
Performance Aspects of a Probabilistic Resource
Location Algorithm

Thiago P. Damas1 Nelson Duarte Filho 2 Mario D. Goulart 1

Ingrid Jansch-Pôrto 1 Fernando Pedone 3

1Programa de Pós-Graduação em Computação, Instituto de Informática - UFRGS
Porto Alegre, RS, Brazil

e-mail: {tpdamas, mario, ingrid}@inf.ufrgs.br

2Departamento de Matemática, Fundação Universidade Federal do Rio Grande
Rio Grande, RS, Brazil

e-mail: dmtnldf@furg.br

3Computer Networking Laboratory, École Polytechnique Fédérale de Lausanne (EPFL)
CH-1015, Lausanne, Switzerland
e-mail: fernando.pedone@epfl.ch

Abstract. Resource location is a fundamental problem for large-scale distributed
applications. In order to deal with this problem we have developed PSEARCH,
a probabilistic protocol for large-scale networks. PSEARCH is an epidemic al-
gorithm that uses basic concepts of Bayesian statistical inference to execute
probabilistic queries. A probabilistic query has a predicate as parameter and
returns a set of sites where the predicate is believed to hold. The query is prob-
abilistic because there are some chances that the predicate does not hold in all,
or even in any, of the sites returned. To evaluate the performance of PSEARCH,
we have developed a simulation model and a prototype of the algorithm. This
paper discusses the performance of PSEARCH and presents results based on a
comparison with a flooding algorithm.

1. Introduction

Searching for resources is a fundamental problem for large-scale distributed applications.
Recently, the problem has re-emerged in the context of peer-to-peer systems such as
Gnutella where users find and share information on the Internet (e.g., MP3 music files)
[Oran, 2001] [Clark, 2001].

PSEARCH is a probabilistic search protocol for large distributed systems intro-
duced in [Pedone et al., 2002]. Contrary to deterministic search mechanisms, which strive
to compute a precise result, PSEARCH may sometimes provide applications with incorrect
information. As we show in this paper, the probabilistic nature of PSEARCH allows for an
efficient search mechanism. Probabilistic algorithms have been largely exploited in large-
scale distributed systems to improve scalability [Gupta et al., 2001a] [Gupta et al., 2001b]
[Birman et al., 1999], but their use as search mechanisms has been more limited.

PSEARCH formalizes the probabilistic resource-location problem with the notion
of probabilistic queries. A probabilistic query has a predicate as parameter and returns

a set of sites where the predicate is believed to hold. Predicates are application depen-
dent: a predicate could be, for example, “the site stores some music file X ,” or “the site
is equipped with a high-performance CPU.” After receiving the result of a query, an ap-
plication would, in the first case, request file X from one of the returned sites; and, in
the second case, send a CPU-bound task for execution to one of such sites. The query is
probabilistic because there are some chances that the returned result is not correct, that is,
the queried predicate does not hold in all, or even in any, of the sites returned.

PSEARCH is an epidemic-like algorithm that uses basic concepts of Bayesian sta-
tistical inference. Sites periodically exchange tables containing information about the
execution of previous queries. The information received is used to forward queries to the
locations where most likely a queried predicate holds. Sites use a gossip technique to ex-
change these tables. Table entries are updated according to causal relationships between
them and information is determined using basic Bayesian statistical inference.

This paper presents a performance evaluation of the PSEARCH protocol using a
simulation model and a system prototype. Our experiments aim at investigating the con-
vergence, scalability, and adaptation to changes. As a reference, we use a deterministic,
flooding-based algorithm.

