
Online Algorithms for the Server and Service Location Problem
in 3G Mobile Networks

Olga Goussevskaia, Danielle G. Valente,
Geraldo R. Mateus and Antonio A.F. Loureiro

Department of Computer Science,
Federal University of Minas Gerais, Brazil

olga,dgv,mateus,loureiro@dcc.ufmg.br

Abstract. How to design an infra-structure that supports multi-service provision and
demand-driven resource distribution is a challenging problem that arises in third-
generation mobile networks. One of the proposed formulations for this problem has been
named as the Server and Service Location Problem. Due to the problem’s high computa-
tional complexity, heuristic techniques have been proposed to solve it. The time needed
to solve large instances of the problem, however, remained unacceptably high, since the
attendance of the demand must be made in real time, minimizing the response delays. In
this work we emphasize the online nature of the problem. Two online algorithms of much
lower computational complexity were implemented, and the experimental results revealed
that, for high numbers of mobile users, their performance overcomes the heuristics imple-
mented so far, both in response time and solution quality.

1. Introduction

The rapid advance of component technology, the pressure to integrate fixed and mobile networks, the
developments in the domains of service engineering, network management and intelligent networks,
and the desire to have multi-application handheld terminals demand performance improvements be-
yond the capacity of second-generation technology. Factors such as large number of users with
different mobility behaviors in different geographic areas and times of day become critical for the
resources to be used efficiently.

There are two distinct entities that we can consider in 3G networks: Radio Base Stations and
Servers that providing some specific services. Physically,we consider that these two entities have
the same location. This is a situation that arises in contentdistribution applications, for example.
It is a typical scenario where the company Akamai [Akamai, ],which analyzes strategic points of
the network for content and application distribution, operates. Another possible scenario is when
there is a maximum number of active software licences for content or application access. In this
case, a licence can become available or unavailable according to changes in demand distribution
over time or space. There are costs that are associated with different activities, such as hardware or
communication maintenance of the servers. In a content provision scenario, the activation costs of
a server can be related to up-to-date information maintenance of a data base system, for example.
In such an environment, service provision becomes an important problem. The number of mobile
users is variable and they move through attendance regions requesting different kinds of services in
different time periods. In this scenario, the network should be able to determine to which server
each client should be allocated at different moments according to some metric, such as the distance
bridged by the wireless connection, the traffic distribution among servers or type of service being
provided. The number of active servers and their locations must be optimized in order to minimize
both the costs of server activation and service provision. This problem is known as the Server and
Service Location Problem and was discussed for the first timein [Mateus et al., 2000].



This is a combinatorial problem, and, thus, it is very difficult to be guaranteed an optimal
solution. The use of heuristics becomes necessary in order to obtain acceptable solutions in polyno-
mial time. In [Mateus et al., 2001], a Lagrangean Relaxationtechnique [Fisher, 1981, Fisher, 1985,
Fisher et al., 1975, Galvão and Santibañez-Gonzales, 1992, Geoffrion, 1978, Reeves, 1993] is used
for this purpose and near-optimal solutions were obtained in relatively short time periods. The qual-
ity of the Lagrangean heuristic, however, significantly decays when a large number of mobile units
is involved. Moreover, the response time of the algorithm gradually increases as the number of
variables grows, compromising the system’s ability to provide an answer in a reasonable time.

In this case, the decisions have to be made dynamically, in real time and without previous
knowledge of future requests, what leads to an online version of the problem. An alternative approach
would be to solve the service allocation problem each time a new user enters the system or the
demand configuration changes, always maintaining the response time at acceptable levels.

In this work, initially we show the integer programming formulation of the Server and Ser-
vice Location Problem. Afterwards, an extension for the problem is proposed, aiming to adapt it
to a more realistic mobile computing environment, where time restrictions are crucial for its service
maintenance. Two greedy online algorithms were implemented to substitute the Lagrangean Relax-
ation. This new approach has been called theOnline Approach. The experimental results revealed
that, for a large number of mobile users, the performance of the Online Approachovercomes the
solutions proposed up to this moment, both in response time and solution quality, mainly due to the
problem’s high computational complexity.

