
Improving the Quality of Service of Failure Detectors

with SNMP and Ar tificial Neural Networks

Raimundo José de Araújo Macêdo, Fábio Ramon L ima e L ima

Laboratório de Sistemas Distribuídos – LaSiD

Departamento de Ciência da Computação
Universidade Federal da Bahia

Campus de Ondina, CEP: 40170-110, Salvador-BA, Brazil
{macedo,framon}ufba.br

Abstract. A failure detector is an important building block for fault-tolerant
distributed systems: mechanisms such as distributed consensus and group
communication rely on the information provided by failure detectors in order
to make progress and terminate. As such, erroneous information provided by
the failure detection may delay decision-making or lead the upper-layer
mechanism to take incorrect decisions (e.g., excluding correct processes from
a group membership). In this paper we explore the use of artificial neural
networks to improve the quality of service (QoS) of failure detectors in settings
where message transmission delays and system loads can vary over time, such
as the Internet. The patterns used to feed the neural network were obtained by
using Simple Network Management Protocol (SNMP) agents. Our detector was
fully implemented and tested over a set of LINUX networked workstations, and
we have run several experiments to evaluate our approach, comparing it
against well-known implementations. The experiments show that our failure
detector outperformed existing approaches.

1. Introduction
Failure detection is an important issue for dependable distributed systems. In particular,
in the partial synchronous model of the unreliable failure detectors introduced by
Chandra-Toueg [1,2], it was presented for the first time a formal definition of failure
detectors and related conditions for solving fundamental problems of fault-tolerant
computing in such a model. Due to load variations, both in the communication links and
runtime system, a failure detector can be too slow, that is, it may take too much time to
suspect a crashed process, and it can make mistakes by erroneously suspecting some
process that is actually operational. To be useful, however, a failure detector has to be
reasonably accurate (i.e., must avoid wrong suspicions) and fast (i.e., must avoid
unnecessary delays in suspecting failures). In order to evaluate how fast and accurate a
failure detector is, Chen, Toueg, and Aguilera proposed the following QoS metrics, and
showed how they can fully qualify the service of failure detectors: detection time,
which defines the failure detector’s speed; mistake recurrence time, which defines the
time between two consecutive mistakes; and mistake duration, which defines the time it
takes the failure detector to correct a mistake [3].

With the aim of improving the QoS of failure detectors, many authors have proposed
different techniques to dynamically estimate the timeout values used in failure
detection. These techniques are either based on the probabilistic behaviour of the system

[3] or on monitoring data for control message transmission delays [4,5,11], or even a
combination of both [7]. To the best of our knowledge, two previous works provided
implementations and related QoS performance analyses for their failure detectors based
on the aforementioned metrics. Chen, Toueg, and Aguillera presented implementations
for failure detectors that rely on clock synchronization and a probabilistic behaviour of
the system [3]. The main drawback of their solution is that a probabilistic distribution
function has to be defined to the environment before an estimation can be established.
Bertier, Marin, and Sans [7] extended the failure detector developed by Chen, Toueg,
and Aguillera, by introducing a safety margin dynamically calculated according
Jacbson’s algorithm [6], which resulted in a detector with a better detection time
average. None of the existing work has explored the use of neural networks.

