

Adopting LOTOS and Software Architecture Principles
for Formalising Middleware Behaviour

Nelson S. Rosa, Paulo R. F. Cunha

Centro de Informática – Universidade Federal de Pernambuco
Caixa Postal 7851 50740-540 – Recife – PE – Brazil

{ nsr , pr f c} @ci n. uf pe. br

Abstract. The number of open specifications of middleware systems and
middleware services is increasing. Despite their complexity, they are
traditionally described through APIs (the operation signatures) and informal
prose (the behaviour). This fact often leads to ambiguities and makes difficult
a better understanding of what is really described. In this paper, we adopt
software architecture principles for structuring middleware together the
LOTOS language for formalising their behaviour. The adoption of software
architecture principles makes explicit structural aspects of the middleware.
Meanwhile, the formalisation enables us to check behavioural properties of
the middleware. In order to illustrate our approach, we present a LOTOS
specification of the well-known object-oriented middleware CORBA and its
transaction service.

Resumo. O número especificações abertas de sistemas de middleware e
serviços de middleware tem crescido muito rapidamente. Apesar da
complexidade, estes elementos são tradicionalmente descritos através de APIs
(assinatura das operações) e de um texto em linguagem natural que descreve
o comportamento destas operações. A ausência de formalismo normalmente
leva a especificações ambíguas e difíceis de serem entendidas. Neste artigo,
nós propomos o uso de arquitetura de software para estruturação das
especificações e LOTOS para a formalização do comportamento do
middleware. A adoção de elementos arquiteturais permite explicitar aspectos
estruturais do middleware. Ao mesmo tempo, a formalização permite a
verificação de propriedades comportamentais do middleware antes de sua
implementação. Para ilustrarmos esta abordagem, nós apresentamos a
arquitetura de software de CORBA e a formalização do seu comportamento
em LOTOS.

1. Introduction

The number of open specifications of middleware systems is rapidly increasing. Those
specifications are usually implemented according to open standards such as DCE
(Distributed Computing Environment) [Rosenberry 93], RM-ODP (Reference Model –
Open Distributed Processing) [ISO 95], EJB (Enterprise Java Beans) [Matena 98] and
CORBA (Common Object Request Broker Architecture) [OMG 02]. The open
specifications of middleware services have also been popular through the JTS (Java
Transaction Service) and JMS (Java Message Service) [Sun 02].

 Middleware specifications are not trivial to be understood, as the middleware
itself is usually very complex [Campbell 99]. Firstly, they have to hide the complexity
of underlying network mechanisms from the application. Secondly, the number of
services provided by the middleware is increasing, e.g., the CORBA specification
contains fourteen services. Finally, in addition to hide communication mechanisms, the
middleware also have to hide fails, mobility, changes in the network traffic conditions
and so on. On the point of view of application developers, they very often do not know
how the middleware actually works. On the point of view of middleware developers, the
complexity places many challenges that include how to integrate services in a single
product [Venkatasubramanian 02] or how to satisfy new requirements of emerging
applications [Blair 98].

 The aforementioned specifications are usually described through APIs.
Essentially, the service’s operations signatures are described in IDL (Interface
Definition Language) and the behaviour of each operation is described by informal
prose. For example, the CORBA common object services (e.g., security, transaction) are
described in IDL CORBA and informal text [OMG 98]. In practical terms, developers
who want to implement those services have a hard task to produce a final product by
interpreting what the specifications actually describe.

 In this context, we present an approach for defining the software architecture of
middleware systems. Meanwhile, we propose the adoption of LOTOS [ISO 01] for
describing the behaviour of those software architectures. Initially, the middleware
architecture is defined in terms of software architecture elements such as components
and connectors. Next, the LOTOS language is used as an ADL (Architecture
Description Language) [Medvidovic 00] in which the middleware behaviour is
formalised. It is worth observing that we are not interested in any particular middleware
product or middleware model.