The rest of this paper is organized as follows. In Section 2, we give the formulation of the
Server and Service Location Problem. In Section 3, we discuss how online algorithms work and their
importance in this scenario. Then, in Section 4, we present the two algorithms proposed to substitute
the Lagrangean Relaxation. In Section 5, we present the simulation environment to conduct our
experiments and the experimental results. Finally, Section 6 contains our conclusions and future
work considerations.

2. Modeling
The Server and Service Location Problem consists of an integer programming model, which aims to
minimize equipment maintenance and service provision costs by dynamically defining the optimal
number and location of active servers in the system and allocating the demand generated by mobile
users to them.

The following notation is used:

T : set of service classes;
I: set of servers;
U : set of active mobile units;
dt

j : binary parameter that expresses whether the mobile unitj ∈ U is demanding a servicet ∈ T
or not;

pt: number of servers to be selected for every servicet ∈ T ;
ct
ij : variable cost of attending the demanddt

j by serveri ∈ I; it is location depended, but is more
general than just the distance between the mobile unit and the server. It also dependends
on other parameters, such as the number of channels requiredto provide this service, or the
amount of data that has to be transmitted.

f t
i : cost of activating serveri ∈ I to provide servicet ∈ T ; it can depend on the geographic

location of the server or on the set of services that it provides. Considering a scenario where
the server is running some content provision service, this cost could be associated to some
hardware maintenance or up-to-date information maintenance.

xt
ij: boolean variable, which is set to 1 when the mobile unitj ∈ U , requiring servicet ∈ T , is

attended by the facilityi ∈ I, and set to 0, otherwise;



yt
i : boolean variable, which is set to 1 when serveri ∈ I is active to provide servicet ∈ T , and

set to 0, otherwise;

The problem is formulated as follows:

(M):
min
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subject to:
∑

i∈I

xt
ij = dt

j , ∀j ∈ U , ∀t ∈ T , (2)

∑

i∈I

yt
i ≥ pt , ∀t ∈ T , (3)

xt
ij ≤ yt

i , ∀t ∈ T , ∀i ∈ I , ∀j ∈ U , (4)

xt
ij ∈ {0, 1} , ∀ t, ∀i ∈ I , ∀j ∈ U , (5)

yt
i ∈ {0, 1} , ∀t ∈ T , ∀i ∈ I. (6)

The objective function (1) minimizes
the total cost of activating the selected
servers and attending the active mo-
bile units. The set of constraints (2)
ensures that each active mobile unit
demand for each class of service is
attended by a unique server. The set
of constraints (3) imposes a minimum
number of servers that must be se-
lected for each class of service. The
set of constraints (4) guarantees that
no mobile unit will be allocated to a
non-selected server. Finally, sets (5)
and (6) of constraints guarantee the
integrality of variables.

The constraint on how far the mobile unit could be away from the server geographically,
or in other words, the definition of each server’s covering region, is not part of the mathematical
model that we present. However, it could easily be incorporated, implying no significant changes
on the optimization algorithm, by adding a signal propagation model as a binary matrix A, defining
whether a particular demand pointdt

j is covered or not by serveryi. The set of constraints (2) would
look like this:

∑

i∈I

aijx
t
ij = dt

j ,∀j ∈ U , ∀t ∈ T (7)

The capacity in terms of server load is not part of the model either. However, this only
becomes a problem in scenarios with extreme traffic overloads.

3. Online Algorithms

Online algorithms are algorithms designed to solve problems where the input data is not known
in advance, but it is supplied during the execution of the algorithm [Albers, 2003, Albers, 1996,
Ben-David and Borodin, 1994, Goemans, 1994, Irani and Karlin, 1996]. These algorithms are de-
fined in the context of optimization problems, where there isa setI of inputs and a setO of outputs,
and, for a given inputI ∈ I, we want to obtain an outputO ∈ O. A cost, or a profit, is associated
with each pair (I, O). The objective is to maximize the profit or to minimize the total cost, depending
whether it is a maximization or a minimization problem.

In an online problem, the input is given as a sequenceσi = σ1σ2 . . . σi of requests or
events. The algorithm takes each input and must compute a response after each event, providing an
output represented as a sequenceai = a1a2 . . . ai. The response can only depend on the previously
received input, meaning that there must exist a functionfi such that:ai = fi(σ

i) [Albers, 1996,
Ben-David and Borodin, 1994].

