

Unifying WBEM and Mobile Agents Approaches for
Systems Management

Marco Antonio C. Simões1,2, André Luis de M. Santos1

1Centro de Informática – Universidade Federal de Pernambuco
 P.O. Box 7851, ZIP: 50732-970 – Recife–PE – Brazil

2Faculdade Integrada da Bahia
Rua Xingu, 179 – Jardim Atalaia/STIEP – ZIP: 41770-130 – Salvador-BA – Brazil

e-mails: {macs3,alms}@cin.ufpe.br

Abstract

Systems Management (SM) must be able to manage all aspects of computers
systems, from physical details of hardware and communication to
applications, including communication protocols and middleware. To meet
these needs, several approaches based on intelligent mobile agents have been
proposed. The rapid evolution of computer systems provides an additional
issue for SM systems: the capability to support new types of managed objects
in a flexible and extensible way. To match this need, IT industry has provided
a new initiative, WBEM (Web-Based Enterprise Management). In this work,
we validate the application of SM architectures based on intelligent mobile
agents with standards proposed by the WBEM initiative. To reach this goal,
we developed a framework to support intelligent mobile agents capable of
accessing management information according to WBEM standards.

Keywords: Network and Systems Management, CIM, WBEM, Mobile Agents

1. Introduction
Computer networks are currently used to support many distributed applications that
differ from traditional client-server model. The use of diverse architectural models
[Coulouris et al 2001] such as mobile code, distributed events, distributed objects and
peer-to-peer has created new management demands that are not supported by traditional
network management tools.

 This scenario highlights the limitations of classical network management
architectures. Low scalability and high management traffic in the network are the main
problems on these traditional solutions.

 An alternative paradigm that has been evaluated in the last few years is the use of
mobile agents for systems management. This approach consists of using small software
applications capable of moving between network devices. This software has autonomy
and reasoning capabilities to perform tasks they were previously programmed to execute.
These processing elements are called intelligent mobile agents. The main idea is to move
parts of the management application code to the location of the data it will use, instead

of moving the data to the location of the management application code, as in client-
server paradigm.

 The emergence of mobile agent frameworks has led many researchers to examine
their applicability to network and systems management. Bieszczad et al [Bieszczad et al
1998] discussed the general issues of using mobile agents for network management.
Rubinstein et al [Rubinstein et al 2000] compared mobile agents to client-server SNMP
architectures. Bohoris et al [Bohoris et al 2000] discussed the use of mobile agents for
performance management comparing it to CORBA and Java RMI-based solutions.
Pagurek et al [Pagurek et al 2000] discussed reasons to integrate mobile agents with
SNMP protocol and presented several ways of doing that. Schram et al [Schram et al
1998] presented a network modeling application based on mobile agents. The references
above have shown that mobile agents’ architecture has better scalability than client-
server model and generate less management traffic in the network since management
data volume is usually lower than the agents’ code size. However, these solutions lack a
greater support for access to heterogeneous management data formats. All of them are
either limited to native access to management data, with specific code for each particular
operating system, or to using a standard management base like MIB-II [McCloghrie and
Rose 1991].

 In recent years, we could also notice a relevant contribution from the IT industry,
organized under the DMTF (Distributed Management Task Force), called WBEM (Web
Based Enterprise Management) initiative [DMTF 1999a]. This initiative consists of the
definition of a set of standards that provide a global and extensible information model to
represent management information. The use of widely accepted internet standards to
access this information is also a goal of this initiative. The information model proposed –
CIM (Common Information Model) – is strongly based on object oriented concepts.

 We have found few research initiatives that try to unify the benefits of these two
approaches (WBEM and mobile agents). One proposed solution [Assis and Martins
2001] is based on a middleware that maps information obtained from CIM to an XML
(Extensible Markup Language) representation. It grouped managed devices into
Agencies and the communication between two agencies uses mobile agents. Notice that
mobile agents are responsible only for transporting data between two agencies. They do
not perform any analysis or take any decision based on the collected data.

 Another contribution [Job and Simões 2002] presents a review of basic WBEM
standards and describes experiments using several operating systems platforms. The
implementations were based on a client-server architecture and confirmed the known
limitations of this architecture.