 On one hand, the adoption of software architecture principles is interesting as it
treats with the system complexity by explicitly separating communication and
computation aspects. Additionally, the software architecture enables us to have a better
structural view of the middleware. On the other hand, the use of LOTOS allows the
checking of particular behavioural properties of middleware systems, e.g., deadlock,
livelock and execution sequences. Additionally, LOTOS enables us to automatically
generate tests and check the behavioural equivalence (e.g., strong equivalence,
branching equivalence, weak equivalence) between different middleware models and
different middleware service compositions. For example, if one desires to replace a
transactional middleware by a procedural middleware, it is possible to check if their
behaviours are equivalent. Finally, a formal specification eliminates ambiguities in the
middleware specification and provides a better understanding of what is actually
described.

 Formal description techniques have been used together middleware in the RM-
ODP [ISO 95], in which the trader service is formally specified in E-LOTOS [ISO 01].
Most recently, the Z notation and High Level Petri Nests have been adopted for
specifying CORBA services [Bastide 00], Naming service [Kreuz 98], Event service
[Bastide 00] and Security service [Basin 02]. All those works, however, do not adopt
software architecture principles for structuring the service descriptions. In terms of
software architecture, a few ADLs include the possibility of describing behaviour

[Allen 97]. However, there are not tools that allow to check behaviour properties.
Medvidovic [Medvidovic 02] has observed the convergence of middleware and
software architecture principles. However, he does not adopt a formal approach.
Finally, it is possible to note that the software architecture principles are widely adopted
to build distributed applications (client and servers), but its benefits are rarely applied to
middleware that connect them.

This paper is organised as following: Section 2 presents how the middleware
architecture is defined in terms of software architecture elements. Next, Section 3
presents the use of LOTOS for describing the middleware software architecture. In
Section 4, we adopt our approach for specifying CORBA. Finally, the last section
presents the conclusions and some directions for future work.

2. Middleware Software Architecture

Prior to describe our approach on how to define middleware software architectures, we
present the notion of middleware and middleware services.

 The middleware layer is placed between the application and the operating
system in order to hide the complexity of underlying network mechanisms [Bernestein
96, Vinoski 02]. This fact enormously facilitates the task of distributed application
developers. For middleware developers, the middleware is viewed as a collection of
distributed services (or middleware services) that takes the primary responsibility of
communicating distributed applications. The middleware often also provides additional
services such as security, transaction, naming and events, which “aggregate” value to
the communication between distributed applications.

 A middleware service is defined as a black box where it is known what is
provided at the interface but not how it is actually implemented. The middleware
service is specified by a set of interfaces (APIs) and protocols it supports. The APIs are
usually defined through IDLs, whilst the service’s behaviour is informally described by
prose. In terms of implementation, a middleware service is distributed and includes
entities (e.g., objects, components) that make up a client part, which supports the
service’s API running in the application’s address space, and a server part that actually
implements the service.

 The definition of software architectures involves the use of three basic
abstractions: components, connectors and configurations. A component is a unit of
computation or a data store. Components represent a wide range of different elements,
from a simple procedure to an entire application, and have an interface used to
communicate the component with the external environment. A connector is an
architectural building block used to model interactions among components and rules
that govern those interactions. Some examples of connectors include client-server
protocols, variables, buffers, sequence of procedure call and so on. A connector has an
interface that contains interactions points between the connector and the component and
other connectors attached to it. Finally, the configuration describes how components
and connectors are wired together [Medvidovic 00].

 Using the aforementioned basic elements, the middleware software architecture
is defined according to the following principles:

• The middleware is viewed at three different levels of abstractions: a single
connector that enables the interactions between distributed applications (Figure
1 (a)); the middleware abstract software architecture; and the middleware
concrete software architecture. The first level is usually used/understood by
application developers, the second one is typically adopted in the open
specifications and the last one is required by middleware developers;

• The middleware abstract software architecture (see Figure 1 (b)) is defined from
the services specifications (APIs), whilst the middleware concrete software
architecture (see Figure 1 (c)) is a refinement of the abstract one;

• Each service provided by the middleware (e.g., security, event) defines a
component in the abstract software architecture, except the communication
service, which is modelled as a connector. Meanwhile, according to software
architecture principles, a connector must always exist between any two
components (service);

