
Arcademis: A Java-Based Framework for Middleware
Development

Fernando Magno Quintão Pereira1∗

Marco Túlio de Oliveira Valente2

Roberto da Silva Bigonha1

Mariza Andrade da Silva Bigonha1

1 Department of Computer Science,
Federal University of Minas Gerais

2Department of Computer Science,
Pontifical Catholic University of Minas Gerais

{fernandm, bigonha, mariza }@dcc.ufmg.br,mtov@pucminas.br

Abstract. This paper presents Arcademis, a Java-based framework for middle-
ware development. Arcademis consists of a set of abstract classes and interfaces
that define the general architecture of middleware systems. The main objective
of Arcademis is to support the implementation of non-monolithic and easily re-
configurable middleware. In order to illustrate the use of the framework, the
paper also describes the RME system. RME is a middleware derived from Ar-
cademis that adds a remote method invocation service to distributed applica-
tions built on the CLDC configuration of Java 2 Micro Edition (J2ME).

1. Introduction

In the last ten years, distributed systems developers have often relied on middleware to
increase their productivity. Residing between the operating system and distributed appli-
cations, these platforms provide high-level abstractions that hide from application devel-
opers several details inherent to distributed programming, such as network communica-
tion primitives, data marshalling and unmarshalling, failure handling, heterogeneity, ser-
vice lookup and synchronization. There are different kinds of middleware, such as mes-
sage passing systems, tuple-space based systems and object oriented systems. However,
object-oriented middleware – such as CORBA [OMG, 1999] and Java RMI [Sun, 2003]
– are the most popular ones at the present time. In such middleware, developers can in-
voke methods on remote objects using a syntax similar to local invocations. In this way,
interactions between local and remote processes give the impression of coexisting in the
same address space.

Object oriented middleware have always been designed to make location transpar-
ent to developers of traditional distributed systems, i.e., systems running in personal com-
puters connected by local or corporate networks. However, in recent years, the distributed
environment has faced many changes. Nowadays, there are several kinds of computing

∗Supported by CNPq and FAPEMIG.

devices (sensors, cell phones, PDAs, multicomputers, clusters, etc), several network in-
frastructures (Internet, wireless networks, grids, etc), several transport protocols (TCP,
HTTP, etc) and applications with different quality of service requirements (real time sys-
tems, multimedia, mobile systems, electronic commerce, etc). On the other hand, con-
ventional object oriented middleware are monolithic and inflexible systems, which can
not be easily reconfigured to meet the requirements of rapidly changing technologies.

In order to address the limitations of current middleware implementations, this
paper presents Arcademis1: a Java based framework that supports the implementation
of modular and highly customizable middleware architectures. Arcademis can be used
by middleware developers to deploy systems that meet the requirements of a particular
network or technology. For example, this framework has been used to provide a remote
method invocation system for J2ME/CLDC, the Java technology that targets mobile de-
vices with limited computing resources, such as cell phones and palmtops. Middleware
derived from Arcademis can also be adapted by distributed systems developers to meet
the requirements of a particular application. For example, new transport protocols, con-
nection management policies, authentication algorithms or invocation semantics can be
easily configured in the platforms derived from Arcademis.

Arcademis makes extensive use of object oriented frameworks and design pat-
terns. A framework is a set of cooperating classes and interfaces that provide a
semi-complete application that can be customized by the programmer [Johnson, 1997].
Design patterns document recurring solutions to problems in software develop-
ment [Gamma et al., 1994]. In Arcademis, frameworks and design patterns are applied
synergistically to promote the implementation of flexible and non-monolithic middle-
ware. As a framework, Arcademis predefines the overall architecture of a middleware
system, so that developers can concentrate on the details of their particular applications.
Moreover, well-known design patterns, such as Singleton, Abstract Factory, Strategy,
Decorator and Façade, are used to increase Arcademis flexibility. The framework also
uses design patterns to face problems specific to the distributed system domain, such as
patterns that support different connection establishment policies (Acceptor-Connect pat-
tern) [Schmidt, 1997] and invocation semantics (Request-Response pattern).

The remaining of this paper is organized as follows: Section 2 gives an overview
of existing reconfigurable middleware systems and compares Arcademis with some of
them. In Section 3, the overall architecture of Arcademis is presented, and the main
classes and design patterns used in this framework are described. This section also doc-
uments the aspects of the framework that can be specialized and reconfigured. Section 4
presents the RME platform: a J2ME/CLDC remote method invocation system derived
from Arcademis. RME illustrates the flexibility provided by Arcademis, since traditional
and monolithic Java middleware, like Java RMI, are not available in the J2ME/CLDC
platform. Finally, Section 5 presents concluding remarks.

