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Abstract. This paper presents how to model and carry out the performance 
analysis of message-oriented middleware (MOM) using Generalised 
Stochastic Petri Net (GSPN) models. The results obtained from the Petri Net 
analysis are compared against ones measured in a commercial MOM. 
Additionally, some results are presented in order to demonstrate the 
flexibility and the benefits of the proposed model. This research also focuses 
on how to improve the MOM performance by suggesting appropriated 
techniques and adjustments to the MOM basic architecture. Finally, we 
point out some decisions usually taken by systems administrators that may 
have a major impact on the performance of MOM systems. 

1. Introduction 

The number of middleware products available for building distributed applications is 
rapidly increasing. Those products are usually implemented according to open standards 
such as DCE (Distributed Computing Environment) [18], RM-ODP (Reference Model – 
Open Distributed Processing) [16] and CORBA (Common Object Request Broker 
Architecture) [17]. Additionally, proprietary middleware such as MQSeries (IBM), 
.NET (Microsoft) and RMI (Sun) have also been widely used by distributed application 
developers. 

 Such variety of standards and products makes difficult a comparison between 
their performances. In general, it is necessary a careful analysis of the system’s 
architecture in order to achieve high performance [1]. System administrators and 
researchers should rely on the use of quantitative evaluation and modelling techniques, 
since it is laborious to accurately predict the performance behaviour of these 
technologies. 

 The modelling and performance analysis of middleware systems is a recent 
research area. Tran [1] presents a performance evaluation analysis of Message-Oriented 
Middleware (MOM) though measurements, which focused on the IBM’s MQSeries 
V5.2 in a test environment (Testbed). The authors have evaluated the impact of some 
factors such as buffer sizes and persistence mechanisms in variety of scenarios. 
Khorasani [10] presents a model for Middleware in telecommunications focusing on the 
performance issues. The analysis focused on the impact of adding security functions to 
a middleware prototype. Verdickt [11] [9] proposes an extension of the traditional 



queue networks systems [5], namely Layered Queuing Networks (LQN), to model the 
performance of the Common Object Request Broker Architecture (CORBA). Abdul-
Fatah [2] has implemented four different test prototypes based on the CORBA 
architecture, with different configurations for client-server interaction. The experiment 
results clearly show that there was no better choice amongst them. The authors affirm 
that a better solution depends on the load requirements of a particular application. Due 
to the difficulty to set up test environments, we consider such results as an indication to 
the need of analytical and simulation models for Middleware systems. Pang [3] 
implements a testbed in order to perform benchmarking tests of two MOM, namely 
TIB/RV and SonicMQ. The tests evaluated the system’s capacity of message delivering 
(effective throughput), stability under high loads and resource utilization. From the 
point of view of Petri Net (PN) modelling, we consider that one attractive characteristic 
of the TIB/RV’s architecture is that the component responsible for delivering messages 
uses User Datagram Protocol (UDP) as the transport protocol. As UDP have not any 
implicit or explicit control messages to end-user applications, it is possible to simplify a 
PN model and consequently to increase performance in simulations. Liu [4] proposes a 
model for performance analysis of middleware Business Process Integration (BPI). The 
model is based on LQN and its precision has been compared against the results obtained 
by measurements performed using the IBM CrossWorlds InterChange Server. As far as 
we know, until the publication of this paper there is no related work to PN-based 
modelling and evaluation of Message-Oriented Middleware. 

 The main objective of this work is to model and to evaluate performance 
behaviour of middleware systems relying on Petri Nets. Particularly, we focus the 
analysis on Message-Oriented Middleware (MOM) due to its vast utilization in the 
marketplace and present a GSPN model for the IBM MQ Series v5.2, currently known 
as WebSphere MQ 5.3 [12].. In turn, the use of Petri Nets models was chosen for the 
following reasons: 

• It is a well-known, widespread and suitable formalism for system performance 
evaluation; 

• It allows a natural modelling of various MOM elements such as queues, senders and 
receivers application; 

• It catches several dynamics aspects such as asynchronous operation, queue and 
message sizes, failures in components, Quality of Service (QoS) levels, capacity, loss 
rate, deadlock etc. 

