NTP) that will synchronize from remote computers and serve time to local
ones. Using a computer for tasks besides time keeping affects significantly the quality of
the time served. Since NTP was designed for multitasking processors, giving it a higher
priority can improve the efficiency of the clock discipline algorithms and even lower
network jitter (the arrival and treatment of NTP packets will preempt other tasks). Here,
equipment that introduces considerable network jitter (e.g., a hub or a radio antenna)
should be avoided, especially between local time servers and the remote ones (where the
presence of many intermediary equipments raises the values of the delay and the jitter).

 Special care should be taken to use servers whose path to the client shares as few
internet links as possible, e.g., it is recommended to use spare links whenever available,
because if one intermediary link fails then more than one server will be unreachable.

4.2.1. Using the Expedited Forwarding PHB

Using too many servers for synchronizing is not a good option. NTP will always
synchronize to only a few of them and will only switch servers if the quality of the data
coming from the selected ones gets worse than the others (which is not common).
Therefore, this work recommends the configuration of 3 servers for an NTP local server
using the EF PHB. Only one good server is necessary on normal operation, but this
redundancy is necessary for safety reasons. If the network has more than one connection
to the Internet, at least one of the three NTP associations should use it.

 The use of three servers will reserve about 6 times the bandwidth of a single
association to a server. It will make a bandwidth reservation of 3.6 bps for EF traffic,
being 1.2 bps for each path to a remote server.

4.2.2. Using the Hot-Potato Forwarding PHB

Though no bandwidth is reserved with the use of the HPF PHB, the same restrictions on
the number of servers apply here. Using more than three servers is unnecessary. This
work recommends the configuration of 3 servers for an NTP local server using the HPF
PHB. Even though NTP behaves nicely in the face of high packet loss rates and the fact
that HPF packets will improve the quality of the synchronization to its best (due to the
assured low jitter), the remote possibility that the machine will stay hours without
hearing from any server should be avoided. We also recommend that servers should be
chosen carefully, from different nearby networks (i.e., with low delay to reach).

 An estimate of the maximum use of bandwidth is necessary in case a network
manager configures the routers along the paths of HPF traffic. If a BB is used, this
information will be accurate enough and supplied by the application to the BB. Packet
markings to the correct value corresponding to the HPF PHB must be done by the
application itself or by the Edge Router connected to the customer network.

5. Case-Study: Evaluation of QoSYNC through Network Emulation
In order to validate the QoSYNC framework, we decided to use a network emulation
environment to check how much it improves clock synchronization quality with NTP.

5.1. Network Emulation and Infrastructure

Three evaluation approaches were possible: simulation, live network measurement and
network emulation.

 A simulation of the specified scenario would be cheaper and runs faster than real
traffic. Its tests would be controlled and reproducible. But the studied applications and
the necessary traffic controlling mechanisms had already been implemented, and
implementing them in a simulator would consume a lot more time than utilizing present
implementations and could become a poor representation of the real environment.

 The measurement of live traffic in present networks would yield trustable results
and reuses the already deployed codes, but the results would not be reproducible and
their analysis would be much more difficult.

 The chosen method was network emulation. This method allows one to run
“real” code in a controllable and reproducible environment [6], so the tests can interact
with live environments as much as possible.

5.2. Testing Environment

Many elements were needed to build the necessary infrastructure for the tests. It was
important to duplicate the real Internet conditions as much as possible, and the
following software tools were needed for this purpose:

 We used the latest stable version of the public implementation of the Network
Time Protocol, NTP 4.1.1b (last updated in October 2002), with most of the
configurations set as default. All machines on this experiment used Linux with kernel
2.4.18 (except the stratum 2 time-server, with FreeBSD). The kernels were recompiled
to allow the use of the traffic generator, advanced routing capabilities (Diffserv) and the
network emulator. We also used a tool to configure the advanced routing capabilities [8]
required by Diffserv. Traffic Control, a utility of the iproute2 package [24], was used.

 A network emulation tool that would behave as a network cloud or a network
link was necessary. NIST.Net [6] was chosen due to its simplicity, robustness and good
parameterization. More details on network emulation and NIST.Net are found in [19].

 Traffic Generator 2.0 (TG2) [13] was used for traffic generation, and was
modified to include provisions for the use of a Pareto distribution for self-similar traffic.

 We needed a monitoring tool to gather all the data during the experiment and
keep it handy. RRDTool [20] was used to generate fixed-size databases, do some of the
monitoring and create the simpler statistical graphs. The R platform [24] was used to
compare the results and create the other graphs.