 In this work, we evaluate if the known benefits from mobile agents and WBEM
approaches are still present when we unify the two solutions. While the use of mobile
agents in this setting lacks support for heterogeneous management information models,
the WBEM approach supplies a highly standardized, expressive and extensible
information model. On the other hand, WBEM is based on a client-server model,
supported by HTTP messages exchanged between clients and servers. Mobile agents
supply an alternative to this architectural model reducing systems management overhead.
 We expect that the two approaches are complementary. In this article we present

a solution for systems management that combines their benefits. To meet this goal, we
developed a framework to support intelligent mobile agents capable of obtaining
information natively from CIM. To test our solution we have used two systems
management prototypes.

 In the next section we briefly review the basic WBEM concepts and emphasize
the relevant aspects to this work. We then present an overview of the use of intelligent
mobile agents for systems management. In section 4, we describe our solution that
combines the benefits of these two approaches, and finally we present our results and
conclusions.

2. Web-Based Enterprise Management (WBEM)
Web-Based Enterprise Management (WBEM) [DMTF 1999a] is an initiative from
industry, organized by the DMTF (Distributed Management Task Force), to provide a
set of standards for Systems Management (SM). These standards focus on supporting
heterogeneous systems and are based on well known web standards such as HTTP
(HyperText Transfer Protocol) and XML (eXtensible Markup Language).

 WBEM is composed of three main standards:

• CIM (Common Information Model);

• xmlCIM;

• CIM Operations over HTTP.

 CIM [DMTF 1999b] is a data model to represent management information from
managed objects. XmlCIM [DMTF 2003b] is a standard for parsing CIM information to
an XML representation. The third component, CIM Operations over HTTP [DMTF
2003a], is a transport model for XML-coded CIM information. Although WBEM does
not restrict itself to the use of client-server model in management systems, CIM
Operations over HTTP facilitate the use of this architectural model with WBEM
standards.

 In the next subsections we describe the relevant WBEM components for this
work: CIM and CIMOM (CIM Object Manager) infrastructure.

2.1. Common Information Model (CIM)
Information used to perform actions is organized in such a way that distinct groups of
people can use this information efficiently. To achieve this organization, it is necessary to
have a model to represent the relevant details for each group of people. This approach is
named information model. CIM is an information model that captures some common
aspects needed for managing complex computer systems.

 CIM is organized in three levels:

• Core Model – an information model that captures common notions applicable
to all management sub-areas.

• Common Model – a set of information models that represents common details
relevant to specific management sub-areas. This model groups information and

details for each sub-area, but it is not related to any specific technology or
implementation. The sub-areas covered by the Common Model are: systems,
applications, networks and devices. The Common Model and the Core Model
compose the CIM Schema.

• Extension Schemas – represent technology-specific extensions from the
Common Model. These extensions are specific to a particular environment, like
an operating system or a hardware architecture.

 CIM is an object-oriented information model and its basic concepts are defined
by DMTF in the CIM Meta Schema [DMTF 1999b]. All basic concepts, like schemas,
classes, properties, methods, triggers, indications, associations, references and qualifiers
are defined in this Meta Schema.

 CIM specification provides interoperability between CIM and previous well-
known information models for network management, like MIBs [McCloghrie and Rose
1991]. In this way, CIM is concerned with extending, not replacing, previous models.

2.2 CIMOM Infrastructure
The WBEM architecture comprises managed systems and management systems.
Managed Systems are hosts that support systems, which are managed by a management
application. Management Systems are hosts where management applications execute.

Figure 1 – The CIMOM infrastructure

Browser

Application Application Application

CIMOM

Provider Provider Provider

CIM

Managed
Object

Managed
Object

Managed
Object

 All systems in a network must have a CIM object manager – CIMOM – that
controls all CIM objects in a system. CIMOM is responsible for receiving local and
remote requests about objects, their properties and methods and for sending answers to
these requests. Figure 1 shows the CIMOM infrastructure.

