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Abstract. How to design an infra-structure that supports multi-seeviprovision and
demand-driven resource distribution is a challenging peob that arises in third-
generation mobile networks. One of the proposed formuliatfor this problem has been
named as the Server and Service Location Problem. Due tortxep’s high computa-
tional complexity, heuristic techniques have been propdsesolve it. The time needed
to solve large instances of the problem, however, remaimedaeptably high, since the
attendance of the demand must be made in real time, mingnizenresponse delays. In
this work we emphasize the online nature of the problem. Tinealgorithms of much
lower computational complexity were implemented, and xipemental results revealed
that, for high numbers of mobile users, their performancercemes the heuristics imple-
mented so far, both in response time and solution quality.

1. Introduction

The rapid advance of component technology, the pressunéeigrate fixed and mobile networks, the

developments in the domains of service engineering, n&twanagement and intelligent networks,

and the desire to have multi-application handheld termidamand performance improvements be-
yond the capacity of second-generation technology. Faaoch as large number of users with
different mobility behaviors in different geographic aseand times of day become critical for the

resources to be used efficiently.

There are two distinct entities that we can consider in 3&okds: Radio Base Stations and
Servers that providing some specific services. Physicakyconsider that these two entities have
the same location. This is a situation that arises in cordesttibution applications, for example.
It is a typical scenario where the company Akamai [Akamaivhich analyzes strategic points of
the network for content and application distribution, @tes. Another possible scenario is when
there is a maximum number of active software licences fotesunor application access. In this
case, a licence can become available or unavailable aogotdichanges in demand distribution
over time or space. There are costs that are associated iffredt activities, such as hardware or
communication maintenance of the servers. In a contentigioovscenario, the activation costs of
a server can be related to up-to-date information main@nai a data base system, for example.
In such an environment, service provision becomes an irappgroblem. The number of mobile
users is variable and they move through attendance reggopesting different kinds of services in
different time periods. In this scenario, the network sHdmé able to determine to which server
each client should be allocated at different moments agopi some metric, such as the distance
bridged by the wireless connection, the traffic distribateamong servers or type of service being
provided. The number of active servers and their locatioastrbe optimized in order to minimize
both the costs of server activation and service provisidms Pproblem is known as the Server and
Service Location Problem and was discussed for the firstitifidateus et al., 2000].



This is a combinatorial problem, and, thus, it is very diffido be guaranteed an optimal
solution. The use of heuristics becomes necessary in arddstain acceptable solutions in polyno-
mial time. In [Mateus et al., 2001], a Lagrangean Relaxat@mhnique [Fisher, 1981, Fisher, 1985,
Fisher et al., 1975, Galvao and Santibafez-Gonzale®, X98offrion, 1978, Reeves, 1993] is used
for this purpose and near-optimal solutions were obtaineélatively short time periods. The qual-
ity of the Lagrangean heuristic, however, significantlyalecwhen a large number of mobile units
is involved. Moreover, the response time of the algorithradgally increases as the number of
variables grows, compromising the system’s ability to jpfevan answer in a reasonable time.

In this case, the decisions have to be made dynamically,airtiree and without previous
knowledge of future requests, what leads to an online vexsithe problem. An alternative approach
would be to solve the service allocation problem each timewa nser enters the system or the
demand configuration changes, always maintaining the nsspiime at acceptable levels.

In this work, initially we show the integer programming fastation of the Server and Ser-
vice Location Problem. Afterwards, an extension for thebfgm is proposed, aiming to adapt it
to a more realistic mobile computing environment, wherestigstrictions are crucial for its service
maintenance. Two greedy online algorithms were implentetdesubstitute the Lagrangean Relax-
ation. This new approach has been called@mine Approach The experimental results revealed
that, for a large number of mobile users, the performancé@fOnline Approachovercomes the
solutions proposed up to this moment, both in response tirdesalution quality, mainly due to the
problem’s high computational complexity.

The rest of this paper is organized as follows. In Section@gwe the formulation of the
Server and Service Location Problem. In Section 3, we dsskaw online algorithms work and their
importance in this scenario. Then, in Section 4, we presentvto algorithms proposed to substitute
the Lagrangean Relaxation. In Section 5, we present theladiomn environment to conduct our
experiments and the experimental results. Finally, Sedii@ontains our conclusions and future
work considerations.