3.1. Performance Evalutaion

It is important to know how to evaluate the performance of an online algorithm. The traditional worst-
case analysis is not useful, since it causes any algorithm toachieve its worst-case. A well-known
metric to analyze online algorithms is the Competitive Analysis [Ben-David and Borodin, 1994,



Goemans, 1994, Irani and Karlin, 1996]. In this approach, anonline algorithmA is compared to
an optimal offline algorithmOPT . TheOPT algorithm knows the entire input data in advanced and
can solve the problem with minimal cost.

Given an input sequenceσ, let CA(σ) denote the cost associated with algorithmA, and
COPT (σ) the cost associated with algorithmOPT . The algorithmA is said to bec-competitive if
there exists a constanta ≥ 0 such that

CA(σ) ≤ c · COPT (σ) + a (8)

for every input sequenceσ. It is assumed thatA is a deterministic online algorithm. The factorc is
also known as the competitive ratio ofA.

3.2. Design Principles

The online algorithm design is an intuitive job, with no defined rules. Some of the principles fre-
quently used are presented in this section.

Greedy Algorithms. Online algorithms generate a response immediately after each request.
Hence, in a way, these algorithms are intrinsically greedy.They can be defined by a functionf
of the current request, the current state and the history. The algorithm evaluates the function for each
possible way of serving the current request, and chooses theaction, which minimizes the value of
the function.

Following this idea, there are three types of greedy algorithms that present their best perfor-
mance in different situations. The first type is the local greedy algorithm. It simply chooses an action
that minimizes the cost of serving the current request. The second type is the retrospective algorithm.
It tries to approximate the online solutions to the solutions that an optimal algorithm would generate
if the sequence seen up to that moment (including the currentrequest) were the entire sequence. To
achieve this, it keeps the history of all states up to the current moment. The third type is the work
function algorithm, which has been distinguished for its ability to find optimal and near-optimal
solutions. It is a combination of the first two types of greedyalgorithms.

Balancing Costs. In order to choose how to serve the next request, the balancing costs approach
says that an online algorithm should roughly try to incur thesame cost on each of the possible future
inputs. In this scenario, no matter what the future will be, the algorithm tries to make choices that
minimize the average of future costs, nevertheless the current cost may not be minimal.

Combining Online Algorithms. There may be several solutions that use online algorithms tosolve
a given problem. Each of these solutions can be competitive only for a subset of possible inputs. The
union of all this subsets would cover all the possible inputs. In this way one can build a generic
online competitive algorithm for all possible inputs.

3.3. Examples of Online Problems

Some online problems have been extensively studied, specially after the work of Sleator and Tar-
jan [Sleator and Tarjan, 1985]. Among them the Ski Rental Problem and theK-Server Prob-
lem [Albers, 2003, Goemans, 1994, Irani and Karlin, 1996] are of special interest.

The Ski Rental Problem. Consider a skier that does not know when the ski season is going to
end. The skier has to rent the skis, paying $30 per day, or buy the skis for $300. The problem is
to choose between renting or buying the skis. If the length ofthe season is known in advance (the
offline case), sayD, then the obvious solution will be to rent the skis ifD < 300 or to buy them if
D ≥ 300. In this formulation, the skis are not a commodity, but a necessary item to the practice of
the sport. This is a typical online problem, in which a solution is computed on each event and the
future is uncertain [Goemans, 1994].

The main idea of the online algorithm is to approximate the performance of the optimal
offline algorithm, which knows the future and is able to make decisions to minimize the total cost.



The K-Server Problem. Let K be a set of mobile servers, each of which occupies a single point
in a fixed metric spaceM . A sequence of requests is given and each request must be served before
the next request appears. To serve a request at locationx ∈ M , the algorithm must move a server
to x, unless there is already a server at locationx. Whenever the algorithm moves a server from
point a to point b, a costda,b is associated with this operation, reflecting the distance between two
points in the metric space. The objective is to minimize the total distance covered by the mobile
servers [Goemans, 1994, Goldbarg and Luna, 2000, Irani and Karlin, 1996].