 CIMOM must get management information from several managed objects under
its home system. These objects are of different kinds and have information represented in
different formats. To accomplish this task and support heterogeneous managed objects,
CIMOM uses auxiliary processes called Providers. Providers are processes capable of
getting information directly from managed objects using native interfaces. Providers
translate this information to the CIM format and send it to CIMOM.

 There are two kinds of management information: static and dynamic. Static
information is collected by CIMOM from a provider and stored in the CIM database.
This kind of information is not real-time and does not require frequent updates. Dynamic
information is real-time and is collected by CIMOM from a provider when it is requested
by an application. CIMOM does not store dynamic data in the CIM database. This kind
of data is always collected directly from a provider.

 If a new managed object has to be managed by a CIMOM it is necessary to
create a provider for this object. This process of implementing providers for all managed
objects of a system is called system instrumentation. Providers are the tools used by
CIMOM to manage heterogeneous objects.

 CIM aims to become a global information model for systems management. When
compared to other information models, CIM is considered the most expressive and
extensible model for systems management [Vergara et al 2003].

3. Mobile Agents Approach for Systems Management
The amount of management information necessary to perform management tasks
increases with the complexity and distribution level of current systems. This increment
results in a growing overhead in the network traffic in traditional client-server
management systems.

 In recent years, several researchers have been working with new architectural
approaches for systems management using Intelligent Mobile Agents. In this approach, a
software agent is a computational entity which acts on behalf of others, is autonomous,
proactive, and reactive, and exhibits capabilities to learn, cooperate and move [Bieszczad
et al 1998]. This extends the traditional concept because the agent is not only reactive,
answering to information requests, but is also proactive. The agent is not only capable of
analyzing the information collected, but also takes decisions and performs actions
independently from a central server. This behavior is possible due to development of
Artificial Intelligence (AI). An agent which exhibits the capability of moving to different
hosts is called a Mobile Agent.

 In a Mobile Agent approach, the agent moves to a host, obtains information
about local managed objects, processes this information, performs some action (if
necessary), and moves to another host, repeating this sequence. This is the general
behavior in a mobile agents approach. If we use a pure mobile agent’s solution, there is

no central server and all processing is distributed among the several devices of the
network.

 To support mobile agents, each host must have a middleware layer that we will
call mobility framework. This framework supports the process of migration between two
hosts. This is called the agent’s navigation model. It also supports the agent’s life cycle
model, computational model, security model and communication model [Bieszczad et al
1998]. These models, supported by a mobility framework, allow the agents to cooperate,
move and use multithreading facilities.

 An intelligent mobile agent has some reasoning capability that is usually
implemented using forward or backward chaining engines [Russel and Norvig 1995].
This reasoning capability is essential to provide autonomous behavior to an intelligent
agent.

4. Unifying the Two Approaches
In this section we describe our approach to unify the previous techniques in an integrated
solution for systems management. Subsection 4.1 provides an overview of the proposed
solution. Implementation decisions are described in subsection 4.2. Subsection 4.3
presents the tests and results used for validation.

4.1. Proposed Solution
The proposed solution is divided in two main modules. The first module is called Maf
(Mobile Agent Framework). This module supports intelligent mobile agents and their
main functions, like reasoning, mobility and communication. This module provides a
generic support for intelligent mobile agents that may be applied in several domains of
knowledge.

Figure 2 - Proposed solution architecture

WBEMAgents

Maf AS

Runtime Environment

Agents

H
os

t 1

Host 2 Host 3

CIMOM

CIM

 The second module is called WBEMAgents and provides support for specific
systems management activities. The main capability supported by this module is the
native access to CIM. WBEMAgents defines a default navigation model for systems
management agents, but provides freedom for developers to override this default model
and decide what information should be collected from CIM and the agent life cycle. This
way, this module is highly flexible and reusable in many systems management sub-areas.

 An auxiliary component is the Agents System (AS). The AS is a piece of software
that must be present in all hosts that are eligible to be visited by an agent. AS
complements some of the Maf’s functions, such as migration, communication and life-
cycle model support.

 All these components are supported by a runtime environment that may be an
operating system or a virtual machine. Figure 2 shows the proposed solution’s
architecture.