2. The Neural Network based Adaptive Failure Detector (NN-AFD)
We consider the model of partial synchrony proposed by Chandra and Toueg in [1],
which defines that, among other things, in every execution, there are bounds on process
speeds and on message transmission times, but these bounds are not known and they
hold only after some unknown time (the Global Stabilization Time – GST). It is
assumed that processes will be sending heartbeat messages with a time interval, named
HP (heartbeat period), between the emissions of two consecutive heartbeats. To
monitor a process q, a process p uses an estimated value, named TO (timeout), that tells
p how much time it has to wait for the heartbeat from q. We propose a failure detector
that is adaptive with respect to the current system and communication loads, and we use
a neural network to achieve the required adaptation. We use a special kind of Neural
Network, called Feedforward Multilayer Perceptron (MLP), and have modelled it with
four layers: an input layer with six neurons corresponding the collected data from the
MIB - Management Information Base [9]; two middle ones, one layer with nine and the
other with four neurons; and an output layer with a single neuron, the estimated timeout
for the arrival of the next heartbeat message. Adaptation of NN-AFD is achieved in two
phases, namely the training and estimation phases. In the first phase, the Neural
Network is trained through the backpropagation algorithm [13] to associate a given
system load with the timeout value for the arrival of the corresponding heartbeat
message. The system load is obtained by SNMP agents over the local MIB variables
IfInUcastPkts, ifOutUcastPkts, ifOutQLen, udpInDatagrams, udpOutDatagrams, and
udpNoPorts. In the second phase, the neural network is queried to estimate the arrival
time of the next heartbeat for a particular pattern of the MIB. In both phases, the same
time interval between heartbeat messages is used.

3. The QoS Analysis of NN-AFD
To allow a comparative analysis of the NN-AFD performance, we also implemented in
our system the Bertier-Marin-Sens detector [7], which has been shown to perform better
than the Chen-Toueg-Aguilera detector [3,10]. Bertier-Marin-Sens detector is a
combination of Chen-Toueg-Aguilera detector and the Jacobson’s estimation (used in
the protocol TCP to estimate the delay after which a node retransmits its last message
[6]). Thus, to calculate the estimation for the next heartbeat arrival time, named ()1+kτ ,

the Bertier-Marin Sens’ estimation is calculated by adding the Chen-Toueg-Aguilera’s
estimation, ()1+kEA , to a safety margin given by the Jacobson’s estimation, ()1+kα . That is

() () ()111 +++ += kkk EAατ .

 We have implemented two versions of our failure detector. The first one is purely
based on the neural network. The second version combines the pure NN-AFD with the
Bertier-Marin-Sens detector, switching between both detectors depending on the
network load pattern variation. To evaluate our detectors, we carried out two kinds of
experiments: one with the ordinary network load and another one with an extra load
introduced randomly by a third process, named the overloader. Thus, for every minute,
during a period of 10 seconds, randomly chosen, the overloader continuously
transmitted messages. In the remaining seconds of this particular minute, the overloader
transmits only 30 messages per second. Experiments were performed at the Distributed
Systems Laboratory (LaSiD) over three Pentium-III 800 Mhz hosts over an Ethernet
10/100 Base-T network.
 The dynamic estimation of the Bertier-Marin-Sens detector was parameterised, in all
experiments, as given in [7]. Due to space limitations, below we only discuss the results
concerning the experiments with communication overload (a complete analysis can be
found elsewhere [12]). These experiments were carried out for 5 rounds. In each round,
after sending 1000 heartbeats as required by the adaptation phase of the Bertier-Marin-
Sens detector, a process in a given host, say p, sent heatbeats for about 10 minutes, with
the frequency of 1 message per second (HP = 1 second), and the process in another host
tried to detect failure of p by running in parallel the three detectors: the Pure NN-AFD,
the combined NN-AFD, and the Bertier-Marin-Sens detector.
 The data collected in each round include the arrival time for the heartbeat messages,
according to local clock, the estimation time for each detector, the time that a detector
starts suspecting p, and the time that a detector corrects a mistake (i.e., stops suspecting
p as a message from p arrives). We then calculated for each round, the number of false
detections, the average detection time, and the average mistake duration. The table
below shows the results. The mistake duration, the detection time, and the number of
false detections are the average for the five rounds.