2. Modeling

The Server and Service Location Problem consists of aneént@gpgramming model, which aims to
minimize equipment maintenance and service provisionsdmgtdynamically defining the optimal
number and location of active servers in the system andadltax the demand generated by mobile
users to them.

The following notation is used:

T: set of service classes;

I. set of servers;

U: set of active mobile units;

d': binary parameter that expresses whether the mobilejunit/ is demanding a servidec T
or not;

pt: number of servers to be selected for every servigel’;

ct.: variable cost of attending the demaai@lby server; € [; itis location depended, but is more
general than just the distance between the mobile unit amdehver. It also dependends
on other parameters, such as the number of channels redqoiprdvide this service, or the
amount of data that has to be transmitted.

f}. cost of activating servei € I to provide service € T it can depend on the geographic
location of the server or on the set of services that it presidConsidering a scenario where
the server is running some content provision service, thé could be associated to some
hardware maintenance or up-to-date information mainteman

xt.: boolean variable, which is set to 1 when the mobile yin& U, requiring serviceg € T, is
attended by the facility € I, and set to 0, otherwise;



y!: boolean variable, which is set to 1 when server [ is active to provide servicee T, and
set to 0, otherwise;

The problem is formulated as follows:

The objective function (1) minimizes

(M): the total cost of activating the selected
min Y Y N il + Y ) flyt (1) servers and attending the active mo-

teT i€l jeU teT i€l bile units. The set of constraints (2)
subject to: ensures that each active mobile unit
demand for each class of service is
doay;  =di, VjeU,VteT, (2) attended by a unique server. The set

il of constraints (3) imposes a minimum
b o =pt, VteT, (3) number of servers that must be se-

il lected for each class of service. The
xﬁj <y, VteT,Viel,VjeU, (4) setof constraints (4) guarantees that

xﬁj €{0,1}, Vt,Viel,VjeU, (5) "o mobile unit will be a_IIocated toa

f , non-selected server. Finally, sets (5)

y; €{0,1}, VteT,Viel. (6)

and (6) of constraints guarantee the
integrality of variables.

The constraint on how far the mobile unit could be away from skrver geographically,
or in other words, the definition of each server's coveringiar, is not part of the mathematical
model that we present. However, it could easily be incongakaimplying no significant changes
on the optimization algorithm, by adding a signal propamatnodel as a binary matrix A, defining
whether a particular demand poititis covered or not by servet. The set of constraints (2) would
look like this:

d agzl;=d; NjeU,VteT @)
el

The capacity in terms of server load is not part of the modileei However, this only
becomes a problem in scenarios with extreme traffic ovesload

3. Online Algorithms

Online algorithms are algorithms designed to solve problevhere the input data is not known
in advance, but it is supplied during the execution of theoddigm [Albers, 2003, Albers, 1996,
Ben-David and Borodin, 1994, Goemans, 1994, Irani and Kat®96]. These algorithms are de-
fined in the context of optimization problems, where ther@ $etZ of inputs and a s&D of outputs,
and, for a given inpuf € Z, we want to obtain an outpé® € O. A cost, or a profit, is associated
with each pair {, O). The objective is to maximize the profit or to minimize th&at@ost, depending
whether it is a maximization or a minimization problem.

In an online problem, the input is given as a sequesice= o,0...0; of requests or
events. The algorithm takes each input and must computearnss after each event, providing an
output represented as a sequeate: ajas . .. a;. The response can only depend on the previously
received input, meaning that there must exist a funcfipsuch that:a; = f;(c*) [Albers, 1996,
Ben-David and Borodin, 1994].

3.1. Performance Evalutaion

Itis important to know how to evaluate the performance ofiime algorithm. The traditional worst-
case analysis is not useful, since it causes any algorithach@ve its worst-case. A well-known
metric to analyze online algorithms is the Competitive Asi [Ben-David and Borodin, 1994,



Goemans, 1994, Irani and Karlin, 1996]. In this approachpmlime algorithmA is compared to
an optimal offline algorithn® PT. TheO PT algorithm knows the entire input data in advanced and
can solve the problem with minimal cost.