Traditionally, the location of resources and information in a distributed system
has been accomplished using mechanisms such as global indexes. There are two funda-
mental differences between those mechanisms and PSEARCH: first, mechanisms based on
indexes perform search by reference, while PSEARCH performs search by content; sec-
ond, index-based mechanisms are normally deterministic, while PSEARCH is probabilis-
tic. The best example of search by reference is the DNS (Internet Domain Name System)
service [P. Albitz, 1998], largely used today. As many other systems, it has also been
designed based on deterministic mechanisms [Dabek et al., 2001] [Clarke et al., 2000]
[Kubiatowicz et al., 2000] [Demmer and Herlihy, 1998] [Tanenbaum et al., 1990]
[Zhuang et al., 2001].

Differently from deterministic mechanisms, PSEARCH tries to locate information
based on patterns of use: if a certain information can be found at some site, there are good
chances that this site stores other interesting information of the same kind—conceptually,
this is similar to a cache mechanism. Such a pattern can be the result of the way resources
are distributed in the network (e.g., “super-sites” may store much of the available informa-
tion) or the patterns of accesses during certain periods of time (e.g., a new music release
is likely to increase searches for the corresponding singer). Figure 1 [Gnutella Meter]
illustrates the latter phenomenon. The graph shows that most accesses in the Gnutella
network during a 50-minutes sample are for a few data items. Thus, during this time in-
terval, even if a site contains only a few resources, it will satisfy most queries. Besides
exploiting such characteristics, PSEARCH is able to adapt to changes in the patterns of use
and system failures.

In the context of peer-to-peer networks, some alternative ways of locating re-
sources by content in large-scale networks have emerged. Systems like Gnutella
[Oran, 2001] execute brute-force searches: processes propagate queries to their neighbors
in order to find the location of files. The work in [Adamic et al., 2001] builds on the as-
sumption that the number of links connecting processes in large-scale networks follows

0

1

2

3

4

5

6

0 50 100 150 200

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es
 (

%
)

Item reference number

Games
Movies

Music
Others

Figure 1: Frequency of searched-for terms during 50 minutes on Gnutella

a power-law distribution, that is, very few processes are connected to most processes in
the system and most processes are connected to a few processes. Based on this observa-
tion, decentralized algorithms are proposed which strive to visit first processes with a high
number of connections. This approach aims at improving the time to reach all sites in the
network and consequently floods the system with messages. On the contrary, PSEARCH

tries to reduce the number of messages injected in the network by performing a more spe-
cialized search and reaching first sites that have higher changes of satisfying the queried
predicate.

2. System Model and Assumptions

2.1. Processes and Communication

The model may be generally defined as a set Π = p1, p2, . . . of processes (or sites) which
communicate by message passing. The system is asynchronous, we make no assumptions
on the execution and communication times.

Processes may crash and subsequently recover. Until it crashes, a process follows
its protocol—there are no Byzantine failures. When a process crashes it loses all its mem-
ory contents. The notions of crash and recover also capture, although conservatively, the
behavior of processes that “join” and “leave” the system spontaneously. This is typically
what happens with Internet users on dial-in connections who are online for short periods
of time.

Processes can be correct or faulty, according to their behavior with regard to fail-
ures. A correct process will be eventually permanently up. A faulty process may crash
and recover an unbounded number of times until it crashes and never recovers. Obviously,
we do not expect processes to be operational forever. The “eventually permanently up”
notion is a theoretical abstraction to simplify the treatment of the problem. In practice
it means that the process remains up for a “reasonable” amount of time (e.g., enough to
execute a few hundred queries).

We assume that communication links, defined by the primitives send(m) and
receive(m), can lose messages but are fair, that is, if pi retransmits a message m to pj

continuously, pj will eventually receive m. The network is partially connected. The set
of neighbors of pi is denoted by neighbors(pi).

Each process is equipped with a timer. Timers allow processes to give up waiting
for events that may never happen, such as receiving for a message from a crashed process.
But timers give no guarantee with respect to processes crashes or messages losses. For
example, the occurrence of a timeout when pi is waiting for a message from pj may mean
that pj has crashed, the message has been lost, the communication link is too slow, or pi’s
timer is too fast, and pi is unable to distinguish among these cases.