• The communication service, whatever the middleware model or product, is the
only mandatory service. Thus, it is explicitly defined in the middleware software
architecture (see Figure 1). Whether the middleware has additional services or
not, it depends on the middleware specification;

• The services in the middleware concrete software architecture are defined
through two parts, namely client (or sender) and server (or receiver) parts.
Additionally, each service may be defined as a composition of fine-grained
components. For example, the CORBA security service is made up of a
principal authenticator and a component responsible for the cryptography. Both
are accessible remotely;

• The underlying communication layers (e.g., transport and network layers) are
defined as a connector in the software architecture; and

• The dashed line connector is a virtual connector [Medvidovic 02] that models
protocols between the client/sender and server/receiver parts of the service. For
example, the two-phase commit protocol commonly used in the transaction
service.

By observing those guidelines, some points have to be taken in account. Firstly, since
middleware systems do not perform any application-specific computation, they are
naturally modelled as connectors. Secondly, the middleware provides further services in
addition to the communication one. Hence, it may not be only considered as a simple
connector. In the software architecture discipline, however, only components (no
connectors) are traditionally decomposed into smaller elements. Finally, it is worth
observing that the communication service enables other services (components) and
applications to interact. Hence, it is also naturally differentiated and modelled as a
connector.

Middleware

client server

(a) Middleware as a connector

(b) Middleware Abtsract
Software architecture

(c) Middleware Concrete
Software architecture

Service1
Service1 Service2

Service2 Service3
Service3

communication
serviceMiddleware

Network

Service’3Service’3 Service’2Service’2 Service’1Service’1

Middleware

Communication
service

Communication
service

Service1
Service1 Service2

Service2 Service3
Service3

Middleware

Connector

Component

Figure 1. Different Views of the Middleware Software Architecture

Next, we present how those guidelines are followed in the definition of the middleware
software architecture behaviour.

3. Middleware Software Architecture in LOTOS

A LOTOS specification describes a system through a hierarchy of active components,
or processes. A process is an entity able to realize non-observable internal actions, and
also interact with others processes through externally observable actions. The unit of
atomic interaction among processes is called an event. Events correspond to a
synchronous communication that may occur among processes able to interact with one
another. Events are atomic, in the sense that they happen instantaneously and are not
time consuming. The point of an event interaction occurs is known as a port. Such event
may or may not actually involve the exchange of values. A non-observable action is
referred to as an internal action or internal event. A process has a finite set of ports that
can be shared.

 In order to model the middleware software architecture in LOTOS, the basic
architectural elements, namely components and connectors, are modelled through the
basic LOTOS abstraction, namely process. The top-level specification defines the
software architecture configuration. Additionally, the service specification consists of
the temporal ordering of events executed at the service’s interface. Each service
specification S at the middleware software architecture is in monolithic style defined as
S = Σ ai; A i | i ∈ I for some finite index set I where each A i is either process identifier or
an expression in action prefix form.

3.1. Middleware as a Connector

As mentioned in Section 2, the simplest architectural view of the middleware is one that
considers the middleware as a connector (Figure 1 (a)). In this case, the middleware is
viewed as a black-box connector that has the role of the communication service.

 The LOTOS specification at the top-level of Figure 1 (a) is a parallel
composition (parallel operator | |) of the client (Cl i ent component), the server

(Ser ver component) and the Middleware (Mi ddl ewar e connector). The Cl i ent (4)
communicates with the Ser ver (8) through the connector Mi ddl ewar e as shown in the
following:

(1) speci f i cat i on Mi ddl ewar e_Connect or [i nvCl t , t er Cl t , i nvSr v, t er Sr v] : noexi t

(2) l i br ar y OPER, RESULT, SERVI CES, BOOLEAN endl i b

(3) behavi our

(4) Cl i ent [i nvCl t , t er Cl t]

(5) | [i nvCl t , t er Cl t] |

(6) Middleware [i nvCl t , t er Cl t , i nvSr v, t er Sr v]