The Ski Rental and theK-Server problems were presented here in order to show the com-
plexity and importance of online problems. The complexity arises from the necessity of solving
problems without any previous knowledge of future input data. It means that, as every new request
arrives, the algorithm must compute a new solution, aiming to obtain the least possible cost by the end
of the request. The importance of online problems lies in their application to real-time environments,
such as the Server and Service Location Problem, studied in this work.

4. The Online Approach

The Server and Service Location Problem, formulated in Section 2, can be viewed as an online
problem. The attendance of the demand, which changes unpredictably, must be made in real time,
minimizing the response delays. In this section, an alternative way of solving this problem is pro-
posed, emphasizing its online nature.

Given an input setσn = σ1, σ2, . . . , σn, where theσj corresponds to a new request made
by client j ∈ U , and, for some service (dt

j), each request must be attended immediately. It means
that clientj ∈ U must be allocated to a server before the processing of the following request. This
allocation must be based solely on the data known up to that moment, aiming to minimize the cost
of configurationσn, given by:

∑

t∈T

∑

i∈I

∑

j∈U

ct
ijx

t
ij +

∑

t∈T

∑

i∈I

f t
i y

t
i (9)

and the constraints (2), (3), (4), (5) and (6) must be met.

The Lagrangean Relaxation technique, used to approximately solve the Server and Service
Location Problem, provides near-optimal solutions in relatively short time periods. The quality of this
heuristic, however, significantly decays when a large number of mobile units is involved. Moreover,
the response time of the algorithm gradually increases as the number of variables grows, compromis-
ing the quality of service of the system. In this section we propose two greedy algorithms to solve
the Server and Service Location Problem. The computationalcomplexity of both of these algorithms
is much lower then the Lagrangean Relaxation’s, what enabled significantly lower response delays,
emphasizing the online nature of the problem.

4.1. Greedy Algorithm 1

Following some design principles presented in Section 3.2,this algorithm is an implementation of
a greedy approach [Mettu and Plaxton, 2000]. One important characteristic is that it maintains the
same computational cost for all inputs. This allows a constant response delay no matter the configu-
ration of the system and its complexity.

The basic idea of this algorithm is to allocate every new service request to a server that has
the nearest geographical location to the point from where the request has been generated, and it has
the least activation cost, giving priority to those serversthat are already active by subtracting their
activation cost from the total evaluated cost. A search, though, is made among the candidate servers,
and the one that has the minimaltotal cost, which is equal to the sum of itsservice attendance cost
and itsactivation cost, is allocated to the requestσj originated at the mobile unitj ∈ U . Then,



for each requestσj from j ∈ U , requiring servicet ∈ T , the total cost in serveri is given by:
total costi = ct

ij + f t
i

Pseudocode Greedy Online Server and Service Location (1)
repeat

read requested service and location of mobile unitj ∈ U
for all candidate serversi ∈ I do

if serveri is already activethen
activationcosti = 0;

else
computeactivationcosti;

end if
total cost= activationcosti + serviceprovisioncostij ;
if total cost< minimal costthen

minimal cost= total cost;
bestserver= i;

end if
end for
allocate the mobile unitj to the minimal cost serveri,

or best server;
end repeat

end pseudocode

Figure 1: Greedy algorithm 1.

Those servers that are
already active, however, are con-
sidered to have a null activa-
tion cost. This algorithm does
not have a memory, since the
requests that have already been
attended by the system are not
taken into account. Its pseudo-
code is given in Figure 1.

4.2. Greedy Algorithm 2

The second greedy algorithm
uses a strategy with memory. All
the attended requests originated
by the mobile units up to a cer-
tain moment are stored by the
system. Using this information
it becomes possible to give a pri-
ority to those servers that have a
greater number of mobile units
allocated to them. This priority
is made by decreasing (multiplying) the activation costs ofthese servers by a factorfix descr, de-
fined as:

fix decri =
∑

t∈T

∑

j∈U

xt
ij/

∑

t∈T

∑

j∈U

∑

k∈I

xt
kj,∀i ∈ I

Pseudocode Greedy Online Server and Services Location (2)
repeat

read requested service and location of mobile unitj ∈ U
for all candidate serversi ∈ I do

computefix decri
computevar decri
computeactivationcosti;
computeserviceprovisioncostij ;
total cost= (activationcosti × fix decri) +

(serviceprovisioncostij × var decri);
if total cost< minimal costthen

minimal cost= total cost;
bestserver= i;

end if
end for
allocate the mobile unitj to the minimal cost serveri;
memorize this allocation

end repeat
end pseudocode

Figure 2: Greedy algorithm 2 (with memory).