The remainder of this paper is organized as follows. Section 2 briefly presents theory 
of Generalised and Stochastic Petri Nets (GSPN). Fundamentals of Message-Oriented 
Middleware are described in Section 3. PN-based MOM models used in the evaluation 
as well as the experiments results from simulations are presented in Section 4. Finally, 
Section 5 presents some concluding remarks and future works. 

2. Generalised Stochastic Petri Nets 

Petri nets are a family of formal specification techniques that allows for a graphical, 
mathematical representation and have powerful methods, which allow designers to 
perform qualitative and quantitative analysis. Place/transition Petri nets are used to 
model a logical point of view of the systems, however no formal attention is given to 
temporal relations and constraints.  



 GSPN is one of the most extensively adopted classes of stochastic Petri nets. A 
GSPN is defined by a set of places, a set of transitions, relations describing pre-
conditions, post-conditions, and inhibition conditions; and a mapping from the set of 
places to the natural numbers describing the model's state. The set of places represents 
the set of resources, local states and system's variables. The set of transitions represents 
the set of actions. This set is divided into two subsets: the set of immediate transitions 
that depicts a set of irrelevant actions under the performance point of view; and the 
subset of timed transitions. Besides, two other functions are taking into account for 
representing timing and priorities. The timing function associates to each timed 
transition a non-negative real numbers, depicting the respective exponential transition 
delay (or rate). The priority function associates to each immediate transition a natural 
number that represents the respective transition priority level.  

 Transitions are fired under interleaving firing semantics, a common semantics 
adopted even in the untimed place/transition model. However, immediate transitions 
have higher priority than those timed transitions. 

 From a given GSPN, a reachability graph is generated containing markings of 
the reachability sets as nodes and rates (or delays) associated to the arcs. Bounded, live 
and reversible GSPN models allow the generations of reachability graphs from which 
ergodic Continuous-Time Markov Chains (CTMC) are directly derived. Steady state 
and transient analysis are carried out on such models. Another possibility is to simulate 
the GSPN model in order to obtain steady state or transient measures. 

3. Message -Oriented Middleware Systems - MOM 

Message-oriented middleware (MOM) [8] enables communication by passing 
information in a message from one application to one or more applications. Two 
different MOMs are usually implemented: message queuing and publish/subscribe. 
Message queuing model provides the abstraction of a queue that can be accessed across 
a network. The publish/subscribe model is more elaborated as it enables a single 
message (sent by a publisher) to be sent to several subscribers. 

 The interaction in the MOM model is carried as follows: a component simply 
gives a message to the queuing service, which takes responsibility to transmit (actually 
aided by the communication service) the message to another component (or 
components). In the publish/subscribe MOM, a component subscribes to (register 
interest in) a subject. Another component publishes messages to the subject and the 
components that have been subscribed to that subject receive the message. MOMs 
traditionally provides only the queuing and communication services. The queuing 
service manages the queue, which stores every message that must be sent from the 
sender to the receiver. It is worth observing that in the communication model of MOMs, 
there is not the notion of client and server, but only sender and receiver. The reason for 
this differentiation comes from the fact that the sender sends a message to the receiver, 
but the message is not a request that needs to be replied (asynchronous communication).  

4. The GSPN Modelling Approach 

In this section, we describe the model assumptions and provide a detailed explanation of 
the GSPN model that we propose for MOMs. Particularly we present a GSPN model for 
the IBM MQ Series v5.2, currently known as WebSphere MQ 5.3 [12]. We choose that 



MOM for the reason that there exists an independent performance evaluation based on 
measurements, as described in [1]. The IBM WebSphere MQ 5.3 was designed to send 
messages in an asynchronous manner. Messages sent by applications are queued in 
message queues and can be read by their receiving applications. These main 
characteristics of the WebSphere’s architecture allow for a direct GSPN modelling. So, 
it is feasible to compare our results to those measurements, with no need of setting a 
testbed. Besides it also viable to verify how fair the model captures the actual behaviour 
of the MOM in a measurement environment. Later, in order to achieve better 
performance we suggest adjustments on the behaviour of some MOM’s components. 