2. Related Work

Research related to non-monolithic middleware systems started in the end of the
last decade. Examples of such platforms are TAO, dynamicTAO and UIC CORBA.

1In Portuguese, Arcademis is a coined word from the initials of framework for middleware development

TAO [Schmidt and Cleeland, 1999] targets real time applications, and its architecture
is strongly based on design patterns. Some of these patterns, such as theacceptor-
connector[Schmidt, 1997], have been employed in the Arcademis implementation. Dy-
namicTAO [Roḿan et al., 2001] adds dynamic reconfiguration to TAO, which only can
be customized statically, that is, at compilation time. UIC CORBA [Román et al., 2001]
is also a dynamically reconfigurable middleware that, similar to RME, targets mobile de-
vices. DynamicTAO and UIC CORBA are examples of reflective middleware, that is to
say, these platforms provide reconfiguration by means of reflection: a mechanism that
allows a program to know aspects of its internal structure during execution time. In order
to keep its core simple, Arcademis, like TAO, does not provides mechanisms for imple-
menting dynamic reconfigurations, although some customizations can be performed by
the application developer during execution time, as discussed in Section 3.9.

Arcademis is not a middleware platform, as TAO, dynamicTAO and UIC. It is a
framework that allows the derivation of middleware systems. Another framework with
similar objectives is Quarterware [Singhai, 1999]. This framework has been used in the
development of systems compatible with CORBA, Java RMI and MPI [Singhai, 1999], a
message oriented middleware. The main difference between Arcademis and Quarterware
is related to the configuration parameters defined by each framework. In Arcademis, some
of the configurable aspects outlined by Quarterware have been divided into two or more
different parameters, in order to provide developers with greater flexibility when nec-
essary to configure middleware. For example, the dispatching strategy of Quarterware,
that comprises remote object discovery and data transmission has been separated into
three different parts: service discovery, invocation policy and dispatching policy. There-
fore, while Quarterware defines six parameters for configuration, Arcademis determines
eleven, as described in Section 3.

Arcademis is implemented in Java, and its instances target devices able to execute
a Java Virtual Machine. There are several examples of middleware systems implemented
in Java, such as Java RMI or JacORB [Brose, 1997], and there is an implementation of
Java RMI targeting CDC (Connected Device Configuration), another configuration pro-
vided by the J2ME platform. However, there is a lack of java-based frameworks for
middleware development, and the most traditional platforms do not present too many op-
tions for customization. Java RMI itself provides few opportunities for configuration: this
platform supports a predefined marshalling and unmarshalling algorithm (based on reflec-
tion), only one invocation semantics (synchronous, with at-most-once reliability level)
and only one thread policy (a new thread per connection) [Sun, 2003].

3. Architecture of Arcademis

A distributed system built on top of Arcademis is structured on three abstraction levels.
The first of these levels is composed of the framework components. Essentially these are
abstract classes and interfaces, although Arcademis also provides concrete components
that can be used without further extensions. The second level is represented by the con-
crete middleware platform, obtained as an instance of Arcademis. The framework defers
to this level decisions such as the communication protocol and the serialization strategy
that will be adopted. Finally, the third programming level comprises all the components
that provide services to end users. These components constitute what is normally called

a distributed application.

Each instance of Arcademis has a central component called ORB. This element is
implemented as aSingleton, a design pattern that limits the maximum number of instances
of a given class to exactly one [Gamma et al., 1994]. The ORB can also be characterized
as a set ofObject Factories. An Object Factory is another design pattern that is used
to create instances of objects. The main advantage of this pattern is to make it easier to
change a component’s implementation without interfering in other modules of the system.
For example, in Arcademis, all communication channels are created by an Object Factory.
In order to modify the transport protocol used by the middleware, for instance, from TCP
to UDP, it is sufficient to change the channel factory bound to the ORB. Because the
factory preserves the channel interface, the other components of the platform need not to
be changed.

Although several different types of middleware systems can be derived from Ar-
cademis, this framework has been originally devised to support the implementation of
object-oriented middleware platforms. According to this model, a client object uses inter-
mediate components in order to invoke methods on remote objects. Two of these compo-
nents are the stub, that exist on the client side of a distributed application, and the skeleton,
that is located on the server side. The stub acts as a local proxy for the remote object, and
its function is to forward to the server all the remote calls made by the client. The skele-
ton represents the invoking client to the remote object, acting as an adapter. It receives
messages containing information about remote invocations and determines what method
of the server should be executed. Although application developers have the illusion that
the methods are being locally processed, actually each remote call is transmitted by the
stub to the skeleton and then to the implementation of the remote object. The results of
remote invocations are transmitted across the opposite path.