(7) | [i nvSr v, t er Sr v] |

(8) Ser ver [i nvSr v, t er Sr v]

(9) wher e

(10) …

(11) endspec

 As mentioned before, the middleware behaviour is defined through the temporal
ordering of invocation operations in middleware interface as follows:

(1) pr ocess Middleware [i nvCl t , t er Cl t , i nvSr v, t er Sr v] : noexi t : =
(2) i nvCl t ? s : SERVI CE ? op : OPER;

(3) i nvSr v ! s ! op;

(4) t er Sr v ! s ? r : RESULT;

(5) t er Cl t ! s ! r ;

(6) Mi ddl ewar e [i nvCl t , t er Cl t , i nvSr v, t er Sr v]
(7) endpr oc

 In this case, the middleware receives an invocation from the server (2) that
contains both the name of the requested service and operation being requested (i nvCl t

? s : SERVI CE ? op : OPER;). The middleware passes both of them to the server (3)
and wait for the reply (4). Finally, the middleware passes the reply containing the result
to the client (5).

 The behaviour of those components and connectors together is shown in the
following trace obtained by simulation in the CADP Toolbox1.

1 Available at http://www.inrialpes.fr/vasy/cadp/.

(1) <i ni t i al st at e>

(2) " i " (BI ND_TO_SERVER [16]) /* the client binds to the server * /

(3) " I NVCLT ! ` Ser vi ce' ! ` op1' " /* the client passes the request to the middleware * /

(4) " I NVSRV ! ` Ser vi ce' ! ` op1' " /* the middleware passes the request to the server * /

(5) " i " (PROCESSOP1 [35]) /* the server processes the request * /

(6) " i " (SA [24]) /* the server updates it internal state * /

(7) " TERSRV ! ` Ser vi ce1' ! ` ok ' " /* server passes the reply to the middleware * /

(8) " TERCLT ! ` Ser vi ce1' ! ` ok ' " /* the middleware passes the reply to the client * /

(9) <goal st at e>

Next, we present the middleware abstract software architecture.

3.2 Middleware Abstract Software Architecture

According to guidelines presented in Section 2, the middleware abstract software
architecture is defined as a collection of services. Figure 2 (a)(b) depicts the
components and connectors involved in a communication through the middleware
abstract software architecture. It is worth observing that both the number of available
middleware services and the way they may be composed depended on the particular
middleware being considered.

ClientClient ServerServer ClientClient ServerServer

Service1
Service1 Service2

Service2 Service3
Service3

Communication
Service

Service1
Service1 Service2

Service2

(a) Usual middleware service composition (b) Alternative middleware service composition

Communication
Service

Figure 2. Middleware Abstract Software Architecture

 In order to specify the middleware abstract software architecture, we assume the
configuration depicted in Figure 2 (a) that is composed by three components and a
single connector. The LOTOS specification at the top-level of this software architecture
is a parallel composition (operators | | | and | |) of the services (defined as components)
provided by the middleware, namely Ser vi ce1, Ser vi ce2, Ser vi ce3 (3) and
Communi cat i onSer vi ce (7).

(1) pr ocess Mi ddl ewar e [i nvCl t , t er Cl t , i nvSr v, t er Sr v] : noexi t : =

(2) hi de i nv, t er i n

(3) ((Ser vi ce1 [i nv, t er] | | | Ser vi ce2 [i nv, t er] | | | Ser vi ce3 [i nv, t er])

(4) | |

(5) ServiceOrdering [i nv, t er])

(6) | [i nv, t er] |

(7) Communi cat i onSer vi ce [i nv, t er , i nvCl t , t er Cl t , i nvSr v, t er Sr v]

(8) wher e

(9) …

(10) endpr oc

 An important point of this specification is the ordering of composition of the
middleware services (5). We adopt the LOTOS constraint-oriented specification style
by defining the process Ser vi ceOr der i ng that constrains the way the services are
composed. As a consequence, this LOTOS process is not part of the software
architecture itself, but a modelling element.

