Adding Security to Cluster-based Communication Protocols
for Wireless Sensor Networks

Adrian Carlos Ferreira' , Marco Aurélio Vilaca' , Hao Chi Wong!

!Computer Science Department — UFMG
Belo Horizonte, Brazil

{adrian, vilaca, wong}@dcc.ufmg.br

Abstract. Wireless sensor networks are ad hoc networks comprised mainly of
small sensor nodes with limited resources, and can be used in pervasive com-
puting environments to monitor areas of interest. Cluster-based communication
has been proposed for these networks for various reasons such as scalability and
energy efficiency. In this paper, we investigate the problem of adding security to
cluster-based communication protocols for homogeneous wireless sensor net-
works consisting of sensor nodes with severely limited resources, and propose
a security solution for LEACH, a protocol where clusters are formed dynami-
cally and periodically. Our solution uses building blocks from SPINS, a suite
of highly optimized security building blocks that rely solely on symmetric-key
methods; is lightweight and preserves the core of the original LEACH.

1. Introduction

Wireless sensor networks (WSNs) are ad hoc networks comprised mainly of small sen-
sor nodes with limited resources (low power, low bandwidth, and low computational and
storage capabilities) and one or more base stations (BSs), which are much more power-
ful nodes that connect the sensor nodes to the rest of the world. In pervasive computing
environments, WSNs are used for monitoring purposes, providing information about the
area being monitored to the rest of the system. WSNs can be used in different applica-
tion areas, ranging from battlefield reconnaissance and emergency rescue operations to
surveillance and environmental protection.

Cluster-based communication protocols like [4, 7, 6, 10] has been proposed for ad
hoc networks in general and sensor networks in particular for various reasons including
scalability and energy efficiency. In a cluster-based communication, nodes are typically
organized into clusters, with cluster heads (CHs) relaying messages from ordinary nodes
in the cluster to the BSs. This 3-tier network is just an example of a hierarchically or-
ganized network that, in general, can have n > 3 tiers. Hierarchical networks can be
homogeneous if all the nodes in the network (with the exception of the BSs) have com-
parable computational, storage, and communication power; or heterogeneous if nodes in
different hierarchical levels have different levels of resources.

Like any wireless ad hoc network, wireless sensor networks are vulnerable to
attacks [5, 11]. Besides the well-known vulnerabilities due to wireless communication
and ad hocness, WSNs face additional problems. For instance, sensor nodes are small,

cheap devices that are unlikely to be made tamper-resistant or tamper-proof. In addition
to their nodes’ lack of physical protection, these networks are often left unattended once
deployed in open, unprotected, or even hostile areas. This makes them easily accessible
to random individuals and malicious parties alike. It is therefore crucial to add security to
these networks, specially those that are part of mission-critical applications.

Adding security to WSNs is specially challenging. Existing solutions for conven-
tional and even other wireless ad hoc networks are not applicable here, given the lack of
resources in low-power sensor nodes. Public-key-based methods are one such example.

In this paper, we investigate the problem of adding security to cluster-based com-
munication protocols for homogeneous WSNs. We aim for lightweight mechanisms that
are consistent with the resource scarcity of sensor nodes.

To be concrete, we use LEACH (Low Energy Adaptive Clustering Hierarchy) [4]
as our example communication protocol. In addition to assuming homogeneous networks
with resource-constrained nodes, LEACH is an interesting protocol for our investigation
because it rearranges the network’s clustering dynamically and periodically. This dynamic
and periodical reorganization makes it difficult for us to assume static trust relationships,
which we might leverage on to make the protocol secure.

To the best of our knowledge, this is the first study that focuses on adding se-
curity to cluster-based communication protocols in homogeneous WSNs with resource-
constrained sensor nodes. We propose secure-LEACH, the first secure version of LEACH,
using building blocks from SPINS. Our solution is lightweight and preserves the structure
of the original LEACH.

The rest of this paper is structured as follows. We first discuss related work (Sec-
tion 2). Then, in Section 3, we introduce LEACH and discuss its main security vulnera-
bilities. In Section 4, we show how we make LEACH secure. We discuss our solution in
Section 5, and conclude in Section 6.

2. Related Work

Karlof and Wagner [5] did a comprehensive study on secure routing in WSNs. They
surveyed the major classes of attacks against these networks, and suggested broad class
of countermeasures that can be applied in each case. They also studied a number of
protocols that have been proposed in the literature (including LEACH), and pointed out
their main vulnerabilities. They do not, however, offer concrete security protocols for any
of the routing protocols.