Besides stubs and skeletons, Arcademis defines several other components that col-
laborate to outline the middleware architecture and to support customizations. The most
important of these elements are represented in Figure 1. Theinvoker is responsible for
emitting remote calls, whereas its server counterpart, thedispatcher , is in charge of
receiving and passing them to the skeleton. TheScheduler is used whenever neces-
sary to order remote calls according to their priorities. The network layer, in Arcademis,
is represented by a set of components that constitute the transport protocol, serialization
protocol and middleware protocol. Connections are established by two components: the
Connector and theacceptor . Requestsendersand receiversdetermine the relia-
bility level the middleware provide to distributed applications. Finally, theActivator
determines how an object is made ready for receiving remote calls. Each of these compo-
nents are better explained in the remainder of this section.

There are eleven basic configurations that can be applied to middleware platforms
derived from Arcademis. Although most configurations are orthogonal, some components
of the framework can collaborate on two or more of them. The aspects that are subject to
configurations in Arcademis are the following:

Transport Protocol: comprises the techniques and protocols used in the transmission of
raw sequences of bytes between nodes;

connection set up: defines how channels are established between nodes so that data can
be sent across them.

Activator

Remote
Object

Remote
Object

Representation
Scheduler

Chain of
Dispatchers

Client
Application

Chain of
Invokers

Request
Sender

Response
Receiver

Middleware
Protocol

Serialization
Protocol
Transport
Protocol

Connector Acceptor

Request
Receiver
Response

Sender

Skeleton

Discovery
Agency

Stub

Application Layer

M
id

dl
ew

ar
e

 L
ay

er

Figure 1: Representation of the main components of Arcademis.

middleware protocol: defines the set of messages exchanged between distributed ob-
jects;

serialization policy: defines how the internal state of objects can be converted into a raw
sequence of bytes and vice-versa.

call semantics: determines the level of reliability provided by the implementation of re-
mote calls (i.e. best effort, at most once, at least once, etc).

remote object representation: defines how remote objects are represented in distributed
systems;

service lookup: defines the mechanisms the middleware provides to application devel-
opers so that distributed objects can be discovered;

remote object activation: determines how a distributed object is made ready for receiv-
ing remote calls.

invocation policy: defines how a remote call is invoked, that is, how it is converted into
a byte sequence and sent across a channel.

dispatching policy: determines how a remote invocation is delivered to the skeleton once
it has been retrieved from the transport network.

priority policy: defines the order in which method invocations are delivered to the actual
implementation of the remote object;

The remainder of this section describes in details the customization possibilities
provided by the previously mentioned configurable parameters.

3.1. Transport Protocol

In Arcademis, the transport protocol is implemented by two components:Channel and
ConnectionServer . Channels are responsible for transmitting byte sequences be-
tween clients and servers, whereas the function of connection servers is to receive con-
nection requests and to create channels. The framework does not assume the use of any
specific transport protocol, and possible implementations can be based on UDP, TCP,
HTTP, etc. In order to add further functionality to a channel, Arcademis uses the Deco-
rator design pattern [Gamma et al., 1994], which provides a way to modify the behavior

of individual objects without creating new derived classes. A channel decorator is an ob-
ject that implements theChannel interface and, in addition to this, has an attribute of
theChannel type. As a subtype ofChannel , the decorator can overwrite some of its
methods in order to aggregate further capabilities to them.

Examples of extra capabilities that can be aggregated to channels by means of
decorators include mechanisms for compressing or encrypting messages, check points or
error correcting code for handling transmission failures, and buffers to improve perfor-
mance or to allow undo operations. Figure 2 (a) shows an example of composition of
decorators.ZipChannel compresses messages in order to make better use of the avail-
able bandwidth andLogChannel implements a report generator that yields a log file
describing channel utilization. TheTcpSocketChannel class is one of the concrete
components provided by Arcademis. The same chain of capabilities could have being
built by means of inheritance, but, in this case, it would not be so flexible. In Figure 2,
nothing preventsZipChannel from being inserted before the other decorator; more-
over, a third decorator can be added to that sequence without the need of modifying the
implementation of the existing ones. Simple inheritance does not afford such flexibility.