(1) pr ocess ServiceOrdering [i nv, t er] : noexi t : =

(2) i nv ! Ser vi ce1 ? op : OPER;

(3) t er ! Ser vi ce1 ? r : RESULT;

(4) i nv ! Ser vi ce2 ? op : OPER;

(5) t er ! Ser vi ce2 ? r : RESULT;

(6) i nv ! Ser vi ce3 ? op : OPER;

(7) t er ! Ser vi ce3 ? r : RESULT;

(8) Ser vi ceOr der i ng [i nv, t er]

(9) Endpr oc

 In this particular case, according to the constraints imposed by
Ser vi ceOr der i ng, after the request gets in the middleware, it is passed to Ser vi ce1 (2-
3) followed by Ser vi ce2 (4-5) and Ser vi ce3 (6-7). Then, the request is sent to Ser ver
where it is processed and sent back to Cl i ent . Following the RM-ODP [ISO 95]
terminology, we call to invocation (i nv) those actions to activate the service and
termination (t er) to the action of return a result.

3.3. Middleware Concrete Software Architecture

The decomposition of the service component consist of explicitly define client and
server parts. The client part is the service interface (remotely accessible), whilst the
server part is the implementation of the service itself. As mentioned in Section 3.1,
unlike other services, the communication service is a connector and it is not designed
using this client/server approach. Hence, there is a part running in both sides of the
architecture.

The LOTOS specification of the concrete software architecture at top-level is shown in
the following:

(1) speci f i cat i on Mi ddl ewar e_Concr et e [r eqCl t , r epCl t , r eqSr v, r epSr v] : noexi t

(2) l i br ar y OPER, RESULT endl i b

(3) behavi our

(4) hi de r eqCN, r epCN, r eqSN, r epSN i n

(5) (Cl i ent [r eqCl t , r epCl t]

(6) | [r eqCl t , r epCl t] |

(7) MiddlewareClient [r eqCl t , r epCl t , r eqCN, r epCN])

(8) | [r eqCN, r epCN] |

(9) Net wor k [r eqCN, r epCN, r eqSN, r epSN]

(10) | [r eqSN, r epSN] |

(11) (MiddlewareServer [r eqSr v, r epSr v, r eqSN, r epSN]

(12) | [r eqSr v, r epSr v] |

(13) Ser ver [r eqSr v, r epSr v])

(14) wher e

(15) …

(16) endspec

 The middleware in the server (Mi ddl ewar eSer ver) and the middleware in the
client (Mi ddl ewar eCl i ent) have not the same behaviour. This is an interesting point to
be observed as middleware products are different in both sides. This fact has a direct
impact on how the middleware services are composed. Additionally, a service (or some
of its components) may be present in the server and absent in the client. For example,
the authentication component in the CORBA security service is not present in the client.
Hence, the Ser vi ceOr der i ng process and the set of services in both sides are different.
For lack of space, we do not show the concrete middleware behaviour, but it is
composed by 48 actions when the client request an operation followed by a reply.

4. Case study: CORBA

In order to illustrate our approach, we present how it may be applied to the middleware
CORBA [OMG 03]. Three main reasons have motivated the adoption of CORBA: the
number of middleware services available in CORBA is larger than any other
middleware; the CORBA services are well detailed through API, which enables us a
better understanding on how the service actually works; and CORBA has an explicit
communication element (the ORB) that naturally acts as a connector.

 Object-oriented middleware (OOM), such as RMI, EJB and CORBA, provides
the abstraction of an object that is remote yet whose methods can be invoked just like
those of an object in the same address space as the caller. Two services are usually
mandatory in the OOM, namely the naming service and the communication service. The
naming service (known as "yellow pages") takes responsibility of registering business
services provided by the servers. Clients that desire to make request to those services
contact the naming service, which gives direction on how to find the server previously
registered that provides the required service.

 CORBA is a standard that has been widely adopted for building middleware
products. According to the CORBA specification, in addition to the communication
service known as ORB, fourteen distributed services should be provided by the
middleware: persistence, externalisation, events, transactions, properties, concurrency,
relationships, time, licensing, trader, query, collections, lifecycle and security [OMG
98]. All these services are not usually implemented in a single product, but at least the
naming, life cycle and communication services are available in CORBA complaint
products.