4.1. Model Description 

The architecture of the IBM WebSphere MQ is depicted in Figure 1. The main 
components are the Queue Manager (QM) and the Message Control Agent (MCA). The 
MCA is responsible for transmitting messages between the queue managers. The 
communication channels (CC) interconnect several WebSphere MQ Clients or Servers. 
The CCs are an abstraction of the transport, ne twork, link and physical layers. Figure 2 
depicts a GSPN model of the WebSphere MQ architecture where we identify its main 
components. The subsets of places and transitions identified in Figure 2 are: 

• App-S – it means a sending application with average message sending rate following 
a Poisson probability distribution function (pdf). It means that the interarrival times 
are Independent and Identically Distributed (IID) and are exponentially distributed 
with mean 1/λ . 

• Queue-S – it models the main buffer at the WebSphere MQ closest to the sending 
application. The maximum number of messages that can be queued is modelled by 
the buffer size. Such system capacity is represented by the place Size and its initial 
marking M. Needless to say that when the place Queued reach its maximum 
capacity, the new arriving messages are dropped. Additionally, the model accounts 
the dropping rate. The transition ServiceTime  represents the process of withdrawing 
messages from the place Queued. The service time is also a random variable IID 
exponentially distributed with mean 1/µ. 

• Network/MCA – it models the communications channel and the MCA component. 
The transition Transmission has a very small firing delay. We consider that such 
abstraction is very suitable since the network infrastructure in the testbed (as 
described in [1]) does not add extra delays. Moreover, the network infrastructure is 
oblivious, since there is no active queue management implemented. 

• App-R – it means a receiving application with average receiving rate following a 
Poisson process with mean 1/λ2 ; 

• Queue-R – it models the main buffer at the WebSphere MQ closest to the receiving 
application. Following the same principles for the Queue-S, the maximum number of 
messages that can be queued is represented by the place Size -R and its initial marking 
MR. Transition ServiceTimeR represents the process of dequeuing messages from 
the place QueuedR. The service time is also a random variable IID exponentially 
distributed with mean 1/µ2 . 



 It is worth stressing the quantities ρ=λ/µ, ρ2=λ2/µ2 e ρ3=λ/µ2 that define the 
stability condition in the sending application side, in the receiving application side and 
in the whole system, respectively. 
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Figure 1 - IBM WebSphere MQ (MQ Series) Architecture  

 
Figure 2. GSPN Base Model of the MQ Series 

 Some observations must be made to identify the level of correctness of the 
GSPN model related to the MOM’s actual architectures. To do that, we compare our 
GSPN components and features with the test platform described in [1]. We present in 
the next paragraphs several differences and similarities for the MOM’s architecture and 
also for the test scenario (Testbed). 

 Concerning to the parameterisation of the IBM WebSphere MQ, a system 
administrator has access to a large number of parameters to tune. Some of them could 
be set to optimise the MOM’s performance for a particular workload. The main 
components that affect the performance behaviour are the main buffer size and the 
persistent buffer area. In our GSPN models, all parameters can be easily tuned. For 
instance, as presented in the next section, we have made efforts for finding an adequate 
buffer size. 



The test scenarios described in Section 4 of [1] are open loop. The sending and 
receiving application can independently handle messages at different rates. The 
difference between such rates influences the main buffer optimal size. Similarly, the 
GSPN model captures all those features, since the transition firing delays in the sending 
and receiving application models are independently configured.  

   Related to workloads, the actual sender’s performance behaviour is affected 
whenever the queue’s length grows beyond an optimal threshold. Moreover, the 
sender’s capacity is limited by the queue’s processing rate. Our model can also mimic 
that behaviour by varying the system’s workload (ρ). When ρ is below the unit the 
system is stable. The workload reproduces ratio of the queue’s processing rate to the 
sender’s capacity. 