The service attendance costs
are decreased according to the dis-
tance between the origins of the re-
quests and the locations of the candi-
date servers. The servers are divided
into three groups. The first group is
composed of the nearest servers and
receives the lowestservice attendance
cost. The second group is the neigh-
bours of the first group and they re-
ceive slightly higher costs. The third
group are the remaining servers that
do not have their costs reduced at all.
This strategy intends to give prior-
ity to the nearest servers. If server
i ∈ I is located inside the same
area zone(defined in Section 5.1)
where the request has been generated,
then theservice provision costis de-
creased by a factorvar decr, given
by: var decri = 20%.

If serveri ∈ I is located inside a neighbor (adjacent) area zone where the request has been
generated, then:var decri = 10%. The pseudo-code for this algorithm is given in Figure 2.



5. Experiments

In this section, we present the simulation environment usedto conduct the experiments and the
experimental results.

5.1. Simulation Environment

In this work, we use the mobility simulator described in [Mateus et al., 2003] to represent a hypo-
thetical city, a typical contemporary metropolitan area. The city was divided into geographical zones
(e.g., a city center and some suburbs), and populated with different groups of mobile units, whose
mobility behavior, and demand for different kinds of services was generated to simulate a typical
24-hour day input data for the model. Given the generated demand at a certain period of time, a
server allocation is made in order to attend this demand.

The geographic area was simulated as a twenty-kilometer-radius radial city, composed of
four area types: city center, urban, suburban, and rural. Figure 3 is a representation of such a city.
The model consists of 32 area zones (network areas), eight per city area type, which are connected
via high-capacity routes, representing the most frequently selected streets for movement support.
Four peripheral and four radial routes are defined. Three types of movement attraction points (lo-
cations that attract population movements and at which people spend considerable time periods) are
distributed over the city area. Examples are workplaces, residences and commercial areas. Figure 4
presents the assumed distribution of movement attraction points over the whole city area.

City Center

Urban Area

Suburban Area

Rural Area

Area borders

Peripheral/radial high−capacity route

Figure 3: City area model consists of
area zones connected via high-
capacity routes.
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Figure 4: Distribution of movement at-
traction points over the city
area.

The population was divided into mobile unit groups according to the mobility characteristics
of the individuals and to the kind of demand they generate. The demand was generated for various
types of services, such as Voice, Video and Web requests. Examples of user groups are: 24-hour
delivery boy, common worker, housekeeper and taxi driver. Acall distribution and a set of requested
services were associated with each group. Some examples are:

• 24h Delivery Boy: Call Distribution: Poisson with mean equal to 10 min; Service: Voice with
duration exponentially distributed with mean equal to 80 s.

• Common Worker: Call Distribution: Poisson with mean equal to 14 min; Services: Voice with
duration exponentially distributed with mean equal to 80 s,Web with duration exponentially dis-
tributed with mean equal to 180 s, Video duration normally distributed with mean equal to 1 h.

A movement table was associated with each of these groups in order to determine their
mobility behavior. This was done by dividing the day into time periods, and associating a probability



with a group being at a certain location at a given moment. Tables 1 and 2 show two examples of
movement tables.

Common Worker
00:00 - 07:00 Home
07:00 - 12:00 Work
12:00 - 13:30 Work 75% Busi 20% Shop 5%
13:30 - 18:00 Work
18:00 - 22:00 Home 70% Shop 15% Busi 15%
22:00 - 24:00 Home 80% Random 20%

Table 1: Movement table of a Comon Worker.

Taxi Driver
00:00 - 07:00 Home
07:00 - 08:00 Busi
08:00 - 09:00 Random
09:00 - 10:00 Res
10:00 - 11:00 Busi
11:00 - 12:00 Res

... ...

Table 2: Movement table of a Taxi Driver.

Table 1 shows that, between 12:00 and 13:30, a common worker has a 75% probability of
being at a work location, a 20% probability of being at an areawith high concentration of business
attraction points, and only a 5% probability of being at a shopping center. On the other hand, in
Table 2, a taxi driver can be at any location between 8:00 and 9:00.

