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Abstract. A failure detector is an important building block for fault-tolerant 
distributed systems: mechanisms such as distributed consensus and group 
communication rely on the information provided by failure detectors in order 
to make progress and terminate. As such, erroneous information provided by 
the failure detection may delay decision-making or lead the upper-layer 
mechanism to take incorrect decisions (e.g., excluding correct processes from 
a group membership). In this paper we explore the use of artificial neural 
networks to improve the quality of service (QoS) of failure detectors in settings 
where message transmission delays and system loads can vary over time, such 
as the Internet. The patterns used to feed the neural network were obtained by 
using Simple Network Management Protocol (SNMP) agents. Our detector was 
fully implemented and tested over a set of LINUX networked workstations, and 
we have run several experiments to evaluate our approach, comparing it 
against well-known implementations. The experiments show that our failure 
detector outperformed existing approaches. 

1. Introduction 
Failure detection is an important issue for dependable distributed systems. In particular, 
in the partial synchronous model of the unreliable failure detectors introduced by 
Chandra-Toueg [1,2], it was presented for the first time a formal definition of failure 
detectors and related conditions for solving fundamental problems of fault-tolerant 
computing in such a model. Due to load variations, both in the communication links and  
runtime system, a failure detector can be too slow, that is, it may take too much time to 
suspect a crashed process, and it can make mistakes by erroneously suspecting some 
process that is actually operational. To be useful, however, a failure detector has to be 
reasonably accurate (i.e., must avoid wrong suspicions) and fast (i.e., must avoid 
unnecessary delays in suspecting failures). In order to evaluate how fast and accurate a 
failure detector is, Chen, Toueg, and Aguilera proposed the following QoS metrics, and 
showed how they can fully qualify the service of failure detectors: detection time, 
which defines the failure detector’s speed; mistake recurrence time, which defines the 
time between two consecutive mistakes; and mistake duration, which defines the time it 
takes the failure detector to correct a mistake [3]. 

With the aim of improving the QoS of failure detectors, many authors have proposed 
different techniques to dynamically estimate the timeout values used in failure 
detection. These techniques are either based on the probabilistic behaviour of the system 



[3] or on monitoring data for control message transmission delays [4,5,11], or even a 
combination of both [7]. To the best of our knowledge, two previous works provided 
implementations and related QoS performance analyses for their failure detectors based 
on the aforementioned metrics. Chen, Toueg, and Aguillera presented implementations 
for failure detectors that rely on clock synchronization and a probabilistic behaviour of 
the system [3]. The main drawback of their solution is that a probabilistic distribution 
function has to be defined to the environment before an estimation can be established. 
Bertier, Marin, and Sans [7] extended the failure detector developed by Chen, Toueg, 
and Aguillera, by introducing a safety margin dynamically calculated according 
Jacbson’s algorithm [6], which resulted in a detector with a better detection time 
average. None of the existing work has explored the use of neural networks. 

2. The Neural Network based Adaptive Failure Detector (NN-AFD) 
We consider the model of partial synchrony proposed by Chandra and Toueg in [1], 
which defines that, among other things, in every execution, there are bounds on process 
speeds and on message transmission times, but these bounds are not known and they 
hold only after some unknown time (the Global Stabilization Time – GST). It is 
assumed that processes will be sending heartbeat messages with a time interval, named 
HP (heartbeat period), between the emissions of two consecutive heartbeats. To 
monitor a process q, a process p uses an estimated value, named TO (timeout), that tells 
p how much time it has to wait for the heartbeat from q. We propose a failure detector 
that is adaptive with respect to the current system and communication loads, and we use 
a neural network to achieve the required adaptation. We use a special kind of Neural 
Network, called Feedforward Multilayer Perceptron (MLP), and have modelled it with 
four layers: an input layer with six neurons corresponding the collected data from the 
MIB - Management Information Base [9]; two middle ones, one layer with nine and the 
other with four neurons; and an output layer with a single neuron, the estimated timeout 
for the arrival of the next heartbeat message. Adaptation of NN-AFD is achieved in two 
phases, namely the training and estimation phases. In the first phase, the Neural 
Network is trained through the backpropagation algorithm [13] to associate a given 
system load with the timeout value for the arrival of the corresponding heartbeat 
message. The system load is obtained by SNMP agents over the local MIB variables 
IfInUcastPkts, ifOutUcastPkts, ifOutQLen, udpInDatagrams, udpOutDatagrams, and 
udpNoPorts.  In the second phase, the neural network is queried to estimate the arrival 
time of the next heartbeat for a particular pattern of the MIB. In both phases, the same 
time interval between heartbeat messages is used.  