Given an input sequence, let C'4(o) denote the cost associated with algoritim and
Copr(o) the cost associated with algoriththPT'. The algorithmA is said to bec-competitive if
there exists a constaat> 0 such that

Ca(o) <c-Copr(o) +a (8)

for every input sequence. It is assumed thatl is a deterministic online algorithm. The factois
also known as the competitive ratio af

3.2. Design Principles

The online algorithm design is an intuitive job, with no definrules. Some of the principles fre-
quently used are presented in this section.

Greedy Algorithms. Online algorithms generate a response immediately afteh eaquest.
Hence, in a way, these algorithms are intrinsically greetljey can be defined by a functigh

of the current request, the current state and the history.algorithm evaluates the function for each
possible way of serving the current request, and choosesctien, which minimizes the value of
the function.

Following this idea, there are three types of greedy allgorit that present their best perfor-
mance in different situations. The first type is the locakgealgorithm. It simply chooses an action
that minimizes the cost of serving the current request. €oerd type is the retrospective algorithm.
It tries to approximate the online solutions to the solwitimat an optimal algorithm would generate
if the sequence seen up to that moment (including the curegptest) were the entire sequence. To
achieve this, it keeps the history of all states up to theerrmoment. The third type is the work
function algorithm, which has been distinguished for itditgbto find optimal and near-optimal
solutions. It is a combination of the first two types of greettyorithms.

Balancing Costs. In order to choose how to serve the next request, the balamcists approach
says that an online algorithm should roughly try to incurghme cost on each of the possible future
inputs. In this scenario, no matter what the future will bes &lgorithm tries to make choices that
minimize the average of future costs, nevertheless therucost may not be minimal.

Combining OnlineAlgorithms.  There may be several solutions that use online algorithreslte

a given problem. Each of these solutions can be competitilyefor a subset of possible inputs. The
union of all this subsets would cover all the possible inputsthis way one can build a generic
online competitive algorithm for all possible inputs.

3.3. Examplesof Online Problems

Some online problems have been extensively studied, diyeafter the work of Sleator and Tar-
jan [Sleator and Tarjan, 1985]. Among them the Ski RentalbRra and theK-Server Prob-
lem [Albers, 2003, Goemans, 1994, Irani and Karlin, 1998]afrspecial interest.

The Ski Rental Problem. Consider a skier that does not know when the ski season ig goin
end. The skier has to rent the skis, paying $30 per day, or leigkis for $300. The problem is
to choose between renting or buying the skis. If the lengtthefseason is known in advance (the
offline case), say, then the obvious solution will be to rent the skigif < 300 or to buy them if

D > 300. In this formulation, the skis are not a commodity, but a 8eaey item to the practice of
the sport. This is a typical online problem, in which a sauatis computed on each event and the
future is uncertain [Goemans, 1994].

The main idea of the online algorithm is to approximate theggpmance of the optimal
offline algorithm, which knows the future and is able to mageisions to minimize the total cost.



The K-Server Problem. Let K be a set of mobile servers, each of which occupies a singte poi
in a fixed metric spac@/. A sequence of requests is given and each request must lesl serfore
the next request appears. To serve a request at locationV/, the algorithm must move a server
to z, unless there is already a server at locationWhenever the algorithm moves a server from
point a to pointb, a costd, is associated with this operation, reflecting the distaretevéen two
points in the metric space. The objective is to minimize thtaltdistance covered by the mobile
servers [Goemans, 1994, Goldbarg and Luna, 2000, Irani aniéhiK1996].

The Ski Rental and th& -Server problems were presented here in order to show the com
plexity and importance of online problems. The complexitises from the necessity of solving
problems without any previous knowledge of future inputaddt means that, as every new request
arrives, the algorithm must compute a new solution, aimirgptain the least possible cost by the end
of the request. The importance of online problems lies iir tygplication to real-time environments,
such as the Server and Service Location Problem, studidusimvork.

4. The Online Approach

The Server and Service Location Problem, formulated ini&e@, can be viewed as an online
problem. The attendance of the demand, which changes uctatagl, must be made in real time,
minimizing the response delays. In this section, an altemavay of solving this problem is pro-
posed, emphasizing its online nature.