2.2. Psearch Specification

PSEARCH implements probabilistic queries. A probabilistic query for predicate Σ is de-
fined by function Q(Σ), which returns a set of processes. Probabilistic queries are defined
by two properties:

• P1: With probability φ, query Q(Σ) returns some pi in π in which Σ holds
• P2: Eventually no faulty process is returned in the result of a query

Probability φ represents the percentage of executed queries that return at least one
process in which the predicate holds. A random choice of any subset of processes is a
simple, but inefficient, way to implement probabilistic queries. For example, consider a
system of 100 processes where every predicate holds in exactly three of them and queries
always return two processes randomly. By applying simple probability theory, we calcu-
late φ = 1−97/100×96/99 = 0.0594. PSEARCH improves the values of φ by selectively
including processes in the result set of a query, trying to avoid processes where the queried
predicate does not hold. Such an algorithm, however, requires processes to exchange local
information with each other.

Property P2 ensures that eventually only “useful” processes are returned as the
result of a query. Faulty processes should be avoided because usually the processes re-
turned in the result of a query will be subsequently contacted, for example, so that the
searched object can be reached. Moreover, by trying to “eventually” remove faulty pro-
cesses, queries will always strive to minimize the number of faulty processes returned.

3. The Psearch Protocol

PSEARCH combines epidemic techniques to propagate local information across the sys-
tem and basic notions of Bayesian statistical inference to provide processes with a way of
learning about their abilities to respond successfully to queries. The algorithm presented
is an improved version of the one in [Pedone et al., 2002], as described next.

3.1. Executing queries

To execute query Q(Σ) upon request from a local application or from other process, pi

evaluates Σ and depending on the outcome, either replies back to the caller or forwards
the query to other processes. Each message received from a process with a query also
contains a set of visited processes. The visited set aims to reduce the chances that the

same query will be received more than once by the same process. To forward a query, pi

chooses those processes in its s_table with the highest probability of success that are not
in the visited set. Before pi forwards the query, if it decides to do so, it updates the visited
set with such process. The use of a visited set, however, does not completely prevent the
reception of duplicated requests. For example, consider that p1 forwards query Q(Σ) to p2

and p3. Even though p2 and p3 will not forward Q(Σ) to processes that already received it
from p1, they may both decide to forward Q(Σ) to a common process that not yet received
Q(Σ).

To limit the diameter of Q(Σ), that is, the maximum number of times D that Q(Σ)
can be forwarded to other processes, a message containing Q(Σ) also carries a diameter
counter, decremented each time the query is forwarded. If the counter reaches zero at
some process pj and Σ does not hold at pj , instead of forwarding Q(Σ) to another process,
pj returns to the caller a subset of size L of its s_table with the processes in which most
probably Σ holds. Once pi receives the response back from the processes it sent the query
to, it determines its own response, based on the probability of success of the entries in its
s_table and the probability of success of the results received from other processes. Notice
that D and L are parameters of the algorithm.

To execute query Q(Σ), pi calls function Q(Σ, d, pi, porig) (see Algorithm 1).
Function maxL(set) returns a subset of size L containing those processes in set with the
highest probability of success. For each query received, pi calculates the beliefs a poste-
riori of each probability of success interval, explained in the next section. The probability
of success is taken as the average value of the interval with highest degree of belief.

The query execution algorithm presented in this section differs slightly from the
one in [Pedone et al., 2002]: In order to minimize the effects of timeouts, only the process
that originated a query waits for its results. Intermediate processes only forward the query
and do not wait for responses.

3.2. Updating s_tables

The update algorithm (see Algorithm 2) is an epidemic-like protocol where processes
periodically send their s_tables to their neighbors. As local s_tables are updated with
the information received from other processes, data travels through the network indirectly
from process to process. When pi sends its s_table to other processes, its entry in the
table is more recent than any other entries in the table since it is continuously updated by
pi while the other entries possibly suffer delays when they are propagated in the network.