 Figure 3 presents the CORBA software architecture at 3 different abstract levels,
according to the guidelines presented in Section 2. Each CORBA Service, known as
COS (Common Object Services), is modelled as a component in the CORBA software
architecture. Additionally, the ORB (communication service) is defined as a connector.

namingnaming lifecyclelifecycle transactiontransaction

ORB
CORBA

TransactionTransaction SkeletonSkeleton POAPOA

CORBA

ORB
ORB

stubstub lifecyclelifecycle TransactionTransaction

CORBA

CORBA

client server

(a) CORBA as a connector

(b) CORBA Abtsract
Software architecture

(c) CORBA Concrete
Software architecture

2pc

... ...

namingnaming namingnaminglifecyclelifecycle

Network

Figure 3. Object-oriented Middleware Model

 Two points must be observed in the CORBA software architecture. Firstly, the
CORBA standard defines that the COS services may be either inside or outside the
ORB [OMG 03]. In this particular architecture, we adopt the second approach.
Secondly, the stubs, skeletons and POA (Portable Object Adapter) have been
incorporated by the ORB and are no explicit elements in abstract software architecture
(application developers view). However, they are present in the concrete software
architecture (middleware developers view).

 After being defined the software architecture, next sections present how the
principles described in Section 3.1, 3.2 and 3.3 are adopted to CORBA.

4.1. CORBA as a connector

The behaviour of the CORBA as a connector is very similar to one shown in Section
3.1. In this case, the CORBA receives a request from the server and sends it to client.
After being processed, the reply is sent back to the client via the middleware. At this
abstraction level, the software architecture does not present details on how this task is
actually performed. The behaviour of the connector CORBA is specified as the
temporal ordering of events executed in the CORBA interface. The CORBA interface is
made up of several other interfaces such as dynamic invocation, stub, ORB, static
skeleton, dynamic skeleton and POA interfaces.

 In the following specification, the operations defined in each of the
aforementioned interfaces are passed to the middleware through the event “ i nvCl t ? s

: Ser vi ce ? op : OPER; ” , where s is the name of service being request and op the
operation.

pr ocess CORBA [i nvCl t , t er Cl t , i nvSr v, t er Sr v] : noexi t : =

 i nvCl t ? s : Ser vi ce ? op : OPER;

 i nvSr v ! s ! op;

 t er Sr v ! s ? r : RESULT;

 t er Cl t ! s ! r ;

 CORBA [i nvCl t , t er Cl t , i nvSr v, t er Sr v]

Endpr oc

Next, we present the CORBA abstract software architecture that provides a more
detailed view of CORBA.

4.2. CORBA Abstract Software Architecture

The CORBA abstract software architecture is defined as a collection of services as
mentioned before. The top specification is a parallel composition of fourteen different
services (components) and the ORB (connector) as shown in the following:

pr ocess CORBA [i nvCl t , t er Cl t , i nvSr v, t er Sr v] : noexi t : =

 hi de i nv, t er i n

 ((Nami ng [i nv, t er] | | | Event [i nv, t er] | | |

 Per si st ent [i nv, t er] | | | Li f eCycl e [i nv, t er] | | |

 Concur r ency [i nv, t er] | | | Ext er nal i zat i on [i nv, t er] | | |

 Rel at i onshi p [i nv, t er] | | | Tr ansact i on [i nv, t er] | | |

 Quer y [i nv, t er] | | | Li censi ng [i nv, t er] | | | Pr oper t y [i nv, t er] | | |

 Ti me [i nv, t er] | | | Secur i t y [i nv, t er] | | | Tr adi ng [i nv, t er])

 | |

 Ser vi ceOr der i ng [i nv, t er])

 | [i nv, t er] |

 ORB [i nv, t er , i nvCl t , t er Cl t , i nvSr v, t er Sr v] (0)

 wher e

 …

endspec

 As defined in Section 3.2, the LOTOS process Ser vi ceOr der i ng is not an
architectural component, but it is defined in order to constrain the way the services
interact. In this particular case, the most important ordering constraint is one related to
the naming service. As widely known, every distributed service must be registered in
the naming before be used by clients (2). Additionally, the client must obtain an
interface reference to the service to use it (3).