3. The QoS Analysis of NN-AFD 
To allow a comparative analysis of the NN-AFD performance, we also implemented in 
our system the Bertier-Marin-Sens detector [7], which has been shown to perform better 
than the Chen-Toueg-Aguilera detector [3,10]. Bertier-Marin-Sens detector is a 
combination of Chen-Toueg-Aguilera detector and the Jacobson’s estimation (used in 
the protocol TCP to estimate the delay after which a node retransmits its last message 
[6]). Thus, to calculate the estimation for the next heartbeat arrival time, named ( )1+kτ , 

the Bertier-Marin Sens’  estimation is calculated by adding the Chen-Toueg-Aguilera’s 
estimation, ( )1+kEA , to a safety margin given by the Jacobson’s estimation, ( )1+kα . That is 

( ) ( ) ( )111 +++ += kkk EAατ .  



     We have implemented two versions of our failure detector. The first one is purely 
based on the neural network. The second version combines the pure NN-AFD with the 
Bertier-Marin-Sens detector, switching between both detectors depending on the 
network load pattern variation. To evaluate our detectors, we carried out two kinds of 
experiments: one with the ordinary network load and another one with an extra load 
introduced randomly by a third process, named the overloader. Thus, for every minute, 
during a period of 10 seconds, randomly chosen, the overloader continuously 
transmitted messages. In the remaining seconds of this particular minute, the overloader 
transmits only 30 messages per second. Experiments were performed at the Distributed 
Systems Laboratory (LaSiD) over three Pentium-III 800 Mhz hosts over an Ethernet 
10/100 Base-T network. 
     The dynamic estimation of the Bertier-Marin-Sens detector was parameterised, in all 
experiments, as given in [7]. Due to space limitations, below we only discuss the results 
concerning the experiments with communication overload (a complete analysis can be 
found elsewhere [12]). These experiments were carried out for 5 rounds. In each round, 
after sending 1000 heartbeats as required by the adaptation phase of the Bertier-Marin-
Sens detector, a process in a given host, say p, sent heatbeats for about 10 minutes, with 
the frequency of 1 message per second (HP = 1 second), and the process in another host 
tried to detect failure of p by running in parallel the three detectors: the Pure NN-AFD, 
the combined NN-AFD, and the Bertier-Marin-Sens detector.  
     The data collected in each round include the arrival time for the heartbeat messages, 
according to local clock, the estimation time for each detector, the time that a detector 
starts suspecting p, and the time that a detector corrects a mistake (i.e., stops suspecting 
p as a message from p arrives). We then calculated for each round, the number of false 
detections, the average detection time, and the average mistake duration. The table 
below shows the results. The mistake duration, the detection time, and the number of 
false detections are the average for the five rounds.   
 

 Pure NN-AFD Bertier -Mar in-Sens Combined NN-AFD 

Number of false 
detections average 

14,7 17 16,33 

Mistake duration 
average (ms) 

26,05 31,85 31,87 

Detection Time 
average (ms) 

1010,03 1032,17 1010,45 

 
     When we consider load variations, our experiments clearly show that the pure NN-
AFD performed better than the detector of Bertier-Marin-Sens for all metrics. Indeed, 
when compared with Bertier-Marin-Sens detector, this result contradicts the common 
intuition that shorter detection times, which favour faster recovery procedures for fault-
tolerant computing, leads to a less accurate detector. Still considering the experiment 
with load variation, the combined NN-AFD outperformed Bertier-Marin-Sens detector, 
being only slightly worse in the mistake duration average (in fact, practically the same 
average). As expected, NN-AFD outperformed the combined NN-AFD. Whereas these 
results validate our techniques, they also suggest that our method  to switch between the 
detectors (in the combined version), can be improved to take advantage of the NN-AFD 
performance during load variations. 



4. Concluding Remarks 

We explored the use of artificial neural networks in order to improve the quality of 
service of failure detectors. In our work, the training patterns used to feed the neural 
network were obtained by using SNMP agents. The output of our neural network is an 
estimation for the arrival time for the failure detector to receive the next heartbeat from 
a remote process. Our detectors were fully implemented and tested over a set of LINUX 
networked workstations. In order to analyse the efficiency of our approach, we have run 
a series of experiments where network and system loads were varied randomly, and we 
measured several QoS parameters according to the metrics introduced in [3], comparing 
our detector against well-known implementations. The experiments show that our 
adaptive solution outperformed existing approaches. In the next step of our work, we 
are going to incorporate the failure detector implemented into a group membership 
service and a distributed system management tool under development at LaSiD/UFBA. 
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