For simplicity, in the original version of the algorithm, processes assigned times-
tamps to their entries using a mechanism similar to Lamport’s timestamps [Lamport, 1978].
If an entry e is more recent than an entry e′ in pi’s s_table, the timestamp assigned to e
is greater than the timestamp assigned to e′ (the converse is not necessarily true). Thus,
before sending the s_table to its neighbors, pi updates the timestamp of its entry with a
value bigger than any other timestamps in the table. As pointed out by in [Mattern, 1989],
solutions using vector clocks, extend Lamport’s clocks on static environments.

When pi receives s_tablej from pj, it updates its s_table using the entries in
s_tablej and taking into account the timestamps associated with the entries. The idea is
to try to keep only the most recent entries from both s_tables. For entries in both s_tables
related to the same process, pi can safely determine the most recent one by looking at their

Algorithm 1 Query execution (for process pi)
1 function Q(Σ)
2 return(Q(Σ, D, {pi}, pi))
3

4 function Q(Σ, d, visited, porig)
5 if Σ holds at pi

6 for l = 1..I do P [B]l ←
P [B]l×P [S|B]l∑
k

P [B]k×P [S|B]k

7

8 send([pi, 1,−], porig)
9 else

10 for l = 1..I do P [B]l ←
P [B]l×P [S̄|B]l∑
k

P [B]k×P [S̄|B]k

11

12 bestSet← maxL(s_tablei \ visited)
13 result← bestSet
14 if d > 0
15 visited← visited ∪ bestSet
16 for each pj ∈ bestSet
17 send(Q(Σ, d− 1, visited, porig), pj)
18 if pi = porig

19 set timer
20 wait until (receive(response) | response = success) or timeout
21 for each received response
22 result← maxL(result ∪ response)
23

24 else
25 result← bestSet
26 P [S|B]← P [S|B]l s.t P [B]l is the max in P [B]1, P [B]2, . . . , P [B]I
27 s_tablei ← s_tablei \ {[pi, ∗, ∗]}
28 s_tablei ← s_tablei ∪ {[pi, P [S|B],−]}
29 send(result, porig)
30

31 when receive Q(Σ, d, visited, porig) from pj

32 Q(Σ, d, visited, porig)

Note: In line 12 we simplify the notation, denoting the set of processes in entries in s_table that are not in visited by s_table \visited.
Thus, “\” is not the “standard” set operator since s_table and visited sets are not of the same type.

timestamps. For entries related to different processes, choosing the one with the greater
timestamp does not ensure that the most up to date one is selected. This happens for two
reasons: First, since the relation between entries is a partial order [Lamport, 1978], two
entries may not be related (i.e., the order relationship does not apply to the). Second, from
the way timestamps are created, an entry with a timestamp bigger than the timestamp of
another entry does not necessarily mean that it is the most recent one [Mattern, 1989], if
the entries refer to different processes.

In order to make the “best” processes the most known by the other processes,
the ones with higher probability of success propagate their s_tables more frequently than
those with lower probability of success. We implemented this as follows: initially, ev-
ery process forwards s_tables with the same frequency. After responding successfully
to a query, the frequency is increased (until it reaches some maximum threshold); after
responding unsuccessfully to a query, the frequency is decreased (until it reaches some
minimum threshold).

3.3. The probability of success

The probability of success of a process is a local estimate of the likelihood that the next
queried predicate received by the process will hold. It is an estimate because the process
never knows what the real chances of success are. Processes permanently re-calculate

Algorithm 2 Updating s_table (for process pi)
1 Initialization:
2

3 s_tablei ← ∅
4 I ← 100
5 for l = 1..I
6 P [B]l ← 1/I
7 P [S|B]l ← (2l − 1)/2I
8 P [S|B]← P [S|B]l such that P [S|B]l ∈ P [S|B]1, P [S|B]2, . . . , P [S|B]I