 The motivation for encapsulating WBEM and mobile agents’ support in a
framework is the possibility to provide in a single programming interface access to CIM
objects and mobile agents functionalities. With this framework, a system manager can
create agents using high-level languages, like the production rules illustrated in figures 3
and 5. That way, the agents may be programmed by
a manager with little knowledge of programming languages.

4.2. Implementation
The runtime environment used for this work was the Microsoft .NET Framework
[Microsoft 2002], which complies with the Common Language Infrastructure (CLI)
standard [ECMA 2001a, ISO 2003a]. Therefore, this implementation may be executed
on any platform that has a CLI-compliant virtual machine. In choosing to support this
runtime environment we are also offering the possibility of researchers on intelligent
mobile agents to use this platform. Almost all recent work in this area has been based on
the Java programming language and its runtime environment, the Java Virtual Machine.
The most important reason for the environment choice was the stability of the
implementation of CIM and CIMOM support in this platform. In previous work [Job and
Simões 2002], we have noticed that the WMI (Windows Management Instrumentation)
is one of the most stable and complete implementation for CIM and CIMOM. Using this
environment, we did not need to implement new providers or API’s to access CIM,
which would be out of the scope of this work.

 The choice of a runtime environment was necessary only for validation purpose.
The architecture we describe here can be implemented over any runtime environment
with no restrictions.

 We have used the C# programming language [ECMA 2001b, ISO 2003b]
because it has a syntax and semantic compatible with the object oriented paradigm and
has easy access to all resources provided by the chosen runtime environment.

4.3. Validating the Solution
To validate the solution presented in previous subsections, we implemented two
prototypes that execute some basic systems management tasks. For this implementation
we used hosts with Microsoft Windows 2000 operating system and Microsoft .NET
Framework runtime environment. The hosts were interconnected by a 100 Mbps local
area network. All the implementations were based on open standards like CIM and CLI.

 The first prototype was a system to verify logical disks availability. This system
was developed as an agent that moves through the hosts in the network verifying if the
amount of space available in each logical disk is less than 10% of total disk size. When
this condition is found for any disk, the agent sends a message to a predefined
management station.

This agent is implemented with a little knowledge base that is listed in figure 3. Every
agent based on the WBEMAgents module has a rule base variable called WBEMclass.
This variable’s value is set by WBEMAgents when objects are read from CIM.
WBEMclass always has a value indicating the type of CIM object that has already been
read by the agent. For our disk space verifier agent, only CIM instances of type
Win32_LogicalDisk are relevant. When the agent reads an instance of this type, it checks
if it refers to a local hard disk and, if so, sets the variable localDisk to Yes.

When the agent has an instance representing a local hard disk and its total size is greater
than zero, it calls an effector called calcPerc. This effector is responsible for calculating
the percentage of available space in the disk. If this is less than 0.1, then the effector
sendMsg is called to send a message to a predefined management station.
Rule Calc: IF WBEMclass = Win32_LogicalDisk
 AND localDisk = Yes
 AND size > 0
 THEN effector(calcPerc)
Rule Local: IF WBEMclass = Win32_LogicalDisk
 AND driveType = 3
 THEN localDisk = Yes
Rule diskFull: IF localDisk = Yes
 AND percent < 0.1
 THEN effector(sendMsg)
Rule stop: IF done = Yes
 THEN effector(stopAgent)

Figure 3 – The knowledge base for a disk space verifier agent

 The variable done is set to Yes by WBEMAgents when all programmed hosts
have been visited by the agent. When this variable is set to Yes the effector stopAgent is
called to kill the agent and finish its processing. If this variable is not set to Yes,
WBEMAgents will try to move to the next host to continue processing.

 On each visited host the agent will write a text file named
Win32_LogicalDisk.WBEM, with all properties of all instances of this type and their
respective values. This file also registers the date and time when the data was collected.

The purpose of this file is to be available to other agents in the future, who may want to
compare the real-time data with the last collected data.