Given an input set™ = o1, 09,...,0,, Where thes; corresponds to a new request made
by clientj € U, and, for some serviceiz), each request must be attended immediately. It means
that clientj € U must be allocated to a server before the processing of theviog request. This
allocation must be based solely on the data known up to thateng aiming to minimize the cost
of configurations™, given by:

DD D el > fiyk (9)

teT icl jeU teT icl

and the constraints (2), (3), (4), (5) and (6) must be met.

The Lagrangean Relaxation technique, used to approxiynatdle the Server and Service
Location Problem, provides near-optimal solutions intieddy short time periods. The quality of this
heuristic, however, significantly decays when a large nurobmobile units is involved. Moreover,
the response time of the algorithm gradually increaseseasutmber of variables grows, compromis-
ing the quality of service of the system. In this section weppoise two greedy algorithms to solve
the Server and Service Location Problem. The computatimraplexity of both of these algorithms
is much lower then the Lagrangean Relaxation’s, what edadigificantly lower response delays,
emphasizing the online nature of the problem.

4.1. Greedy Algorithm 1

Following some design principles presented in Section tBig,algorithm is an implementation of
a greedy approach [Mettu and Plaxton, 2000]. One importhatacteristic is that it maintains the
same computational cost for all inputs. This allows a cargtsponse delay no matter the configu-
ration of the system and its complexity.

The basic idea of this algorithm is to allocate every newiservequest to a server that has
the nearest geographical location to the point from whezadljuest has been generated, and it has
the least activation cost, giving priority to those serviiat are already active by subtracting their
activation cost from the total evaluated cost. A searchyghois made among the candidate servers,
and the one that has the minimatal cost which is equal to the sum of itservice attendance cost
and itsactivation costis allocated to the request originated at the mobile unit € U. Then,



for each request’ from j € U, requiring servicet € T, the total cost in server is given by:
total cost = ¢; + f}

Those servers that are
already active, however, are conPseudocode Greedy Online Server and Service Location (1)

sidered to have a null activa- repeat _ _ _ _
tion cost. This algorithm does read requested service and location of mobile yn& U

. for all candidate servefise I do
not have a memory, since the

requests that have already been if serveri is already activéhen
attended by the system are not
taken into account. Its pseudo-
code is given in Figure 1.

4.2. Greedy Algorithm 2

activationcost = 0;
else
computeactivationcost;
end_if
total_cost= activation.cost + serviceprovisioncost;;
if total_cost< minimalcostthen

) minimalcost=total_cost
The second greedy algorithm bestserver= i:

uses a strategy with memory. All end_if

the attended requests originated end_for

by the mobile units up to a cer- allocate the mobile unitj to the minimal cost server
tain moment are stored by the or best server;

system. Using this information end.repeat
) y ) . . .end_pseudocode
it becomes possible to give a pri-

ority to those servers that have a

greater number of mobile units

allocated to them. This priority

is made by decreasing (multiplying) the activation costsheke servers by a factfik_descr, de-

fined as:
fix.decr, => > al /> > > af; Viel

teT jeU teT jeU kel

Figure 1: Greedy algorithm 1.

The service attendance costs
are decreased according to the di&seudocode Greedy Online Server and Services Location (2)

tance between the origins of the re- repeat _ _ o
quests and the locations of the candi- read requegted serwce‘and location of mobile yné U
. for all candidate servefisc I do
date servers. The servers are divided X
. : . computefix_decr;
into three groups. The first group is computevar decr,
composed of the nearest servers and computeactivationcost;
receives the lowestervice attendance computeserviceprovisioncost;;
cost The second group is the neigh- total_cost= (activationcost x fix.decr;) +
bours of the first group and they re- . (serviceprovisioncost; x var.decr);
ceive slightly higher costs. The third if tOta_ll__costL< mli]lmal_lcostthen
group are the remaining servers that minimalcost= total.cost
. bestserver=i;
do not have their costs reduced at all. end.if
This strategy intends to give prior- end._for
ity to the nearest servers. If server allocate the mobile unitj to the minimal cost server
i € I is located inside the same memorize this allocation
area zone(defined in Section 5.1)  end.repeat
where the request has been generaté&dd-pseudocode
then theservice provision coss de-
creased by a factovar_decr, given
by: var_decr; = 20%.

Figure 2: Greedy algorithm 2 (with memory).

If serveri € I is located inside a neighbor (adjacent) area zone wherestheest has been
generated, themar_decr; = 10%. The pseudo-code for this algorithm is given in Figure 2.