(1) pr ocess Ser vi ceOr der i ng [i nv, t er] : noexi t : =

(2) i nv ! COSnami ng ! r egi st er ;

(3) t er ! COSnami ng ? r : RESULT;

(4) i nv ! COSnami ng ! l ookup;

(5) t er ! COSnami ng ? r : RESULT;

(6) Ser vi ceOr der i ng [i nv, t er]

(7) endpr oc

 Next, we show the trace generated by the simulation of all those elements
together. This traces reveals the constraint imposed by Ser vi ceOr der i ng as the client
and server make requests to the naming service (2-11) before use the Ser vi ce1
provided by the server (12-18).

(1) <i ni t i al st at e>

(2) " I NVSRV ! ` COSnami ng' ! ` r egi st er ' "

(3) " i " (I NV [68])

(4) " i " (OPREGI STER [106])

(5) " i " (TER [68])

(6) " TERSRV ! ` COSnami ng' ! ` ok ' "

(7) " I NVCLT ! ` COSnami ng' ! ` l ookup' "

(8) " i " (I NV [68])

(9) " i " (OPLOOKUP [106])

(10) " i " (TER [68])

(11) " TERCLT ! ` COSnami ng' ! ` ok ' "

(12) " I NVCLT ! ` Ser vi ce1' ! ` op1' "

(13) " I NVSRV ! ` Ser vi ce1' ! ` op1' "

(14) " i " (SA [28])

(15) " i " (PROCESSOP1 [43])

(16) " TERSRV ! ` Ser vi ce1' ! ` ok ' "

(17) " TERCLT ! ` Ser vi ce1' ! ` ok ' "

(18) " I NVCLT ! ` Ser vi ce1' ! ` op1' "

(19) <goal st at e>

4.3. CORBA Concrete Software Architecture

According to the COS Transaction specification [OMG 98], the transaction service is
specified through 6 interfaces, namely Current, TransactionFactory, Terminator,
Coordinator, RecoveryCoordinator and Resource. These interfaces allow multiple,
distributed objects to cooperate to provide atomicity, consistency, isolation and
durability properties. Each interface is modelled by a component in the software
architecture

 For lack of space, we only present the concrete software architecture of the
CORBA transaction service. The top specification is very similar to one shown in
Section 3.3 that is a parallel composition of Ser vi ceI nt er f ace and St at ePr oc. The
process Ser vi ceI nt er f ace models the interfaces of the transaction service, which is
made up of is 6 other interface as mentioned before: Cur r ent , Tr ansact i onFact or y ,
Ter mi nat or , Coor di nat or , Recover yCoor di nat or and Resour ce.

pr ocess Tr ansact i on_Ser vi ce [i nv, t er] : noexi t : =

 hi de sa i n

 Ser vi ceI nt er f ace [i nv, t er , sa]

 | [sa] |

 St at ePr oc [sa]

 wher e

 pr ocess Ser vi ceI nt er f ace [i nv, t er , sa] : noexi t : =

 Cur r ent [i nv, t er , sa] | | | Tr ansact i onFact or y [i nv, t er , sa]

 | | | Cont r ol [i nv, t er , sa] | | | Ter mi nat or [i nv, t er , sa]

 | | | Coor di nat or [i nv, t er , sa] | | | Recover yCoor di nat or [i nv, t er , sa]

 | | | Resour ce [i nv, t er , sa]

 wher e

 …

endpr oc

The whole specification of the transaction service has approximately 1200 lines and it is
not completely terminated.

5. Conclusions and Future Work

This paper has illustrated how to adopt LOTOS to describe the behaviour of
middleware software architectures. The specification has been structured according to
software architecture principles, i.e., all middleware model elements are viewed as
components, connectors and configuration. This approach facilitates the understanding
of the general structures of different middleware specification as it separates
computation and communication elements.