3.2. Connection Establishment

Connection set up has been implemented according to theacceptor-connectordesign pat-
tern [Schmidt, 1997]. This pattern decouples the connection initialization from its pro-
cessing, once the channel has been initialized. The main participants of the pattern are the
acceptor, theconnectorand theservice handlers, which are depicted in Figure 2 (b). The
connector is responsible for contacting the acceptor when necessary to set up a channel
between two hosts. Once the connection is established, the resulting channel is passed
to a service handler, which is used to send and receive messages according to the dis-
tributed application needs. One of the advantages of this design pattern is the possibility
of configuring different connection strategies without the need of modifying the service
handlers code. Possible strategies include synchronous and asynchronous connection es-
tablishment and the use of caches in order to reuse channels.

<<interface>>

Channel

 (from arcademis)
+send(in a:byte[])

+recv() : byte[]

ChannelDecorator

 (from arcademis)

LogChannel

 (from rme)

ZipChannel

 (from rme)

TcpSocketChannel

 (from rme)

Receiver extends
ServiceHandler {
 open(channel)
}

Sender extends
ServiceHandler {
 open(channel)
}

Connector {
 connect(epid)
}

Acceptor {
 accept()
}

Channel {
 send(bytes)
 recv()
}

<creates> <creates>

<uses>

<creates> <creates>

<uses>

(a) (b)

Figure 2: (a) Composition of decorators. (b) The acceptor-connector compo-
nents.

3.3. Middleware Protocol

The middleware protocol is defined by a set of messages and by a state machine that
determines how messages are exchanged in the system. In Arcademis, messages are mar-
shalable implementations of theMessage interface, and the sequence of bytes that com-
poses it is given by the implementation of itsmarshal method (this method is further

discussed in Section 3.4). Messages are implemented according to theCommandde-
sign pattern [Gamma et al., 1994]: each message implements a command that determines
the actions to be executed after it is received. This approach makes it easier to modify
the middleware protocol. Whenever a new message should be added to the system, it is
sufficient to provide a new implementations for theMessage interface. Because mes-
sages are typed structures, the same code can be used to handle all of them, by means
of polymorphism and dynamic dispatching. The bridge between message objects and
Channels is done by a component calledProtocol . The function of this component
is to marshal messages before sending them across channels and to unmarshal messages
after a raw sequence of bytes is received.

3.4. Serialization Strategy

The serialization policy used in Arcademis depends on serialization methods imple-
mented by application developers. For this purpose, the framework defines the interfaces
Marshalable and Stream . Serializable objects should implement theMarsha-
lable interface, which declares two methods:marshal andunmarshal . The first
method describes how an object is transformed into a sequence of bytes, whereas the sec-
ond one defines how the state of the object can be recovered from such sequence. The
Stream interface specifies the serialization protocol, i.e., a collection of methods for
reading and writing sequences of bytes. An example of class that implementsMarsha-
lable is presented in Figure 3.

import arcademis.*;

public class Person
implements Marshalable {

private String name = null;
private int age = null;
private boolean isMan = null;

public void marshal(Stream b)
throws MarshalException {

b.write(name);
b.write(age);
b.write(isMan);

}

// implementation of the other methods

public void unmarshal(Stream b)
throws MarshalException {

name = (String)b.readObject();
age = b.readInt();
isMan = b.readBoolean();

}
}

Figure 3: Example of serializable class.

3.5. Call Semantics

Skeletons and stubs communicate by means of four different service handlers that consti-
tute a design pattern, proposed on this research, calledrequest-response[Pereira, 2003].
These service handlers are calledrequest-sender, request-receiver, response-senderand
response-receiver, as described in Figure 1. The major advantage of this pattern is the
possibility of easily reconfiguring the semantics of remote calls. The three most popular
invocation semantics used in object oriented middleware arebest-effort, at-most-onceand
at-least-once. The first of them does not provide any guarantee regarding the processing
of remote calls. In the presence of failures, they may be executed once, several times
or even may not be executed. The semantics known as at-most-once assures that remote
invocations will be processed only once or will not be executed. Finally, the at-least-once
reliability level gives the client application the guarantee that remote calls will be executed
at least one time.