5.2. Methodology

In order to evaluate the performance of the proposed algorithms, three different allocation approaches
were simulated, and their performances compared.

Common Allocation Approach. This approach, implemented in [Mateus et al., 2003], is a sim-
ulation of the way demand attendance is performed in today’straditional cellular networks. The
geographic area is divided into cells and usually one server(Radio Base Station) is responsible for
the service provision to all mobile units physically insidethe cell region. Each area zone of the
simulated city area was treated as a separate cell.

Online by Time-Step or Lagrangean Allocation Approach. This approach, also implemented
in [Mateus et al., 2003], has as its main characteristic a periodic reconfiguration of the system’s re-
sources (a sequence of activations and deactivations of servers) based on the current demand distri-
bution, and the current location of mobile units.

Let a time-stepbe a fixed amount of time. All information regarding the system’s current
state (i.e., which services are being requested, and from which locations) is collected during atime-
stepand then is used to built a Server and Service Location Problem for eachtime-step. The La-
grangean Relaxation technique is then applied to find the closest solution to the optimum. The
solution is then used to reconfigure the system’s state, whatmeans the demand is attended by the
lowest cost at that instant.

We suppose that all state transitions occur at the beginningof a time-step. If we consider
a time-stepas the inter-arrival time of two service requests then theOnline by Time-Step Allocation
Approachreduces to theGreedy Allocation Approach, which is described in the following section.

Online or Greedy Allocation Approach. In this work, this approach is being proposed as a sim-
plified way of solving the Server and Service Location Problem. In spite of its simplicity, it is more
efficient in terms of response delays. The problem is solved each time a new service request is
received by the system, always maintaining the response time at acceptable levels. The two greedy
algorithms, described in Section 4, were used to allocate each new service request to the most suitable
(at least locally considered) server.

5.3. Experimental Results

This section evaluates the three allocation approaches described above using simulation.



System Costs. The evaluation of system costs was performed through the values of the objective
function of the integer programming problem. It means that all costs involved in server activation
(f t

i ), and all costs involved in demand attendance (ct
ij), were taken into account.

Figures 5 to 10 show a comparison among the costs ofCommon, Online by Time-Stepsor
LagrangeanandOnline or Greedyallocation approaches. Results for different numbers of mobile
units, and different cost proportions are analyzed. In Figures 5, 6, and 7 fixed costs are considered
to be, in average, 10 times higher than variable costs, what makes the system more sensible to server
activation costs. In Figures 8, 9, and 10, on the other hand, variable costs (ct

ij) are considered to be,
in average, 10 times higher than fixed costs (f t

i ). This proportion makes the system configuration
more sensible to the distances between mobile units and servers.
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Figure 5: System costs (50 users, fixed cost predominance).
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Figure 6: System costs (100 users, fixed cost predominance).

In all six figures, the predominance ofCommon Approachcosts overOnline by Time-Step
ApproachandGreedy Approachcosts can be seen. This result could be predicted, since theCom-
mon Approachdoes not take any cost evaluation into account during its demand attendance process.
Comparing Figures 5, 6, and 7, it can be seen that, as the number of mobile units increases, the re-
lation between the costs achieved byCommon Approachand the other two approaches remains and
becomes even more explicit. This is due to the fixed cost predominance and the fact thatCommon
Approachdoes not take them into account when performing the server allocation. While the opti-
mization algorithms try to allocate the maximum number of users at each server, in order to minimize



System Costs (200 users, fixed cost pred.)
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Figure 7: System costs (200 users, fixed cost predominance).

System Costs (50 users, variable cost pred.)
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Figure 8: System costs (50 users, variable cost predominanc e).

System Costs (100 users, variable cost pred.)
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Figure 9: System costs (100 users, variable cost predominan ce).

the high activation costs, theCommon Approachjust activates them all.