9

10 To update the search table:
11

12 periodically do
13 new_tmp← biggest timestamp in s_tablei + 1
14 s_tablei ← s_tablei \ {[pi, P [S|B],∗]}
15 s_tablei ← s_tablei ∪ {[pi, P [S|B],new_tmp]}
16 for each pj ∈ neighbors(pi)
17 send(s_tablei , pj)
18

19 when receive s_tablei from pj

20 for each [pk, P [S|B]k, tmpk] ∈ s_tablej

21 if [pk, P [S|B]k‘, tmpk‘] ∈ s_tablej

22 if tmpk‘ < tmpk

23 s_tablei ← s_table1 \ {[pk, P [S|B]k‘, tmpk‘]}
24 s_tablei ← s_tablei ∪ {[pk, P [S|B]k, tmpk]}
25 else
26 s_tablei ← s_tablei ∪ {[pk, P [S|B]k, tmpk]}
27

28 while |s_tablei| ≥M
29 oldestEntries← {[pk, ∗, tmpk]|[pk, ∗, tmpk] is the oldest entry in s_tablei}
30 s_tablei ← s_tablei \ oldestEntries

their probabilities of success after executing a query using some heuristics. In PSEARCH,
processes use the relation between past successes with respect to the total number of
queries locally executed, which roughly means that the more queries the process is able
to successfully execute, the higher the chances that future queries will also be successful.

To determine its local probability of success, P [S|B], each process keeps a list
of probabilities of success intervals [0, prob1), [prob1, prob2), . . . , [probk, 1], where 0 ≤
prob1 < prob2 < . . . < probk ≤ 1, and degrees of belief P [B]1, P [B]2, . . . , P [B]k+1 that
P [S|B] lies within each one of these intervals—notice that

∑
l P [B]l = 1. Each interval

has an approximate probability of success, P [S|B]l, equal to the average of the values in
the interval. Probability P [S|B] is taken as the P [S|B]l with the highest degree of belief.
Figure 1 illustrates an initial configuration with 5 intervals. Since all entries have the same
degree of belief, P [S|B] can be any value among 0.1, 0.3, 0.5, 0.7 and 0.9. The length of
this list determines the accuracy with which a process can infer its probability of success.
The updating is done according to the Bayesian statistical inference. After responding
successfully to a query, a process compute equation 1; after responding unsuccessfully to
a query, a process compute equation 2.

P [B|S]l =
P [B]l × P [S|B]l

∑
l P [B]l × P [S|B]l

, (1)

P [B|S̄]l =
P [B]l × P [S̄|B]l

∑
l P [B]l × P [S̄|B]l

, (2)

P [B]l P [S|B]l P [S̄|B]l

[0.0, 0.2) 0.2 ≈ 0.1 ≈ 0.9
[0.2, 0.4) 0.2 ≈ 0.3 ≈ 0.7
[0.4, 0.6) 0.2 ≈ 0.5 ≈ 0.5
[0.6, 0.8) 0.2 ≈ 0.7 ≈ 0.3
[0.8, 1.0) 0.2 ≈ 0.9 ≈ 0.1

Figure 2: Initial configuration

P [B]l P [S|B]l P [S̄|B]l

[0.0, 0.2) 0.2 ≈ 0.04 ≈ 0.96
[0.2, 0.4) 0.2 ≈ 0.12 ≈ 0.88
[0.4, 0.6) 0.2 ≈ 0.20 ≈ 0.80
[0.6, 0.8) 0.2 ≈ 0.28 ≈ 0.72
[0.8, 1.0) 0.2 ≈ 0.36 ≈ 0.64

Figure 3: Successful query

4. Psearch Assessment

In the following we consider the performance of PSEARCH under various conditions. The
main goals of the experiments were to evaluate (a) the ability of the algorithm to converge
to the real probabilities of success, (b) the scalability of PSEARCH and (c) the algorithm’s
adaptability to changes in these probabilities.