 The effector is an important element in this knowledge base. We have, in figure
4, three effectors. By using effectors an agent can act over its knowledge base and over
the environment. For example, the effector sendMsg could be replaced by another
effector that sends e-mail messages or another effector that sends a message to other
agents that would try to solve the disk space problem. We could imagine an effector that
tries to delete temporary files to increase the percent of free disk space, for example.
The effectors add flexibility to the solution.

 In all tests executed, the agent achieved 100% success in identifying logical disks
with less than 10% of free disk space. This agent doesn’t collect information during its
travel in the network. The information read from CIM is processed locally on each host.
Therefore the agent’s size has no increment during the task execution. Actually, this size
is decreased because the pending host list is being reduced on each agent migration. The
average agent size, in this example, is 6.28 Kbytes.

 On each agent migration, 6.28 Kbytes of traffic is generated in the network. To
verify nine hosts in the network, the total traffic generated was 50.23 Kbytes. The
average time needed to complete the task was 18.16 seconds. Therefore we have an
average throughput of 2.77 KB/s.

 Using another solution based on a stationary agent that collects disk information
using the client-server paradigm, we generated 140.4 Kbytes of traffic to verify nine
hosts. Therefore we have three times more traffic in the client-server solution than in the
mobile agents’ one. This difference may be explained because in the client-server model
we need to read all instances of type Win32_LogicalDisk from each host over the
network and all this data is processed in a central point. So we have an average traffic of
15.6 Kbytes per host processed in the client-server solution. In the mobile agents
solution the average traffic is obtained by the formula (n-1) x 6.23, where n is the
number of hosts visited. Figure 4 compares the traffic generated in the network by these
two solutions.

 The second prototype is a Report solution. One of the most common tasks
executed by a systems manager is to get updated and concise information about the
managed systems. This sub-area is called Asset Management. We developed a simple
Report System based on mobile agents. We also developed a version using the client-
server model for comparison purposes.

 Our prototype is an agents system capable of collecting common hardware
information from each host visited and, in the end of collection process, it generates a
report. In this example the information collected was on the type of processor, memory
and disks.

 To achieve this goal, the agent gets property values from CIM objects of types
Win32_Processor, Win32_LogicalMemoryConfiguration and Win32_LogicalDisk. We
selected some relevant information from these CIM types to build our asset report.

 As in the first prototype, all the reasoning is modeled through a knowledge base
presented in figure 5. This rule base is composed by four rules. The first three rules are

responsible for starting effectors that collect processor, memory and disk information,
respectively. The last rule verifies if the task is done and starts an effector responsible for
generating the report, sending a notify message and stopping the agent.

Total Traffic Generated By Disk Space Verifier Solutions Using Client-
Server and Mobile Agents Models

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121

Number of Hosts

Tr
af

fic
 (K

by
te

s)

Client-Server
Mobile Agent

Figure 4 – Total traffic generated by disk space verifier solutions using client-

server and mobile agents models

Rule addCPU: IF done = No
 AND WBEMclass = Win32_Processor
 THEN effector(collectInfo, “CPU”)
Rule addMemory: IF done = No
 AND WBEMclass = Win32_LogicalMemoryConfiguration
 THEN efffector(collectInfo, “Memory”)
Rule addDisk: IF done = No
 AND WBEMclass = Win32_LogicalDisk
 THEN effector(collectInfo, “Disk”)
Rule end: IF done = Yes
 THEN effector(genReport)

Figure 5 – Knowledge base for a report generator agent

 In the first set of tests we used a single agent system to generate the report. In
this experiment, we varied the number of hosts to be visited. For each number of hosts
we executed twenty times the same task, so that we could obtain an average of the
system behavior.

 In a second set of tests, we used a system composed of two agents. The agents
divide the number of hosts to visit, so that one agent visits half of the total number of
hosts and the other agent visits the other half. In a third set of tests, we developed a

client-server solution to generate the same report. In our fourth set of tests, we used an
implementation with 5 agents to solve the same problem. The time needed to complete
the task in these four versions, varying the number of hosts, can be viewed in figure 6.