5. Experiments

In this section, we present the simulation environment usedonduct the experiments and the
experimental results.

5.1. Simulation Environment

In this work, we use the mobility simulator described in [t et al., 2003] to represent a hypo-
thetical city, a typical contemporary metropolitan arebe Tity was divided into geographical zones
(e.g., a city center and some suburbs), and populated wifdretit groups of mobile units, whose

mobility behavior, and demand for different kinds of seedgovas generated to simulate a typical
24-hour day input data for the model. Given the generatedaddnat a certain period of time, a

server allocation is made in order to attend this demand.

The geographic area was simulated as a twenty-kilometitugaadial city, composed of
four area types: city center, urban, suburban, and rurgurEi3 is a representation of such a city.
The model consists of 32 area zones (network areas), eiglitparea type, which are connected
via high-capacity routes, representing the most frequeselected streets for movement support.
Four peripheral and four radial routes are defined. Threestyf movement attraction points (lo-
cations that attract population movements and at whichlpesgend considerable time periods) are
distributed over the city area. Examples are workplacesdeaces and commercial areas. Figure 4
presents the assumed distribution of movement attractiortgover the whole city area.

- City Center
[ urban Area
[ Suburban Area
%
l:l Rural Area
Center
Urban
Suburban
oxve e
\No‘\k‘)\a (\e(\ce
Area borders
Peripheral/radial high—capacity route
Figure 3: City area model consists of Figure 4: Distribution of movement at-
area zones connected via high- traction points over the city
capacity routes. area.

The population was divided into mobile unit groups accaydimthe mobility characteristics
of the individuals and to the kind of demand they generatee démand was generated for various
types of services, such as Voice, Video and Web requestsmjlga of user groups are: 24-hour
delivery boy, common worker, housekeeper and taxi drivezalddistribution and a set of requested
services were associated with each group. Some examples are

e 24h Delivery Boy Call Distribution: Poisson with mean equal to 10 min; Seevi\Voice with
duration exponentially distributed with mean equal to 80 s.

e Common Worker Call Distribution: Poisson with mean equal to 14 min; Seegi Voice with
duration exponentially distributed with mean equal to 8Weh with duration exponentially dis-
tributed with mean equal to 180 s, Video duration normalftrihuted with mean equal to 1 h.

A movement table was associated with each of these groupsdar to determine their
mobility behavior. This was done by dividing the day intoeimeriods, and associating a probability



with a group being at a certain location at a given moment.eégab and 2 show two examples of
movement tables.

Taxi Driver
00:00 - 07:00{ Home
07:00 - 08:00| Busi
08:00 - 09:00f Random
09:00 - 10:00| Res
10:00 - 11:00| Busi
11:00 - 12:00| Res

Common Worker
00:00 - 07:00| Home
07:00 - 12:00| Work
12:00 - 13:30| Work 75% Busi 20% Shop 5%
13:30 - 18:00{ Work
18:00 - 22:00] Home 70% Shop 15% Busi 154
22:00 - 24:00{ Home 80% Random 20%

o

Table 1: Movement table of a Comon Worker. .
Table 2: Movement table of a Taxi Driver.

Table 1 shows that, between 12:00 and 13:30, a common wodsea [T5% probability of
being at a work location, a 20% probability of being at an avéh high concentration of business
attraction points, and only a 5% probability of being at apghing center. On the other hand, in
Table 2, a taxi driver can be at any location between 8:00 0@l 9

5.2. Methodology

In order to evaluate the performance of the proposed algost three different allocation approaches
were simulated, and their performances compared.

Common Allocation Approach. This approach, implemented in [Mateus et al., 2003], is a sim
ulation of the way demand attendance is performed in todagtitional cellular networks. The
geographic area is divided into cells and usually one s€Radio Base Station) is responsible for
the service provision to all mobile units physically insithee cell region. Each area zone of the
simulated city area was treated as a separate cell.

Online by Time-Step or Lagrangean Allocation Approach. This approach, also implemented

in [Mateus et al., 2003], has as its main characteristic ebgierreconfiguration of the system’s re-

sources (a sequence of activations and deactivations wdrsg¢based on the current demand distri-
bution, and the current location of mobile units.