4.1. Reference Algorithm

As a reference, we compare our results to a basic flooding algorithm (Algorithm 3). In the
flooding algorithm, when a process executes a query Q(Σ) and gets a negative response,
it forwards the query to all its neighbors. As in the PSEARCH algorithm, the maximum
diameter of a query is determined by D. Processes in the flooding algorithm keep a list of
all received queries, so they can discard duplicated queries.

Algorithm 3 Flooding algorithm (for process pi)
1 function Q(Σ)
2 return(Q(Σ, D, pi))
3

4 function Q(Σ, d, porig)
5 if Σ holds at pi

6 send([pi, true], porig)
7 else
8 if d > 0
9 for each pj ∈ neighbors(pi)

10 send(Q(Σ, d− 1, porig), pj)
11 if pi = porig

12 set timer
13 wait until receive(response) or timeout
14 else
15 send([pi, false], porig)
16

17 when receive Q(Σ, d, porig) from pj

18 Q(Σ, d, porig)

4.2. System Setup

In order to evaluate the performance of PSEARCH, we developed a simulation model and a
prototype of the algorithm. The event-based simulation model was developed in C++, us-
ing the CSIM [Mesquite Software] simulation package and all experiments were executed
in a single-processor machine. The prototype is composed of Java processes running in a
PC cluster with 16 nodes. In order to get a high number of processes in the system under
evaluation, we used multiple processes per machine.

The behavior of the processes in the simulation model and in the prototype con-
sists in generating queries, answering to queries and, in the case of PSEARCH, updating

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

process id

probability of success

Figure 4: Probabilities of success for 100 processes.

and propagating local information (s_tables). In both cases, the experiments start by as-
signing processes real probabilities of success. This is how we represent the “quality” of
the processes, that is, the amount of resources that each process has. If we say that a pro-
cess has a real probability of success equal to 0.3, it means that this process will answer
successfully to 30% of all queries it receives. The scenario we used was composed of pro-
cesses whose probability of success follow a power-law distribution, as showed in Eq. (3).
Figure 4 shows the probabilities of success assigned to each process in the experiments
(for 100 processes). Queries are generated according to a uniform distribution.

probability of success =
0.9

pid−1.25
(3)

In the simulations, the network has a random topology, with an average connectiv-
ity of four links per process. It is generated by assigning links randomly between pairs of
processes and then calculating the shortest paths between all processes to connect the net-
work. Pairs of processes connected by the random links generated at the first step of the
network construction are 1-hop distant. The distances assigned to the other pairs of pro-
cesses, which are largest than one hop, are obtained by applying the result of the shortest
path function. Processes in the PSEARCH system propagate their s_tables to 1-hop distant
processes. PSEARCH processes have s_tables with 10 entries and best sets with 3 entries.

4.3. The Results

We present next the results concerning PSEARCH’s convergence, scalability, and adapta-
tion. Convergence is related to the time and cost needed by PSEARCH to stabilize (i.e.,
reach the desired probabilities) starting from some initial configuration ; scalability shows
how the algorithm behaves when processes are added to the system; adaptation illustrates
the algorithm’s capacity to reorganize its data structures as the real probabilities of success
change during the execution.

The percentage of hits result showed in the graphs represents the percentage of
queries that were successfully executed (i.e., queries that return at least one process where
the predicate holds).

Convergence. To evaluate PSEARCH’s convergence, we performed experiments with
20000 queries (about 200 per process). Experiments were conducted for different search
diameters, varying from 0 to 3 hops, and data was collected after processes executed 50,
100, and 200 queries. The results (Figure 5 for the simulation and Figure 6 for the proto-
type) are presented in terms of the mean number of messages exchanged by the protocols
per query, and the percentage of hits. From the graphs, for all search diameters, PSEARCH

converges faster than our reference algorithm. Moreover, with about 13 messages per
query, PSEARCH reaches a plateau, indicating that deeper searches will not significatively
improve the number of hits of the algorithm when greater diameters are used. Indeed,
with greater diameters, the flooding algorithm suffers from a quick increase on the num-
ber of messages. For all search diameters, the flooding algorithm does not reach the same
hit ratio as PSEARCH, and in all cases, more messages are sent per query.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
ts