When the WebSphere MQ is configured to guarantee message delivery 
(persistent delivery QoS level), a full main buffer implies in dropping messages leaving 
the persistent area (log buffer). Hence, the queue manager and the MCA must 
simultaneously deal with both new messages arriving from the application and old 
messages buffered in the log files. In such situation, our second GSPN model (Figure 3) 
reproduces this persistent behaviour. Several adjustments may be carried out in the 
model in order to consider additional features, such as different priorities to withdraw 
new and old messages, sender’s blocking and so on. 

In the Testbed, two different states are rather important: sustainable (ideal) and 
unsustainable (poor performance). The metric Maximum Sustainable Throughput 
(MST) represents the throughput in the saturation point. We could easily map such 
states to the GSPN model as follows: sustainable, ρ = 1 and unsustainable, ρ > 1.  

Some variables (factors) affect the main response variable (MST) in a real 
environment. The presence of Quality of Service (QoS) features that assure messages 
delivery is an important attribute. MOMs usually offer three QoS levels in their 
architectures: Non-Persistent (NP), Persistent (P) and Transactional (T). Accordingly, it 
is feasible to evaluate all three schemes using GSPN models. In this work we analysed 
the NP and P cases. System’s configuration parameters, namely main and secondary 
buffer sizes and traffic intensity at the sending application side are other factors that 
influence performance. Some scenarios were set to analyse the impact of different 
buffer depths and sending application rates.  

 Capacity of the receiver, comprising the queue’s processing rate and the number 
of threads, has a direct effect on MOM’s performance. In such circumstances, our 
GSPN model shows its flexibility. It is possible to include multiple threads in the 
receiver through two strategies: the first one is represented by k concurrent stochastic 
transitions in order to take messages out the place that represents the main receiver 
buffer. The quantity k could represent the number of threads available to perform a 
respective job. The second possible scheme could define an Infinite Server Semantic 
(ISS) or a K-Server Semantic (KSS) for the transition responsible for taking messages 
out of the queue. In this work, we did not formally evaluate the impact of multithreads 
in the global performance. We just evaluated whether the GSPN model would 
adequately serve to such objectives. Additionally, as message lengths slightly affect the 
overall performance and as we considered messages in MOMs systems as tokens in 
GSPN models, their sizes could be regarded in the delay of all timed transitions 



responsible for handling them. In this work, we did not evaluate the influence of 
different messages length.  

 
Figure 3 – Basic persistent GSPN model of the IBM WebSphere MQ 

   Finally, associated to persistent capability of MOM, some results presented in 
[1] showed that scenarios with persistence had poor performance, since messages have 
to be recorded to and read from disk, which access times is typically slower than that in 
random access memories. Accordingly, several adjustments in the GSPN model can be 
implemented for defining a persistent scheme. One strategy is to inhibit the timed 
transition in the main buffer as long as exists messages in the persistent log area, as 
depicted in Figure 4. A second scheme defines weights to transitions that represent the 
MCA. Such weights could define priorities to withdraw messages from the main buffer 
or from the log area. One should notice that the summation of these weights must be 
one. In the computer architecture field, access time is the average time interval between 
a storage peripheral device (e.g., disk drive or semiconductor memory) receiving a 
request to read or write a certain location and returning the value read or completing a 
write. So the ratio between access time in the main buffer and in the log buffer could be 
taken into account to set the weights for the timed transitions. We name this ratio as 
Access Time Ratio (ATR). Furthermore, this work suggests an alternative for improving 
the effective utilization of the system. In this context, we consider effective utilization 
as the ratio between the sender’s sending messages rate and the actual receiver’s 
receiving messages rate or alternatively the dropping messages rate. This work suggests 
messages in the log buffer to be queued up in the main buffer area once again, as 
depicted in the transition T9 in Figure 4.  



 
Figure 4 – Alternative GSPN Model 

4.2 Simulation Results 

In the previous section we presented three GSPN models for MOMs. The first one is the 
basic model (Figure 2) and the others are able to handle persistent messages delivery 
(Figure 3 and Figure 4). The second model is capable to reproduce the experiments 
results conducted in [1]. The alternative proposed model suggests a potential 
modification in the MOM’s components in order to improve the overall performance 
behaviour. Hence, the experiments carried out using our models aim to analyse the 
performance behaviour of MOMs under different workload conditions and 
parameterisations of their constituents.  