 A network emulation testbed was also needed to run all this. The NGN Testbed
from the QoSWARE Project [22] was kindly conceded for this experiment. All
machines used the Mersenne-Twister [12] pseudo-random number generator. No
machine on this test needed to generate more than 4 billion random numbers for all the
tests, which is several orders of magnitude smaller then the period of the generator used.

5.3. Network Topology

This work needed a network topology with certain characteristics to properly analyze the
proposed alterations for clock synchronization infrastructure. Two NTP machines (a
client and a server) were needed. The server had to be synchronized to international
standards and could be connected to an atomic physical clock.

 A simple Diffserv network should separate the client and the server, with two
routers connecting them. The routers should be connected to each other through a single
link with 40ms delay. NTP traffic between client and server should share the link with
other Internet flows (from many other networks connected to each router), which should
yield common Internet conditions (packet loss and jitter). Grouping each NTP machine
and the networks with their respective routers forms a network topology known as
dumbbell, as shown in Figure 1. Here, the applications mark their packets with the
correct DSCP. No bandwidth brokers or Edge Routers are studied as well.

NTP Server

Diffserv Router 2Diffserv Router 1

NTP Client

5 Mbps
40 ms

Internet Internet

Atomic Physical Clock

Figure 1: Studied Network Topology

 This case study used a different network topology to emulate the intended
topology. On the implemented topology, a few items were added or used to replace
others (see Figure 2). In replacement to the external networks, each router had one
machine connected to it to act as a traffic generator and as a traffic receiver. A dedicated
link between NTP client and server was added to accurately measure the offset between
their clocks (this would not be possible on a regular network with geographically distant
machines). A network emulation machine was used in replacement of the link between
the routers. The emulator delayed all packets passing in any direction by exactly 40ms,
with no artificial jitter introduction. The observed jitter resulted only from queuing
(verified with and without the traffic generators running).

Stratum 1
NTP server

Atomic
Physical Clock

Laboratory Router
Stratum 2 NTP
Server/Client

Internet

Stratum 3 NTP
Server/Client

Diffserv Router 2

Traffic Generator /
Traffic Sink

Diffserv Router 1
 Stratum 4 NTP Client

Traffic Generator /
Traffic Sink

Network
Emulation

Real Offset
measurement

Link

Figure 2: Implemented Network Topology

 Without a physical clock, an external time reference was used, from the Internet.
The laboratory router was used as a NTP gateway because local machines used private
addresses. It used a remote stratum 1 NTP server and the server of the experiment (now
stratum 3) used the router to synchronize. To make sure the stratum 3 server furnished a
trustable time, the stratum 2 and 3 servers were configured with a short polling interval
(seconds 32=P) to the stratum 1 and 2 servers, respectively, and begun running several
days before the start of the experiment (in order to let local clock corrections stabilize).
The marking of the DS Field by the application required a code recompilation of NTP
between sets of test. A dedicates link was necessary to compute real clock offsets.

 It was proved that the Internet traffic is best described as having a fractal or self-
similar behavior [11]. A metric was established to measure the level of self-similarity on

network traffic, called the Hurst parameter (H). It ranges from 0.5 (no self-similarity) to
1.0 (complete self-similarity). It is important to notice that the higher H is, the burstier
the traffic is, which is bad for efficient network utilization (greater queuing, greater
average delay, smaller average throughput). It has been shown [25] that any level of
self-similarity can be achieved through the aggregation of on-off sources using a Pareto
distribution to regulate it. This work used 20 UDP sources (on each generator, with
packets destined to the other generator) for a peak rate of 7.2Mbps (each way, in case all
sources from one side transmit at the same time) and an average generation of 3.6Mbps.
It was configured to result in a significant, but common (i.e., normally observed in
internet traffic studies) level of self-similarity, measured as a Hurst parameter of

5.8=H . In the EF scenario, one of the sources transmits EF traffic (in each generator).

5.4. Results

A preliminary test was run to decide how many replications were necessary to achieve
statistical guarantees [10]. The decision was based on the maximum error acceptable for
each test, calculated as a percentage of the average. The confidence level used for this
analysis was 90%. Table 1 compares the results for each variable in each scenario.