Let atime-stepbe a fixed amount of time. All information regarding the sgstecurrent
state (i.e., which services are being requested, and froithvidications) is collected duringtane-
stepand then is used to built a Server and Service Location Prolide eachtime-step The La-
grangean Relaxation technique is then applied to find theestosolution to the optimum. The
solution is then used to reconfigure the system’s state, mieains the demand is attended by the
lowest cost at that instant.

We suppose that all state transitions occur at the beginofiregtime-step If we consider
atime-stepas the inter-arrival time of two service requests thenQmdine by Time-Step Allocation
Approachreduces to th&reedy Allocation Approactwhich is described in the following section.

Online or Greedy Allocation Approach. In this work, this approach is being proposed as a sim-
plified way of solving the Server and Service Location Problén spite of its simplicity, it is more
efficient in terms of response delays. The problem is sohamh dime a new service request is
received by the system, always maintaining the responsedinacceptable levels. The two greedy
algorithms, described in Section 4, were used to allocatie Bew service request to the most suitable
(at least locally considered) server.

5.3. Experimental Results

This section evaluates the three allocation approachesibled above using simulation.



System Costs. The evaluation of system costs was performed through theesaf the objective
function of the integer programming problem. It means thiat@sts involved in server activation
(1), and all costs involved in demand attendamﬁ?)(were taken into account.

Figures 5 to 10 show a comparison among the costSashmon Online by Time-Stepsr
Lagrangeanand Online or Greedyallocation approaches. Results for different numbers dbilmo
units, and different cost proportions are analyzed. In g, 6, and 7 fixed costs are considered
to be, in average, 10 times higher than variable costs, whkeathe system more sensible to server
activation costs. In Figures 8, 9, and 10, on the other haaige costsagj) are considered to be,
in average, 10 times higher than fixed cost§.( This proportion makes the system configuration
more sensible to the distances between mobile units andrserv

System Costs (50 users, fixed cost pred.)

90000 -
common
Greedyl
Greedy2
online by, time-step

80000 —

e b m X

70000 —

60000 —

Objective function

T T T T T T T
8:00AM 10:00AM 12:00N 2:00PM 4:00PM 6:00PM 8:00PM 10:00PM

Time of day

Figure 5: System costs (50 users, fixed cost predominance).

System Costs (100 users, fixed cost pred.)

150000 -

* common
185000 B Greedyl
120000 A Greedy?

online by time-step

Objective function

45000 —

30000 —

15000

0 T T T T T T T
8:00AM 10:00AM 12:00N 2:00PM 4:00PM 6:00PM 8:00PM 10:00PM

Time of day
Figure 6: System costs (100 users, fixed cost predominance).

In all six figures, the predominance Gbommon Approackosts oveiOnline by Time-Step
Approachand Greedy Approacltosts can be seen. This result could be predicted, sincEdhe
mon Approactdoes not take any cost evaluation into account during itsashehattendance process.
Comparing Figures 5, 6, and 7, it can be seen that, as the mwhbebile units increases, the re-
lation between the costs achieved ®gmmon Approachnd the other two approaches remains and
becomes even more explicit. This is due to the fixed cost pnirtence and the fact th@ommon
Approachdoes not take them into account when performing the serl@ragion. While the opti-
mization algorithms try to allocate the maximum number @rast each server, in order to minimize



System Costs (200 users, fixed cost pred.)
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Figure 7: System costs (200 users, fixed cost predominance).
System Costs (50 users, variable cost pred.)
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Figure 8: System costs (50 users, variable cost predominanc e).
System Costs (100 users, variable cost pred.)
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Figure 9: System costs (100 users, variable cost predominan ce).

the high activation costs, tfteommon Approacjust activates them all.