The performance metrics are described as follows: 

• System’s Throughput (in messages per second – mps units): this metric represents the 
average system’s throughput, which could be measured in several locations. For 
instance, considering a receiving messages rate in the stability region (ρ2 = 1), the 
throughput could be measured directly in the interface between the communication 
channel output and the receiver’s input queue. Moreover the Little’s Law [7] could 
analytically specify the response time of the system; 

• Message Dropping Rate (MDR): this metric represents the overall system losses 
when it is in an unsustainable state. An expected result for ρ, ρ2 and ρ3 = 1 is the 
occurrence of no loss. It is important to emphasize that the main goal here is to 
minimize the dropping rate and to keep the sustainable throughput at maximum.  

 The results are presented in graphics charts. The GSPN model, metrics and level 
of the factors are fully identified on figures. Some results, which are precisely 
described, were obtained through the execution of a number of replications for each 
scenario in a batch mean simulation technique. In such cases, results represent the mean 
of observations [7]. The evaluation environment considered was based on a mix of Unix 



platforms (Solaris and Linux) and also on a well-known GSPN tool named TimeNET 
3.0 [14].  

 
Figure 5 – Simplified GSPN model of the MQ Series 

As we briefly described in Section 4.1, Figure 6 shows the simulation results for 
the GSPN model with a sender’s sending rate limited at 4000 mps. We fixed the 
receiver’s receiving rate at 2000 messages per second (mps). Our model (Figure 5) 
reasonably represents the scenario and precisely reproduces the experimental results (in 
[1]). In this scenario, results show typical performance behaviour of the MOM system 
configured with its default parameters. Up to the limit of 2000 mps (saturation point), 
the receiver’s throughput increases linearly with the sender’s rate. Beyond this point, 
messages are cumulated in the queue’s receiver. 
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Figure 6 - Comparison of results - GSPN Vs. Testbed 

 Results presented in Figure 7 shows throughput and dropping rate of the non-
persistent GSPN model when we vary the main buffer size, in a sender’s stability region 



(ρ = 1). We considered that tokens represent messages with 64 bytes length and 
sender’s average sending rate follow a Poisson PDF with mean λ = 2000 mps. It can be 
seen the maximum throughput and the minimum dropping rate is achieved when the 
available main buffer depth is around 105. Such convergences point out that, depending 
on the sender or receiver’s processing rate, it is useless to configure large buffer sizes. 
This result supports that a correct parameterisation of MOM systems could minimize 
losses due to lack of system’s resources. 

 Figure 8 shows simulation results for the throughput metric in two 
circumstances. One curve pertains to the MOM with the persistent feature enabled 
(GSPN IBM WebSphere MQ) and the other concerns to the modified persistent GSPN 
model. The ratio between the firing times of the transitions that represent the main and 
the secondary buffer corresponds to the access times ratio (ATR). In modern computer 
architectures, a typical ATR is around 105. This means that the access time to withdraw 
a message from the main queue (RAM) is on the average 10.000 faster than the access 
time to remove it from the log buffer (files on disk). As commented in [1], we also 
observed the throughput substantially decreases with the incorporation of messages 
delivery guarantees. Hence, the trade-off between higher performance and message 
delivery assurance is an important design issue to be considered.  

 Our modified GSPN model puts back a logged message in the main buffer. It 
also conveys the sender to postpone the arriving of new messages when the secondary 
buffer reaches its maximum capacity. These features allow the system to achieve its 
maximum capacity faster than the original persistent GSPN, because it gives higher 
priority to withdraw new messages and occasionally remove old messages that were put 
back in the main buffer. 
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Figure 7 - Dropping Rate and Throughput, Basic Non-Persistent GSPN Model 



GSPN - Persistent, ρ  = 1, Log Buffer = 10MB, ATR = 10000
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Figure 8 - Throughput vs Buffer Size - Persistent GSPN Models 