 (
%

)

messages per query

D=0

D=0

D=1

D=1

D=2

D=3

D=2

D=3

Psearch: 50 queries/process
Psearch: 100 queries/process
Psearch: 200 queries/process
Flooding: 50 queries/process

Flooding: 100 queries/process
Flooding: 200 queries/process

Figure 5: Convergence (simulator data)

Scalability. Experiments were also conducted to study the behavior of PSEARCH as the
number of processes increases. In the simulated experiments, processes were connected
in the average to four other processes (Figures 7 and 8 for the simulation and the proto-
type data, respectively). Even when the number of processes is doubled, the number of
messages per query remains the same for diameters of 0 and 1 for the results found during
simulation and execution of our prototype. For diameters of 2 and 3 hops, the increase
in the number of messages is at most 3 messages per query. Performance degradation is
more significant in the percentage of hits. While simulation and prototype data are similar
for diameters of 2 and 3, the results for diameters of 0 and 1 present different trends: sim-
ulation data suggests that there is a significant variation for D = 0 and almost no variation
for D = 1, and prototype results produced opposite results. In the worst case, however,
when D = 0, the reduction on the number of hits is about 10%.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

hi
ts

 (
%

)

messages per query

D=0

D=0

D=0

D=0

D=1D=1

D=1

D=1

D=2

D=2

D=2

D=2

D=3

D=3

D=3

D=3

Psearch: 50 queries/process
Psearch: 100 queries/process
Psearch: 200 queries/process
Flooding: 50 queries/process

Flooding: 100 queries/process
Flooding: 200 queries/process

Figure 6: Convergence (prototype data)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

hi
ts

 (
%

)

messages per query

D=0

D=0

D=1

D=2

D=2

D=3

D=3

Psearch: 100 processes
Psearch: 200 processes

Figure 7: Scalability (simulator data)

Adaptation. To evaluate PSEARCH’s adaptation, we performed the following experi-
ments. Processes start the execution with a distribution of real probabilities of success,
as done before. Once the system converges, that is, the probability of success of the best
processes become known by most of the process of the system, we varied them—this hap-
pened after 20000 queries had been executed. Our intent was to fully stress the system,
and so, we reversed the order of probabilities of success, that is, the process that had the
highest probability of success was assigned the worst one, the process with the second
highest probability of success was assigned the second worst, and so forth. The results
found (Figures 9 and 10) show that PSEARCH reaches similar convergence values even
after the probabilities of success are reversed.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

hi
ts

 (
%

)

messages per query

D=0

D=1

D=1

D=2 D=3

Psearch: 100 processes
Psearch: 200 processes

Figure 8: Scalability (prototype data)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

hi
ts

 (
%

)

messages per query

D=0

D=1

D=2

D=3

Psearch: 200 queries/proc
Psearch: 200 queries/proc (prb inv)

Figure 9: Adaptation (simulator data)

5. Conclusion

The main goal of this work was to better understand the behavior of a probabilistic al-
gorithm from different perspectives. The current study has concentrated on convergence,
scalability, and adaptation. As showed in this paper, PSEARCH is quite promising.

Convergence, which expresses the ability of the algorithm to stabilize, showed that
PSEARCH becomes stable in about half the time needed by a typical flooding algorithm,
our protocol of reference. Our scalability study showed that PSEARCH can be nicely
employed in large networks. More precisely, we observed that even doubling the number
of sites, the efforts necessary to converge did not change significantly; PSEARCH stayed

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

hi
ts

 (
%

)

messages per query

D=0

D=0

D=1

D=1

D=2
D=3

Psearch: 200 queries/proc
Psearch: 200 queries/proc (prb inv)

Figure 10: Adaptation (prototype data)

almost stable even with 40 messages per query.