Table 1: Determining Number of Replications

Analyzed Variable Type of Traffic
(scenario)

Sampled
Average

Maximum
Error

Number of
Replications

Real Offset Best Effort 0.009817 15% 117.8108
Real Offset Expedited Forwarding 0.004889 15% 49.98287
Real Offset Hot-Potato Forwarding 0.003376 15% 32.98568

Offset Estimation Error Best Effort 0.002501 15% 110.1464
Offset Estimation Error Expedited Forwarding 0.002707 15% 42.46485
Offset Estimation Error Hot-Potato Forwarding 0.002421 15% 33.31118

 As a result of the comparison, the test was made with 120 replications for each
scenario, which resulted in 5 days (120 hours) running each of the three scenarios.
Though we gathered the real and the estimated offset, the latter is only relevant on the
light of the real offset. Therefore, this work analyzed a new variable, the offset
estimation error, calculated as the difference between the estimated and the real offsets.

 During the scenario of NTP traffic as best effort, the client lost synchrony with
the server 12 times during the experiment. As NTP continues disciplining the local
clock in these cases, it did not wander uncontrolled. Since this is a common event on
production networks, it was considered normal operation and the samples were normally
accepted for the experiment. No synchronization loss occurred on the other scenarios.

 The maximum jitter was measured in each scenario for the type of traffic NTP
was using with simple “ping” (with an option to change the DSField). After the run of
each experiment, 1000 ping packets were sent and the difference between the maximum
and minimum observed RTT (round-trip time) delay was taken and divided by two to
represent the one-way delay. This difference is an estimate of the maximum possible
jitter that can be observed by a traffic flow, though the jitter itself is the difference
observed between two adjacent packets of a microflow. Results are shown on Table 2.

Table 2: Maximum Possible Jitter Estimate

Type of Traffic Observed Jitter
Best Effort 1.5 ms

Expedited Forwarding 0.275 ms
Hot-Potato Forwarding 0.095 ms

 The jitter observed on HPF traffic is still a little higher than what it should be,
but it is believed that this was due to the use of general-purpose computers (where
network activities are treated by software) to act as routers. In all types of traffic, the
jitter is limited to the fact that only two routers were used, and on a given network
topology the number of routers and the configuration of the queues (especially BE
queue, with really varying configuration) affect the observed jitter. The three scenarios
did not show any significant change in the loss rate of the background traffic, and the
number of total lost packet did not differ significantly (approximately 0.499% for all
tests). This was due to the use of UDP traffic, which does not use any congestion control
mechanism. The goal of the background traffic was to simply imitate general Internet
behavior for NTP, not to analyze how NTP would affect other types of traffic.

2
4

6
8

10

Offset

Type of Traffic

m
ill

is
ec

on
ds

BE EF HPF

Real Offset
Offset Estimated by NTP

2.
2

2.
4

2.
6

2.
8

Offset Estimation Error

Type of Traffic

m
ill

is
ec

on
ds

BE EF HPF

Figure 3: Offset (a) and Offset Estimation Error (b) Comparison

 On Figure 3 (a) we can see a comparison between the resulting offsets between
client and server of each type of traffic, computed as absolute values. The vertical bars
represent the standard deviation of the data weighted by the trust interval coefficient
[10], computed based on the confidence level of 90%. Undoubtedly, NTP performs
systematically better as EF or HPF traffic than it does as BE traffic. As expected, HPF
traffic represents a little improvement over EF traffic. The same figure shows the mean
estimate of the offset. As this only looks meaningful relatively to the real offset, we
must show another graphic that presents the average of the difference between the real
offset and its estimate. Figure 3 (b) shows this difference, computed as absolute values.

 Here, it is clear that changing the type of traffic did not significantly affect its
offset estimate. Though the average has increased a little for EF, its variation is smaller,
resulting in a very small aggravation of this estimate. Even though the jitter caused by
EF traffic is small, and therefore the variation of the estimate represented by its vertical
bars is smaller, this jitter is more unpredictable, since some packets receive a minimum

delay and some others receive a higher one. HPF traffic, however, showed a little
improvement on both mean and variation of the estimation.

6. Conclusions and Future Work
This work has focused the distribution of time for clock synchronization in networked
computers and proposed some network configurations based on the use of Quality of
Service for dealing with it, including a novel treatment of packet forwarding.

 It was shown that the use of the Expedited Forwarding PHB or the proposed
Hot-Potato Forwarding PHB can help ensure permanent synchronization of a computer
with NTP and that it can also improve the quality of such synchronization. There was no
need to alter the behavior of NTP, with the exception of QoS markings.

 Many networks can benefit from the use of this proposal, which can decrease the
overall use of NTP traffic on the Internet (it is well known that in order to recover from
its synchronization losses NTP raises its bandwidth) and improve its accuracy.