 Results presented in Figure 9 shows throughput and dropping rate of the non-
persistent GSPN model when we vary the main buffer size, in a sender’s instability 
region (ρ > 1). It is obvious that in such condition the sender quickly reaches its 
maximum capacity and the system start to drop messages. Moreover, results presented 
for the persistent GSPN are similar to the non-persis tent model, since there will always 
be messages being deviate from the main buffer to the secondary one, which will soon 
reach its maximum capacity. Such convergences point out that, depending on the sender 
or receiver’s processing rate, it is useless to configure large buffer sizes. Consequently 
if the main buffer is small this poor performance will aggravate. Similar to this result, 
Figure 10 shows throughput of two persistent GSPN model when we vary the main 
buffer size, in a sender’s instability region (ρ > 1). The suggested modification in the 
basic persistent GSPN model still keeps the throughput at maximum. However it clearly 
does not solve the problem of high dropping rates. 
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Figure 9 - Throughput and Dropping Rate vs. Buffer Size, Non-Persistent GSPN 

 Results previously presented use an ATR around 105. The following results 
show the effect of this factor in the metrics. Figure 11 validate our first impression that 



the ATR factor has no influence on throughput in a stability region (ρ [ 1), since there 
will be rare occurrences of dropped messages to the log buffer. On the other hand, one 
should notice that in an extreme high workload (ρ = 2.5), the throughput only reaches 
its maximum if the ATR is around few units. 
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Figure 10 - Throughput vs. Buffer Size - Basic and Modified Persistent GSPN 
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Figure 11 - Impact of ATR on Throughput and Dropping Rate, ρ  = 1 

 Figure 12 shows the performance behaviour of the persistent GSPN model when 
we vary the workload. In this simulation, we considered a buffer size with capacity 
tuned by the previous results, i.e., around 105. In both curves, one should notice that 
throughput increases as the workload does and the absence of dropping messages, up to 

ρ  = 1 

ρ  = 1 

ρ  = 2.5 



the stability limit. As the workload grows, the system’s throughput drastically decreases 
and the dropping rate exponentially increases. In the case of a lower ATR, slower 
decreasing throughput is apparent. 
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Figure 12 – Persistent GSPN Model, Throughput and Dropping Rate vs. 

Workload, ATR = 104 and 100; Buffer  = 64K 

5. Concluding Remarks and Further Developments 

Middleware has a large diversity of features such as price, complexity, flexibility, and 
performance, where in each target application, different aspects are more important than 
others. The process of choosing the correct middleware technology refers first in 
deciding which qualities have more significance for applications [15]. However, a 
common requirement for almost all applications is the performance behaviour. 
Although several ways of evaluating the performance of Middleware are available, most 
scientific research papers in this area are mainly based on measurements in test 
environments. The main disadvantage of this approach is related to test scalability. 
Thus, the search for simulation and analytical models that allows complex system’s 
performance behaviour reproduction has been received increasingly attention by the 
distributed systems scientific community.  

 In this paper Message-Oriented Middleware (MOM) was evaluated through 
Generalised and Stochastic Petri Nets (GSPN) based modelling. The model’s accuracy 
could be evaluated through comparisons with measurements performed in a real test 
measurement environment. The GSPN model demonstrated to be very accurate and 
succeed in catching the main performance characteristics of a real MOM. Moreover, 
some performance analysis could be extended to verify the behaviour of some metrics 
while changing different factors and their respective levels. In general, results presented 
the ability of modelling and flexibility in eva luating MOM using GSPN.  

 The MOM’s GSPN-based model is suitable to possible extensions, some of 
which are currently in progress. Hence, additional performance evaluation can be made 
in future works. One of them refers to the introduction of threads in the sender or 



receiver side. This architectural component can be modelled as n stochastic and 
concurrent transitions that are used to withdraw messages from the place that represents 
the main sender’s or receiver’s buffer, where n is the amount of available threads. 
Alternatively, an Infinite-Server Semantic can be defined for transitions that withdraw 
messages from queues. Another possible extension could be the evaluation of 
transactional MOMs, with some kind of feedback in the model. 
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