3.6. Remote Object Representation

In Arcademis, distributed objects are handled using remote references, which are imple-
mented by theRemoteReference class. By modifying the implementation of this
component, it is possible to configure how a distributed object is distinguished from oth-
ers and the semantics presented by operations such asequals and toString when
invoked remotely. The identifier and address of a remote object is implemented by the
classesIdentifier andEndPointIdentifier , respectively. These components
can be implemented in different ways. For instance, in CORBA, remote addresses are
defined as a pair formed by a host name and a port number; in SOAP, an object can be
identified by the host address, an optional port number and a file system path. Identifiers
can also be implemented in a number of ways. When not necessary to discriminate a
really large number of elements, they can be defined as single integer numbers. On the
other hand, in more scalable systems the identifier implementation should grant with high
probability that in the distributed network there will not be two distinct remote objects
holding equal identifiers.

Distributed objects have to inherit from theRemoteObject class, that deter-
mines the semantics of operations such asequals and hashcode when locally in-
voked. In addition, remote objects must implement theRemote interface. Although this
interface is empty, i.e., it does not declare any method, it is used by the system to dis-
tinguish references to local objects from references to remote objects. For example, in
remote invocations, the Arcademis implementation should replace remote references by
their associated stubs, in order to simulate call by reference. The relations among the
components described in this section are depicted in Figure 4 (a).

3.7. Service Lookup

Middleware platforms derived from Arcademis can be described as service-oriented ar-
chitectures. Such architectures have three different actors: service providers, service re-
questers and discovery agencies. Service providers are represented by remote objects,
whereas requesters are represented by clients in general. The discovery agency, or name
service, is an independent element that should be provided by all instances of Arcademis.
The three main actors of service-oriented architectures are depicted in Figure 4 (b).

Arcademis provides an interface to client applications having access to the discov-
ery agency; another interface is used by service providers. Objects are registered in the
discovery agency using a name (a string) or the interface they implement. Other forms of
representation can be provided by middleware designers. Service providers register them-
selves using apublish operation, while clients look for distributed objects by means of
a find operation.

3.8. Remote Object Activation

The activation of remote objects in Arcademis is implemented by a component calledAc-
tivator . This component allocates the resources the server needs in order to process
remote invocations. For example, it initializes data structures internal to the middleware
and creates threads to wait for remote calls. TheRemoteObject class implements
theactivate anddeactivate methods, which are used to interact with the activa-
tor. Depending on the activation policy adopted, theactivate method may have to

<<interface>>

Active

+activate()

+deactivate()

<<interface>>

Epid

<<interface>>

Identifier

<<interface>>

Remote

RemoteRef

Stub

RemoteObject

Skeleton

Discovery
Agency

Remote
Object

Client
Application

Service
Description

Service
Description

Cliente/server
communication

Find Publish

(a) (b)

Figure 4: (a) Remote object representation. (b) Service-oriented architecture.

be explicitly invoked by application developers or it may be automatically called during
instantiation of remote objects.

3.9. Invocation Policy

In Arcademis, remote methods are invoked by a component calledInvoker . The main
functions of invokers are: (i) to create a connection with the server or to reuse one if pos-
sible; (ii) to create messages containing the remote calls’ arguments; (iii) to create service
handlers to send calls and to wait for their results. Invokers can also be customized in
order to reuse connections across successive calls or to create a new connection whenever
a method invocation is requested.

In order to aggregate further functionalities to a invoker, Arcademis provides an
invoker decorator, which is used in the same way as the channel decorator described in
Section 3.1. Examples of capabilities that can be aggregated to invokers are: caches (to
avoid the transmission of calls already requested), buffers (to group several remote calls
together in order to make better use of the available bandwidth) and log generators. It is
also possible to use invoker decorators to implement asynchronous calls. In this type of
call, a separatethreadis created to process each remote invocation, so that the client does
not stay blocked during the remote processing. In this case, results of remote invocations
are inserted into a buffer that the client can inspect afterwards. Because invoker decora-
tors only affects the client side of a distributed application, the chain of invokers can be
modified during execution time.

3.10. Dispatching Policy

In Arcademis, the overall structure of servers is defined by a component calledDis-
patcher . The implementation of this component determines, for example, if calls are
passed directly to the skeleton or to other components. An example of server structure is
presented in Figure 5. In this example, there are three active objects: the activator, the
scheduler and the response sender. Call descriptors are inserted into a queue and ordered
by the scheduler, before being passed to the remote object. Results of remote invoca-
tions are inserted into another queue, and are asynchronously transmitted to clients by the
response sender.