Adaptation, which reflects the behavior of the algorithm when sites change their
probabilities of success, demonstrated the responsiveness of the algorithm to dynamic
changes. The results showed that PSEARCH is also promising concerning fault-tolerant
behavior: a failed site can be thought of as one with very low probability of success.
Since PSEARCH can adapt to varying probabilities, we expect it to adapt to the failure of
sites as well.

We intend to invest more efforts on the design, implementation, and evaluation of
PSEARCH. Further design issues will consider highly-dynamic environments and more
sophisticated timestamp mechanisms. We are currently extending our experiments to
directly cover faulty processes and links. Finally, other improvements such as the learning
ability of joining and recovering processes are also being investigated.

References

Adamic, L. A., Lukose, R. M., Puniyani, A. R., and Huberman, B. A. (2001). Search in
power-law networks. Technical report, Hewlett-Packard, Hewlett-Packard Laborato-
ries.

Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y. (1999).
Bimodal multicast. ACM Transactions on Computer Systems, 17(2):41–88.

Clark, D. (2001). Face-to-face with peer-to-peer networking. IEEE Computer, 34(1):18–
21.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2000). Freenet: A distributed anony-
mous information storage and retrieval system. In Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobservabil-
ity, pages 46–66.

Dabek, F., Brunskill, E., Kaashoek, M. F., Karger, D., Morris, R., Stoica, I., and Bal-
akrishnan, H. (2001). Building peer-to-peer systems with Chord, a distributed lookup
service. In Eighth IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII).
May 20–23, 2001, Schloss Elmau, Germany, pages 81–86.

Demmer, M. J. and Herlihy, M. (1998). The arrow distributed directory protocol. In
Kutten, S., editor, 12th International Symposium on Distributed Computing, volume
1499 of Lecture Notes in Computer Science, pages 119–133.

Gnutella Meter. http://www.gnutellameter.com.

Gupta, I., Chandra, T. D., and Goldszmidt, G. S. (2001a). On scalable and efficient
distributed failure detectors. In Proceedings of the 20th ACM Symposium on Principles
of Distributed Computing (PODC’2001), pages 170–179.

Gupta, I., van Renesse, R., and Birman, K. P. (2001b). Scalable fault-tolerant aggrega-
tion in large process groups. In Proceedings of the 2001 International Conference on
Dependable Systems and Networks, pages 433–442. IEEE Computer Society.

Kubiatowicz, J., Bindel, D., Eaton, P., Chen, Y., Geels, D., Gummadi, R., Rhea, S.,
Weimer, W., Wells, C., Weatherspoon, H., and Zhao, B. (2000). Oceanstore: An archi-
tecture for global-scale persistent storage. ACM SIGPLAN Notices, 35(11):190–201.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Mattern, F. (1989). Virtual time and global states of distributed systems. In et al., M. C.,
editor, Proceedings of the International Workshop on Parallel and Distributed Algo-
rithms, pages 215–226.

Mesquite Software. CSIM 18 simulation engine (C++ version).

Oran, A. (2001). Peer-to-peer: Harnessing the Benefits of a Disruptive Technology.
O’Reilly & Associates.

P. Albitz, C. L. (1998). DNS and BIND. O’Reilly & Associates, 3 edition.

Pedone, F., Duarte, N. L., and Goulart, M. (2002). Probabilistic queries in large-scale
networks. Lecture Notes in Computer Science, 2485:209–226.

Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp, G. J., Mullender, S. J.,
Jansen, J., and van Rossun, G. (1990). Experiences with the amoeba distributed oper-
ating system. Communications of the ACM, 33(12):46–63.

Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz, J. D. (2001).
Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemination.
In Proceedings of the 11th international workshop on Network and operating systems
support for digital audio and video, pages 11–20. ACM Press.