 Pure NN-AFD Bertier -Mar in-Sens Combined NN-AFD

Number of false
detections average

14,7 17 16,33

Mistake duration
average (ms)

26,05 31,85 31,87

Detection Time
average (ms)

1010,03 1032,17 1010,45

 When we consider load variations, our experiments clearly show that the pure NN-
AFD performed better than the detector of Bertier-Marin-Sens for all metrics. Indeed,
when compared with Bertier-Marin-Sens detector, this result contradicts the common
intuition that shorter detection times, which favour faster recovery procedures for fault-
tolerant computing, leads to a less accurate detector. Still considering the experiment
with load variation, the combined NN-AFD outperformed Bertier-Marin-Sens detector,
being only slightly worse in the mistake duration average (in fact, practically the same
average). As expected, NN-AFD outperformed the combined NN-AFD. Whereas these
results validate our techniques, they also suggest that our method to switch between the
detectors (in the combined version), can be improved to take advantage of the NN-AFD
performance during load variations.

4. Concluding Remarks

We explored the use of artificial neural networks in order to improve the quality of
service of failure detectors. In our work, the training patterns used to feed the neural
network were obtained by using SNMP agents. The output of our neural network is an
estimation for the arrival time for the failure detector to receive the next heartbeat from
a remote process. Our detectors were fully implemented and tested over a set of LINUX
networked workstations. In order to analyse the efficiency of our approach, we have run
a series of experiments where network and system loads were varied randomly, and we
measured several QoS parameters according to the metrics introduced in [3], comparing
our detector against well-known implementations. The experiments show that our
adaptive solution outperformed existing approaches. In the next step of our work, we
are going to incorporate the failure detector implemented into a group membership
service and a distributed system management tool under development at LaSiD/UFBA.

5. References
[1] Chandra, T. and Toueg, S., Unreliable Failure Detectors for Reliable Distributed
Systems Journal of the ACM, 43(2):225-267, March 1996.

[2] Chandra, T., Hadzilacos, V. and Toueg S., The Weakest Failure Detector for
Solving Consensus. Journal of the ACM, 43(4):685 – 722, July 1996.

[3] Chen, W., Toueg, S., Aguilera, M. On the quality of service of failure detectors.
Proc. of the First Int. Conf. on Dependable Systems and Networks (DSN 2000).

[4] Macêdo R. Failure detection in asynchronous distributed systems. Proceedings of
II Workshop on Tests and Fault-Tolerance, Curitiba, Brazil. July/2000. PP. 76-81.

[5] Nunes, R. C., Jansch-Pôrto, I. A lightweight interface to predict communication
delays using time series. Proceedings of Latin American Symposium on Dependable
Computing (LDAC 2003). LNCS 2847, pages 254-263.

[6] Jacobson, V. Congestion avoidance and control. Proc. of the ACM Symp. Comm.,
Architectures and Protocol, Palo Alto, ACM Press(1988) 314–329.

[7] Bertier, M., Marin, O., Sens, P. Implementation and performance evaluation of an
adaptable failure detector. Proc. of Int. Conf. on Dep. Systems and Networks, 2002.

[8] Case, J., Fedor, M., Schoffstall, M., Davin, J. Connected: an Internet encyclopaedia:
A simple network management. Protocol.
http://deese.univ lemans.fr:8003/connected/RFC/1157/index.html.

[9] McCloghrie, K., Rose, M. Connected: an internet encyclopaedia: Management
information base for network management of TCP/IP-based internets: MIB-II.
http://deese.univ-lemans.fr:8003/connected/RFC/1213/index.html.

[10] Devianov, B., Toueg, S. Failure detector service for dependable computing.
Proceedings of the First Int. Conf. on Dependable Systems and Networks, pp. 2000

[11] Sotoma, I., Madeira, E. Adaptation – algorithms to adaptive fault monitoring and
their implementation on CORBA. Proc. of the 3rd Int. Symp. on Dist. Objects and
Appl., 2001.

[12] Macêdo, R, and Lima, F. Dynamically Adapting Failure Detectors to Loads
Fluctuating Using SNMP and Artificial Neural Nets. Distributed Systems Laboratory
(LaSiD), Federal University of Bahia (to be published).

[13] Haykin, S. Neural networks: a comprehensive foundation. 1st ed. New York,
Macmillan, 1994.