 We devised two interesting future works derived from this work. The first is a
broader study of the peak-to-mean relation for NTP traffic. With it, one can make a
better estimation of the necessary values for peak bandwidth reservation when using EF
traffic. The second is a study of the effect of the use of HPF traffic on TCP connections
(of course, not using HPF for TCP). While HPF should not affect TCP loss rate
significantly, it is expected to affect TCP traffic jitter. Both require further investigation.

7. Acknoledgements
 The authors would like to thank CAPES for partially funding this work, and
Prof. Dr. Djamel Fawzi Hadj Sadok for all the help and support.

8. References
[1] AWDUCHE, D. et al, “Requirements for Traffic Engineering over MPLS”, RFC

2702, September 1999.

[2] BARBOSA, Rodrigo et al. “IPstat: Uma Ferramenta para Medições Unidirecionais
na Internet”, submitted to Salão de Ferramentas in SBRC2004, 2004.

[3] BLAKE, S., BLACK, D. L., CARLSON, M., DAVIES, E., WANG, Z. et WEISS,
W., “An Architecture for Differentiated Services”, RFC 2475, December 1998.

[4] BRADEN, R., CLARK, D. D., et SHENKER, S., “Integrated Services in the
Internet Architecture: an Overview”, RFC 1633, June 1994.

[5] CALLADO, Arthur C. “Clock Synchronization in Computer Networks with Quality
of Service”, master in science dissertation, Universidade Federal de Pernambuco,
September 2003.

[6] CARSON, Mark, “Application and Protocol Testing through Network Emulation”,
Internetworking Technologies Group, September 1997.

[7] HEINANEN, J., BAKER, F., WEISS, W. et WROCLAWSKI, J.. “Assured
Forwarding PHB Group”, RFC 2597, June 1999.

[8] HUBERT, Bert et al, “Linux Advanced Routing and Traffic Control HOWTO”,
http://lartc.org, December 2002.

[9] JACOBSON, V., NICHOLS, K. et PODURI, K. “An Expedited Forwarding PHB”,
RFC 2598, June 1999.

[10] JAIN, Raj. “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”. John Wiley &
Sons. 1991.

[11] LELAND, Will E. et al. “On the Self-Similar Nature of Ethernet Traffic (extended
version)”. IEEE/ACM Trans. on Net., volume 2, number 1. February 1994.

[12] MATSUMOTO, Makoto; NISHIMURA, Takuji. “Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator”. ACM
Transactions on Modeling and Computer Simulations: Special Issue on Uniform
Random Number Generation. 1998.

[13] MCKENNEY, P., LEE, Dan Y., DENNY, Barbara A., “Traffic Generator Software
Release Notes”, SRI Int. and USC/ISI PCEN, January 2002.

[14] MILLS, David L., “Adaptive Hybrid Clock Discipline Algorithm for the Network
Time Protocol”, IEEE Trans. on Net., volume 6, number 5, October 1998.

[15] MILLS, David L., “Experiments in Network Clock Synchronization”, RFC 957,
September 1985.

[16] MILLS, David L., “Network Time Protocol (Version 3) Specification,
Implementation and Analysis”, RFC 1305, March 1992.

[17] MILLS, David L., “Simple Network Time Protocol (SNTP) Version 4 for IPv4 IPv6
and OSI”, RFC 2030, October 1996.

[18] NICHOLS, K. et al, “Definition of the Differentiated Services Field (DS Field) in
the IPv4 and IPv6 Headers”, RFC 2474, December 1998.

[19] NIST, “NIST Net Home Page”, http://dns.antd.nist.gov/itg/nistnet/.

[20] OETIKER, Tobias, “RRDTool Manual”, http://www.rrdtool.com, November 2002.

[21] POSTEL, J. “Internet Protocol”, RFC 791, September 1981.

[22] QoSWARE, “Gerenciamento de QoS no MIDDLEWARE para Aplicações em
Tempo-Real”, http://www.cin.ufpe.br/~gprt/qosware, November 2001.

[23] RNP - Projeto NTP, “Lista dos servidores NTP Stratum 2 no Brasil”,
http://www.rnp.br/cais/ntp/ntp_stratum2.html.

[24] R-Project, “The R Project for Statistical Computing”, http://www.r-project.org.

[25] WILLINGER, Walter et al. “Self-Similarity Through High-Variability: Statistical
Analysis of Ethernet LAN Traffic at the Source Level”. IEEE/ACM Transactions
on Networking, volume 5, pp. 71-86. February 1997.

[26] XIAO, Xipeng et NI, Lionel, “Internet QoS: A Big Picure”, IEEE Network, March
1999.