In addition to channel and invoker decorators, Arcademis also supports dispatcher
decorators. Examples of capabilities that can be added to dispatchers by means of decora-
tors include the implementation of security policies, the generation of log files describing

server usage, the report of the server load rate to clients, the redirection of calls to other
servers and the creation of threads in order to process specific calls.

act:Activator

ac:Acceptor

rr:RequestReceiver reqQueue:Buffer

sc:Schedule

dp:Dispatcher

respQueue:Buffer

rs:ResponseSender

1:accept()

2:open(ch)

3:put(rc)

4:rc=get()

5.1:dispatch(rc)

7:rc=get()8:open(ch)

5.2:put(rc)

Figure 5: Representation of the main components of Arcademis.

3.11. Priority Policy

Arcademis supports the establishment of priorities among remote calls. TheScheduler
is the component of the framework in charge of applying such priorities. Three possible
priority policies, from the simplest to the most complex, are the assignment of priorities
to remote methods, to clients and to servers’ end points. In the last case, it is assumed that
servers may receive request in more than one endpoint. Besides changing the scheduler,
the implementation of some priority policies also requires changes in other components.
For example, in order to assign each method a different priority, it is necessary to modify
the implementation of stubs.

4. RME: RMI for J2ME

In order to validate Arcademis, this framework has been used to derive a remote invoca-
tion service for Java 2 Micro Edition, a Java distribution that targets resource constrained
devices such as cell phones and palmtops [Riggs et al., 2001]. The J2ME platform is di-
vided into different configurations, each of them proper to a specific family of devices.
A J2ME configuration defines a Java Virtual Machine, a set of libraries and the Java
capacities that are available to devices that meet the minimum set of requirements stip-
ulated by that configuration. Presently, J2ME provides two main configurations: CDC
(Connected Device Configuration) and CLDC (Connected, Limited Device Configura-
tion). CDC groups devices that can afford at least 2MB of memory and persistent net-
work connections, often based on TCP/IP. This configuration provides the application
developer with almost all the features found in the standard Java development kit, such as
reflection and a complete set of I/O libraries. The CLDC configuration is suitable to more
limited devices with memory budgets of no more than 500 Kilobytes, low bandwidth and
intermittent network connections. The CLDC configuration does not feature, for instance,
the primitive typesfloatanddouble, neither computational reflection. Therefore, because
the Java RMI serialization mechanism is based on reflection functionalities, this platform
cannot be employed in the CLDC configuration.

The proposed service, called RME (RMI for J2ME) [Pereira, 2003], provides
J2ME’s CLDC configuration with a remote invocation service. The main elements in-
volved in the execution of a remote call are depicted in Figure 6. RME is a synchronous

service, meaning that the client application remains blocked while a remote operation is
being processed. In the server side, the activator and the request receivers are active ob-
jects, being a new thread created for each incoming connection. This arrangement permits
to separate the thread in which connections are received (the acceptor’s thread), from the
threads in which connections are handled (the request receivers’ threads). In the presented
scheme,AppStub andAppSkeleton are automatically generated instances of the stub
and the skeleton, respectively. In order to allow this automatic generation of components,
RME providesrmec , a tool that produces source code from the implementation of remote
objects.Rmecmakes use of reflection, instead of traditional parsing, to generate code. It
is possible to customizermec to assign a different invoker to each generated method, in
order to associate different invocation tactics with them. In Figure 6, for example,rmec
has assigned the methodm() an instance ofTwoWayInvoker .

client:Client

:AppStub

:TwoWayInvoker

rs:RmeReqSender

:RmeRespReceiver

:RmeReqReceiver

:RmeRespSender

acc:BlockingAcceptor

:Activator

:RmeDispatcher

:AppSkeleton

obj:RemoteObject

1:m(a)

2:r=invoke(a)

4:open(ch)

5:open(ch)

:Connector

2:open(ch)

3.2:open(ch)

3.1:connect(rs)

1:accept()

4:dispatch(rc)

5:m(a)

Client address space

Server address
 space

3.2:getResult()

3.1:dispatch(rc)

Figure 6: Architecture of RME.