The same fact, however, cannot be observed comparing BiguBand 10. In those figures



System Costs (200 users, variable cost pred.)
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Figure 10: System costs (200 users, variable cost predomina nce).

the differences between the three approaches are no lamggphcit. This is due to the variable cost
predominance, since it significantly increases the prosleomplexity (because the number of local
minimums increases). The Lagrangean Relaxation, in tide,da not able to achieve the optimal
solution anymore, remaining with an approximated solugifiar a certain amount of iterations. This
fact is illustrated in Figure 11. It can be observed that, nvhariable costs predominate and the
number of mobile units is increased, the percentage of @btsolutions obtained by Lagrangean
Relaxation decays. If for 50 mobile units the heuristic agbs the optimum in almost 100% of the
cases, for 1000 mobile units it remains with an approximabetiosn in more than 80% of the cases.
The performance of th&reedy Approactalso decays due to its inability to analyze the combinatory
nature of the problem, which becomes much heavier in thisssae It is worth noting, however,
that as the number of mobile units increases, the perforenahtheGreedy Approackapproximates
to the performance of Lagrangean Relaxation. And, as itheilshown in the next section, the delay
caused by th&reedy Approacils significantly lower than the one caused by Lagrangeanx@ttan.

_ _ _ 100%
Execution Times. Figures 12 and 13 demon-

strate the time delays of the three allocation ap?0%
proaches. It can be seen that the time sperby
by Commonand Online or Greedyapproaches 0%
are almost constant, whereas Lagrangean Re-
laxation’s time Online by Time-Step Approagh  20%

in spite of being polynomial, significantly in- 0% Fixed

creases as the number of mobile units is in- < o Variable
creased, in particular when variable costs pre- v § ®

: Q
dominate. >

Number of Mobile Units

Since the Server and Service Location
Problem is intrinsically an online problem, and  Figure 11: % of optimal solution for La-
response delays are crucial for maintaining the grangean Relaxation.
quality of service of the system, it can be de-
duced that, when the system must support more
than 500 mobile users, tl@nline or Greedy Ap-
proachis more appropriate, since the quality of its solutions @selto that of Lagrangean Relaxation
and its execution time remains constant as the number of irseeases.
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Competitive Analysis. To make the competitive analysis of the developed onlinerdlgns, their
results were compared to the Lagrangean Relaxation selufidie competitive ratio of the first
greedy algorithm¢;, was calculated as the highest value among all ratios betteetotal costs
achieved by this algorithm and the total costs achieved lyrdragean Relaxation in thH@nline by
Time-Step Approacht eachtime-step ¢; = 2.61.

The competitive analysis of the second greedy algoritmyas obtained in a similar man-
ner:co = 2.24.

It means that the costs achieved by the greedy algorithmsiratbe worst case ¢; and
co times higher than those achieved by the Lagrangean Reaaxafihis result shows that these
algorithms have quite similar efficiency when compared toaaarsophisticated technique such as
the Lagrangean Relaxation and present an attractive aliezrnfor solving the Server and Service
Location Problem in a real time environment.

6. Conclusions and Future Work

The number and the location of active servers in a mobile caimgp environment that guarantee
the attendance of mobile unit requests efficiently and nigenthe costs involved has been defined
as the Server and Service Location Problem. The solutioogoged up to this moment need a
previous knowledge of all or at least part of the inputs. Mweeg, their computational complexity is
unacceptably high when the number of variables grows. Toesditions may not be acceptable or
even possible in a real system, where the future is unceatadnusers expect fast responses to their
requests.

In this work, we presented an extension for the Server andc&drocation Problem, aiming
to adapt it to a more realistic mobile computing environmaritere time restrictions are crucial for
quality of service maintenance. Two greedy algorithms vpeoposed, implemented, and evaluated
for the extended problem. The computational complexityaihlof these algorithms is much lower
then that of the heuristics proposed up to this moment. Theraxental results revealed that, for a
high number of mobile users, their performance overcomediduristics implemented so far, both
in response time and solution quality.

Online problems are frequently defined as metric task sys{énani and Karlin, 1996]. It
is a generic model used to describe a vast class of problerassaquence of tasks that must be
executed. A possible extension for this work is to define & and Service Location Problem as
a metric task system and solving it using the associatedidigts.

An important modification of the model is to add capacityniegbns on the servers, both in
terms of radio coverage, power control and the maximum numbattended users. This improve-



ment would turn the problem even closer to a real 3G mobilepedimg environment.

An alternative application of the proposed architecturedstent distribution. Given the
knowledge about demand distribution for different kindsedvices, the requested data can be moved
to the closest servers to those locations. Additional ssusuld have to be considered in such an
environment, such as: memory availability for the movedents, content replacement policies, and
the minimum number of requests needed for a particularseivibe moved/replicated in a different
server.
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