 We can observe that the client-server solution is slightly better than the solution
with one agent. This can be explained by the fact that the agent has a growing code size.
Therefore, when the number of hosts increases, the agent’s size also increases, and the
amount of time needed to move this code over the network becomes grows. The four
solutions have an approximately linear growth. But we should notice that the solution
with two agents has a slower growth rate than the client-server one. The slowest growth
rate and the best performance among the solutions may be observed in the
implementation with 5 agents. This shows that increasing the number of cooperating
agents we obtain a reasonable scalability growth. However, if we use too many agents to
accomplish one task, we may notice a growing throughput of network traffic due the
frequent agent migrations in short time intervals. The cost of inter-agent communication,
coordination and agent management may become overwhelming if we continue to
increase the number of agents.

 When we measured the generated traffic in the network, this second prototype
has a different behavior from the first prototype. This agent collects information during
its travel through the network. This way, the agent size increases on each migration and
the generated traffic has an exponential growth trend as we increase the number of hosts
to visit.

Figure 6 – Execution time for the report generator systems

 In our example, the agent initial size is 7.98 Kbytes and it increases by 1.58
Kbytes on each migration. As we can see in figure 7, the client-server solution is better
than 1-agent solution for a number of hosts greater than 21. And it is better than the 2-

Execution Time to Collect Data and Generate the Report

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

2 3 4 5 6 7 8 9
Number of Hosts

Time(s)
1 Agent
2 Agents
Client-Server
5 Agents

agent solutions for a number of hosts greater than 61. But the 5-agent solution is better
than the client-server one for the number of hosts measured in the tests. This shows that
the increase in scalability with the use of more agents is confirmed in terms of traffic
volume. There is a trend to confirm the results presented by Rubinstein et al [Rubinstein
et al 2000], where the better performance of the mobile agents’ solution is limited
between two boundaries in terms of the number of managed elements.

 The last measurement collected in this second prototype was processor time
consumed by the solutions. In the agents’ solutions we obtained an average overhead of
0.98% of total processor time on each host. In the client-server solution we had a 6.14%
overhead of total processor time on the management station, where all the processing
was done. In this item, the most relevant information is not the total time consumed by
the solutions, but the distribution characteristic of this processing. More complex
management tasks would require a very powerful processor on the management station
in client-server solutions, but in mobile agents’ solutions this processing is distributed
over all the hosts in the network, reducing the need for powerful centralized processors.

Figure 7 – Traffic generated on the network by report generator systems

5. Conclusions
In this work, we have evaluated the use of intelligent mobile agents with standards
provided by WBEM initiative. We have shown that benefits like better scalability and less
management traffic are still present when mobile agents are used with CIM, under certain
conditions. We have noticed that by tuning the number of agents involved in a
management task we may optimize the total time necessary to perform that task and
reduce network traffic. But the increase in the number of agents can not be unlimited. An

Number of Hosts

Traffic (Kbytes)

Traffic Generated on the network by the mobile agents’ and
client-server Reporters

1 Agent
C-S
2 Agents
5 Agents

4000

0

500

1000

1500

2000

2500

3000

3500

2 6 14 18 22 26 30 34 38 42 46 50 54 58 62 10

excessive number of agents may cause high throughput and a poor performance for the
system.

 When mobile agents read information from CIM, only the relevant properties
from each CIM object are selected by the agents. In a common client-server
implementation, the entire CIM object is read over the network and the management
application selects the relevant properties only at the management station. This
contributes to the reduction in management traffic when we unify mobile agents and
CIM.

 We must notice that previous work[Bohoris et al 2000] had different results in
terms of response time. In those experiments mobile agents’ had worse response times
than CORBA-based and Java RMI-based client-server solutions. In terms of network
traffic the results were similar to our results. We don’t know if these differences are
caused by the different application area (performance management) or by different client-
server technologies that were used by the authors.

 As future work we may enhance some characteristics like the communication
model and add other WBEM standards like xmlCIM. Maf lacks a fault tolerance engine
and an enhanced security system. We may also validate Maf in other operating systems
platforms that support CLI compliant runtime environments, like Linux, FreeBSD and
Mac OS X. Finally we can test the efficiency of this solution in other systems
management sub-areas, like performance management or configuration management.