The implementation ofTwoWayInvoker reuses connections across successive
calls and provides to the application developer several different tactics for remote invoca-
tion: it is possible to use a cache for storing the result of idempotent calls, it is possible to
group several calls together in a single invocation, in order to take better benefit from the
available bandwidth and it is possible to create separate threads to carry on remote calls.
Two different semantics of call processing have been implemented for RME: best-effort
and at-most-once. The adoption of each of them is just a matter of assigning to the ORB
the proper service handler factory. Performance tests show that providing an at-most-
once guarantee level to the application adds no more than .5 percent of time overhead
when compared to the best-effort semantics, although the first strategy requires substan-
tial space for storing identifiers in the server side [Pereira, 2003]. RME uses the TCP/IP
transport protocol for data transmission. The communication protocol adopted by RME
is named RMEP (RME Protocol), and it defines seven different types of messages:call,
return, ping, ack, inq, load andmult. TheCall message contains the description of one
remote method invocation, what includes its arguments and identifiers.Returnmessages
holds the results of remote calls.Pingsandacksare mostly used in order to verify if
servers or clients are alive. Theinq message is used by clients in order to discover the
load on specific servers, which is informed by means of aloadmessage. Finally, messages
of themult type contain several remote calls grouped in a single package.

RME gives to the application developer a programming syntax similar to that
provided by Java RMI. Remote methods must be declared in an interface that ex-
tends thearcademis.Remote interface and must declare the possibility of throwing
arcademis.ArcademisException . Remote object classes have to implement that
interface and have to extend theRmeRemoteObject class. Figures 7 (a) and (b) show

an example of remote interface and its implementation. Although distributed objects’
methods may be invoked remotely, their implementations do not present any particularity
for accessing the subjacent network. The middleware transparently gives to the appli-
cation developer the means of calling those methods across the network. In the given
example, the remote method simply sums two integer numbers and returns the opera-
tion’s result. The server code responsible for the remote object initialization is shown
in Figure 7 (c) and the client that invokes a remote method can be seen in Figure 7 (d).
Any distributed application based on RME has to determine an ORB customization before
starting its execution, what is done by an instance of theRmeConfigurator class. The
configure operation determines the set of component factories that will be associated
with the ORB. The discovery agency of RME is implemented by theRmeNamingclass,
and it does not use the interface provided by Arcademis. Instead, it defines the same set
of methods provided by the classjava.rmi.Naming , the lookup service implementa-
tion of Java RMI. Because RME targets resource constrained devices, stubs are created
by RmeNaming according to theflyweightdesign pattern [Gamma et al., 1994]: before
creating a stub, the discovery agency checks if there is already an instance of stub that
points to the same remote object. If there exist such instance, a reference to it is returned,
instead of a reference to a new stub.

import arcademis.*;
public interface RemInt
extends Remote {

public int sum(int a, int b)
throws ArcademisException;

}

import rme.*;
import rme.server.*;
public class RemObj extends
RmeRemoteObject implements RemInt {

public int sum(int a, int b) {
return a + b;

}
}

(a) (b)

import rme.*;
import rme.naming.*;
public class Server {

public static void main(String a[])
throws Exception {

RmeConfigurator c =
new RmeConfigurator();
c.configure();
RemObj o = new RemObj();
RmeNaming.bind("obj", o);
o.activate();

}
}

import rme.*;
import rme.naming.*;
public class Client {

public static void main(String a[])
throws Exception {

RmeConfigurator c =
new RmeConfigurator();
c.configure();
RemInt i=(RemInt)
RmeNaming.lookup("obj");
i.sum(2, 2);

}
}

(c) (d)

Figure 7: (a)Remote Interface. (b)Remote Object. (c)Server. (d)Client.

Some tests have been executed in order to evaluate the performance of the RME
implementation. The execution environment consists of a J2ME emulator whose virtual
machine (KVM) can execute 100 bytecodes per millisecond. The server and the client
emulator were executed in two Pentium 4, with 2.0GHz of clock and 512MB of available
memory. The computers were connected by a 10Mb/s Ethernet LAN. The remote methods
used in the test are shown in Figure 8 (a). All those methods throwsArcademisEx-
ception , but the declarations have been omitted due to space constraints. In order to
determine an upper limit of efficiency, it was implemented a socket-based application in

which clients and servers simply exchange packages of the same size of those used by the
RME methods. The average number of requests accomplished per second is presented in
Table 8 (b). Each of these values has been obtained as the average of 10 series of 50 re-
mote calls. Because the emulator executes to few instructions per time unit, the serializa-
tion of structured types takes considerable time; hence, the methods that pass and return
more complex objects are slower than the corresponding upper bound. A comparation
between the Java RMI and an implementation of RME for the J2SE environment can be
found at [Pereira, 2003]. When processing simple calls, Java RMI is more efficient than
RME; however, the presented system surpasses the Sun’s implementation when necessary
to handle methods that uses structured types, because, while in Java RMI the serialization
algorithm is based on computational reflection, in Arcademis it is directly implemented
by the application developer; therefore, can be performed faster.