The same fact, however, cannot be observed comparing Figures 8, 9 and 10. In those figures



System Costs (200 users, variable cost pred.)
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Figure 10: System costs (200 users, variable cost predomina nce).

the differences between the three approaches are no longer so explicit. This is due to the variable cost
predominance, since it significantly increases the problem’s complexity (because the number of local
minimums increases). The Lagrangean Relaxation, in this case, is not able to achieve the optimal
solution anymore, remaining with an approximated solutionafter a certain amount of iterations. This
fact is illustrated in Figure 11. It can be observed that, when variable costs predominate and the
number of mobile units is increased, the percentage of optimal solutions obtained by Lagrangean
Relaxation decays. If for 50 mobile units the heuristic achieves the optimum in almost 100% of the
cases, for 1000 mobile units it remains with an approximate solution in more than 80% of the cases.
The performance of theGreedy Approachalso decays due to its inability to analyze the combinatory
nature of the problem, which becomes much heavier in this scenario. It is worth noting, however,
that as the number of mobile units increases, the performance of theGreedy Approachapproximates
to the performance of Lagrangean Relaxation. And, as it willbe shown in the next section, the delay
caused by theGreedy Approachis significantly lower than the one caused by Lagrangean Relaxation.
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Figure 11: % of optimal solution for La-
grangean Relaxation.

Execution Times. Figures 12 and 13 demon-
strate the time delays of the three allocation ap-
proaches. It can be seen that the time spent
by CommonandOnline or Greedyapproaches
are almost constant, whereas Lagrangean Re-
laxation’s time (Online by Time-Step Approach),
in spite of being polynomial, significantly in-
creases as the number of mobile units is in-
creased, in particular when variable costs pre-
dominate.

Since the Server and Service Location
Problem is intrinsically an online problem, and
response delays are crucial for maintaining the
quality of service of the system, it can be de-
duced that, when the system must support more
than 500 mobile users, theOnline or Greedy Ap-
proachis more appropriate, since the quality of its solutions is close to that of Lagrangean Relaxation
and its execution time remains constant as the number of users increases.
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Competitive Analysis. To make the competitive analysis of the developed online algorithms, their
results were compared to the Lagrangean Relaxation solution. The competitive ratio of the first
greedy algorithm,c1, was calculated as the highest value among all ratios between the total costs
achieved by this algorithm and the total costs achieved by Lagrangean Relaxation in theOnline by
Time-Step Approachat eachtime-step: c1 = 2.61.

The competitive analysis of the second greedy algorithm,c2, was obtained in a similar man-
ner: c2 = 2.24.

It means that the costs achieved by the greedy algorithms are, in the worst case, c1 and
c2 times higher than those achieved by the Lagrangean Relaxation. This result shows that these
algorithms have quite similar efficiency when compared to a more sophisticated technique such as
the Lagrangean Relaxation and present an attractive alternative for solving the Server and Service
Location Problem in a real time environment.

6. Conclusions and Future Work

The number and the location of active servers in a mobile computing environment that guarantee
the attendance of mobile unit requests efficiently and minimize the costs involved has been defined
as the Server and Service Location Problem. The solutions proposed up to this moment need a
previous knowledge of all or at least part of the inputs. Moreover, their computational complexity is
unacceptably high when the number of variables grows. Theseconditions may not be acceptable or
even possible in a real system, where the future is uncertainand users expect fast responses to their
requests.

In this work, we presented an extension for the Server and Service Location Problem, aiming
to adapt it to a more realistic mobile computing environment, where time restrictions are crucial for
quality of service maintenance. Two greedy algorithms wereproposed, implemented, and evaluated
for the extended problem. The computational complexity of both of these algorithms is much lower
then that of the heuristics proposed up to this moment. The experimental results revealed that, for a
high number of mobile users, their performance overcomes the heuristics implemented so far, both
in response time and solution quality.

Online problems are frequently defined as metric task systems [Irani and Karlin, 1996]. It
is a generic model used to describe a vast class of problems asa sequence of tasks that must be
executed. A possible extension for this work is to define the Server and Service Location Problem as
a metric task system and solving it using the associated algorithms.

An important modification of the model is to add capacity restrictions on the servers, both in
terms of radio coverage, power control and the maximum number of attended users. This improve-



ment would turn the problem even closer to a real 3G mobile computing environment.

An alternative application of the proposed architecture iscontent distribution. Given the
knowledge about demand distribution for different kinds ofservices, the requested data can be moved
to the closest servers to those locations. Additional issues would have to be considered in such an
environment, such as: memory availability for the moved contents, content replacement policies, and
the minimum number of requests needed for a particular service to be moved/replicated in a different
server.
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