 The adoption of LOTOS for describing the middleware enables us to check
behaviour properties (we have used the CADP Toolbox) of each individual middleware
and middleware service specification. This is not possible in the case an ADL is
adopted instead LOTOS. We know that LOTOS has not been originally designed to be
used like an ADL (e.g., ADLs have proper abstraction to model component and
connectors), but its limitations are compensated by its powerful ability for describing
behaviour.

 The presented LOTOS specifications serve as basis for very interesting future
work. We are now interested on the performance and reliability analysis of middleware
models [Emmerich 00]. For this particular purpose, we are currently using the CADP
Toolbox to generate Petri Nets. The Petri Nets specifications of the middleware models
are more adequate to be analysed in terms of performance and reliability. Additionally,
the proposed formalisation also opens a new track on how to compose middleware
services, which is a basic task of adaptive middleware systems.

References

Allen, Robert J. (1997) “A Formal Approach to Software Architecture” , PhD Thesis,
School of Computer science, Carnegie Mellon University.

Basin, David, Rittinger, Frank and Viganò, Luca (2002) “A Formal Analysis of the
CORBA Security Service” , In: Lecture Notes in Computer Science, No. 2272, pp.
330-349.

Bastide, Rèmi, Palanque, Philippe, Sy, Ousmane and Navarre, David (2000) “Formal
Specification of CORBA Services: Experience and Lessons Learned” , In:
OOPSLA’00, p. 105-117.

Bastide, Rèmi, Sy, Ousmane, Navarre, David and Palanque, Philippe (2000) “A Formal
Specification of the CORBA Event Service” , In: FMOODS’00, p. 371-396.

Bernstein, Philip A. (1996) “Middleware: A Model for Distributed System Services” ,
Communications of the ACM, Vol 39 (2), pp. 87-98, February.

Blair, Gordon, Coulson, G., Philippe, R. and Papathomas, M. (1998) “An Architecture
for Next Generation Middleware” . In: Middleware’98, pp. 191-206.

Campbell, Andrew T., Coulson, Geoff and Kounavis, Michael E. (1999) “Managing
Complexity: Middleware Explained” , IT Professional, IEEE Computer Society, Vol
1(5), pp. 22-28, October.

Emmerich, Wolfgang (2000) “Software Engineering and Middleware: A Roadmap” ,
Second International Workshop on Software Engineering and Middleware, Limerick.
Ireland, pp. 119-129, June.

ISO 10476-1 (1995) “Reference Model of Open Distributed Processing (Part I) –
Overview” , July.

ISO 15437 (2001) “Enhancements to LOTOS (E-LOTOS)” .

Kreuz, Detlef (1998) “Formal Specification of CORBA Services using Object-Z” , In:
Second IEEE International Conference on Formal Engineering Methods, pp.,
December.

Matena, Vlada and Hapner, Mark, (1998) “Enterprise JavaBeans” , Sun Microsystems.

Medvidovic, Nenad (2002) On the Role of Middleware in Architecture-based Software
Development. In: 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE), pp. 299-306, 2002.

Medvidovic, Nenad and Taylor, Richard N. (2000) “A Classification and Comparison
Framework for Software Architecture Description Languages” , IEEE Transactions
on Software Engineering, Vol 26(1), pp. 70-93, January.

OMG (1998) “CORBAservices: Common Object Services Specification” , December.

OMG (2002) “Common Object Request Broker Architecture: Core Specification
(CORBA 3.0)” , December.

Rosenberry, W., W. and Kenney, D. and Fisher, G., Understanding DCE, Ed.O'Reilly &
Associates, 1993.

Sun Microsystems , Inc. (2002) “Java Message Service Specification” ,
http://java.sun.com/products/jms/, March.

Venkatasubramanian, Nalini (2002) “Safe Composability of Middleware Services” ,
Communications of the ACM, Vol 45(6), pp. 49-52, June.

Vinoski, Steve, (2002) “Where is Middleware?” , IEEE Internet Computing, Vol. 6(2),
pp. 83-85.