import arcademis.*;

public interface MethodSet
extends Remote {

public short getShort();
public char getChar();
public int getInt();
public long getLong();
public String getString();
public String[] getStrs();
public String passBytes(byte[] b);
public String passShorts(short[] s);
public String passChars(char[] c);
public String passInts(int[] i);
public String passLongs(long[] l);
public String passStrs(String[] s);

}

método RME upper bound RME/u. bound
getShort 5.08 5.11 0.99
getChar 5.05 5.12 0.98
getInt 5.06 5.11 0.99
getLong 5.02 5.07 0.99
getString 4.75 5.01 0.95
getStrs 2.96 5.00 0.59
passArgs 2.57 5.02 0.52
passBytes 4.48 5.05 0.90
passShorts 4.26 5.02 0.85
passChars 4.11 5.04 0.82
passInts 3.93 5.08 0.78
passLongs 3.03 5.04 0.61
passStrs 2.12 4.97 0.43

(a) (b)

Figure 8: (a) Interface for performance tests. (b) Performance results: requests/s.

5. Conclusion

This paper has presented Arcademis, a framework for middleware development and one
instantiation of it named RME, a middleware system that provides a remote invocation
service to the CLDC/J2ME plataform. This research brings forward contributions in
methodological and practical fields. First considering the methodological contributions,
the paper has presented an analysis of the main constituents of object-oriented middle-
ware architectures, which have been grouped in eleven independent parts. In addition
to this, it has defined different ways in which these components can be customized and
how such configurations can be accomplished in Arcademis. In practical terms, this re-
search yielded a set of Java classes and interfaces that implement several functionalities
required in an object-oriented middleware platform and describe the overall structure of
such systems. Another practical result is the derivation of RME.

Arcademis is a general and flexible framework. General because it allows the
development of object-oriented middleware for the three main platforms of the Java
language: J2ME, J2SE and J2EE. In order to evince this fact, two versions of RME
have been implemented: one for J2ME, presented in this paper, and another targeting
J2SE [Pereira, 2003].

Arcademis is flexible because every instance of it is ultimately defined by a set of
independent object factories associated with the ORB. It is possible to alter a whole aspect
of the middleware by just changing the factory that creates the components responsible
for that behavior. For instance, RME provides several options that can be configured this
way, such as the call semantics, the transport protocol and the invocation strategy. The
factory-based design has also the advantage of allowing the middleware to use just the
components it will effectively need. This design allows the use of Arcademis in scenarios
where more monolithic platforms would not be operational. RME, for instance, is used in
an environment where the traditional implementation of Java RMI can not be employed.

Different research threads may be originated from Arcademis. One possible di-
rection of future work is to derive from the framework middleware platforms that do
not follow the object-oriented model, such as tuple space-based or message-oriented sys-
tems. Finally, the code of Arcademis and RME can be freely downloaded in the URL:
http://www.dcc.ufmg.br/llp/arcademis .

References

Brose, G. (1997). JacORB: Implementation and design of a java ORB. InDAIS’97, IFIP WG
6.1 International Working Conference on Distributed Aplications and Interoperable Systems.
Chapman & Hall.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Johnson, R. E. (1997). Components, frameworks, patterns. InSIGSOFT Symposium on Software
Reusability. ACM.

OMG (1999). CORBA IIOP 2.3.1 Specification. Technical Report 99-10-07, OMG.

Pereira, F. M. Q. (2003). Arcademis: Um arcabouço para construção de sistemas de objetos
distribúidos em java. Master’s thesis, Universidade Federal de Minas Gerais. To be published.

Riggs, R., Taivalsaari, A., and VandenBrink, M. (2001).Programming Wireless Devices with the
Java 2 Platform, Micro Edition. Addison Wesley, 1th edition.

Román, M., Kon, F., and Campbell, R. (2001). Reflective Middleware: From Your Desk to Your
Hand.Distributed Systems Online, 2(5).

Schmidt, D. (1997).Acceptor-Connector: Design Patterns for Initializing Communication Ser-
vices, chapter 12, pages 191 – 206. Addison-Wesley.

Schmidt, D. and Cleeland, C. (1999). Applying Patterns to Develop Extensible and Maintainable
ORB Middleware.IEEE Communications Magazine – Special Issue on Design Patterns, 37(4).

Singhai, A. (1999). Quarterware: A Middleware Toolkit of Software RISC Components. PhD
thesis, University of Illinois.

Sun (2003). Java RMI home page. http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmi-
TOC.html – last visit: February 2004.