 In this work, we presented important contributions towards the development of
highly scalable systems management tools that support the distributed applications
scenario and the diverse heterogeneous systems that are often present in corporate
networks.

References
[Assis and Martins 2001] Assis, P. and Martins, J. A. “XML Based Resource

Management: a CIMOM Approach”. In: Proceedings of Second Latin American
Network Operation and Management Symposium (LANOMS’01). Belo Horizonte :
Federal University of Minas Gerais, p. 307-318, 2001.

[Bieszczad et al 1998] Bieszczad, A. Pagurek, B.; White, T. “Mobile Agents for
Network Management”. IEEE Communications Surveys. IEEE, v. 1, n. 1, 1998.

[Bohoris et al 2000] Bohoris, C; Pavlou, G.; Cruickshank, H. “Using Mobile Agents for
Network Performance Management”. In: Proceedings of IEEE/IFIP Network
Operations and Management Symposium (NOMS 2000). IEEE, 2000, p. 637-652.

[Coulouris et al 2001] Coulouris, G., Dollimore, J. and Kindberg, T. Distributed
Systems: Concepts and Design. USA : Addison Wesley, 3 ed, 2001.

[DMTF 1999a] Distributed Management Task Force, Inc. Web-Based Enterprise
Management (WBEM) Initiative. DMTF, 1999.

[DMTF 1999b] Distributed Management Task Force, Inc. Common Information Model
(CIM) Specification. DMTF, 1999.

[DMTF 2003a] Distributed Management Task Force, Inc. Specification for CIM
Operations Over HTTP. DMTF, 2003.

[DMTF 2003b] Distributed Management Task Force, Inc. Specification for the
Representation of CIM in XML. DMTF, 2003.

[ECMA 2001a] ECMA International. Common Language Infrastructure (CLI).
Standard ECMA-335, 2001.

[ECMA 2001b] ECMA International. C# Language Specification. Standard ECMA-
334, 2001.

[ISO 2003a] International Organization for Standardization. Common Language
Infrastructure. ISO/IEC-23271, 2003.

[ISO 2003b] International Organization for Standardization. C# Language
Specification. ISO/IEC-23270, 2003.

[Job and Simões 2002] Job, J. C. C. and Simões, M. A. C. “Gerenciamento de Sistemas
Baseado no Padrão WBEM”. In: Scientific Initiation Electronic Magazine.
Computation Brazilian Society, v. II, n. IV, 2002.

[McCloghrie and Rose 1991] McCloghrie, K. and Rose, M. Management Information
Base for Network Management of TCP/IP-based internets: MIB II. RFC 1213,
IETF, 1991.

[Microsoft 2002] Microsoft Corporation. Microsoft .NET Framework: Product
Overview. 2002.

[Pagurek et al 2000] Pagurek, B., Wang, Y., White, T. “Integration of Mobile Agents
with SNMP: Why and How ?” In: Proceedings of IEEE/IFIP Network Operations
and Management Symposium (NOMS 2000). IEEE, 2000, p. 609-622.

[Rubinstein et al 2000] Rubinstein, M. G., Duarte, O. C. M. B. and Pujolle, G.
“Evaluating the Network Performance Management Based on Mobile Agents”. In:
Proceedings of the Second International Workshop on Mobile Agents for
Telecommunication Applications (MATA’2000), Paris : Springer-Verlag, p. 95-102,
2000.

[Russel and Norvig 1995] Russel, S. J. and Norvig, P. Artificial Intelligence: A Modern
Approach. New Jersey : Prentice-Hall, 1995.

[Schram et al 1998] Schram, C., Bieszczad, A. and Pagurek, B. “Application-Oriented
Networking Modeling with Mobile Agents”. In: Proceedings of IEEE/IFIP Network
Operations and Management Symposium (NOMS’98). New Orleans : IEEE, 1998.

[Vergara et al 2003] Vergara, J. E. L. de, Villagrá, V. A., Asensio, Juan I. and Berrocal,
J. “Ontologies: Giving Semantics to Network Management Models”. In: IEEE
Network special issue on Network Management. IEEE, 2003.