Boghe and Trappe [1] proposed an authentication framework for hierarchical sen-
sor networks. They assume, however, nodes with heterogeneous capabilities in different
levels of hierarchy, some powerful enough to perform public key operations. In fact, their
solution makes use of public key methods.

Perrig et al proposed SPINS [9], a suite of symmetric key based security building
blocks which we use in our solution. Oliveira et al [8] also proposed a pure symmet-
ric key based solution, but they assume hierarchical n-level (arbitrary n) networks with
heterogeneous nodes.

WSNs require novel key distribution schemes, because of their resource con-
straints. Eschenauer and Gligor proposed the first work [3] on random key predistribution.
There are variations of this basic schema [2].

Stankovic [11] surveys DOS attacks against wireless sensor networks, which we
do not address in this work.

3. LEACH and its Vulnerabilities

To make our research concrete, we use LEACH as our underlying communication proto-
col. In this paper, for the purpose of simplicity, we assume that there are no additional
control messages, aside from the ones we show.

LEACH assumes two types of network nodes: a more powerful BS and resource-
scarce sensor nodes. In homogeneous networks with resource-scarce sensor nodes, nodes
do not typically communicate directly with the BS for two reasons. One, these nodes typ-
ically have transmitters with limited transmission range, and are unable to reach the BS
directly. Two, even if the BS is within a node’s communication range, direct communica-
tion typically demands a much higher energy consumption. This approach is inadequate
(inefficient) except for few unlikely configurations, where e.g., the BS is located in the
center of a circle of sensor nodes.

Another, more energy efficient, alternative would be to take advantage of interme-
diate nodes as routers. Nodes that are farther away send their messages to intermediate
nodes, which will then forward them to the BS in a multi-hop fashion. The problem with
this approach is that, even though peripheral nodes actually save energy, the intermediate
nodes, which play the role of routers, end up having a shortened lifetime, when com-
pared with nodes that are not routing, since they spend additional energy receiving and
transmitting messages.

LEACH assumes every node can directly reach a BS by transmitting with suffi-
ciently high power. However, one hop transmission directly to a BS can be a high power
operation, and is specially inefficient given the amount of redundancy typically found in
WSNs. Multihop communication, on the other hand, has the aforementioned problem of
energy drainage in router nodes. To solve this problem, LEACH uses a novel type of rout-
ing that randomly rotates routing nodes among all nodes in the network, thus distributing
energy consumption among all network elements.

Briefly, LEACH works in rounds, and in each round, it uses a distributed algo-
rithm to dynamically cluster the nodes. Each cluster has a single CH, who is responsible
for collecting packets from its cluster members, and forward them to the BS. Due to these
additional receptions and transmissions, CHs have a much higher energy consumption,
compared to the other nodes. To address this issue, a CH does not remain a CH for-
ever; nodes take turns in being CHs, and energy consumption spent on routing is thus
distributed among all nodes.

Using a set of 100 nodes randomly distributed, and a BS located at 75m from the
closest node, simulation results show that LEACH spends up to 8 times less energy than
other protocols [4]. The energy saving comes from other sources other than just dynamic
cluster-based communication: data fusion (CHs do data fusion before sending them to the

BS), node sleeping (given that only CHs need to forward messages, the remaining nodes
are activated only when they themselves are transmitting, and remain in sleep mode a
good part of the time), and transmitter calibration (nodes calibrate their transmitters in
such a way that they are only high enough to reach the CH).

Protocol Description

LEACH operates in rounds with predetermined duration. Through synchronized clocks
nodes know when each round starts and ends. There are two phases in each round: sefup
and steady state.

The setup phase starts with each node probabilistically deciding whether or not to
become a CH for the current round based on its remaining energy and a globally known
desired percentage of CHs. This self-election algorithm is such that all nodes have the
same probability of becoming CHs during the lifetime of the network. This phase ends
with non-CH nodes clustering around the CHs. The setup phase consists of the following
steps:

Advertisement: Nodes decide whether or not to become a CH for the current round.
Those that will broadcast a message (adv) advertising this fact. adv is broadcast
at a level that can be heard by everyone in the network. To avoid adv collision the
CSMA-MAC protocol is used.

Cluster Joining: Once the remaining nodes hear advs from all the CHs, they pick a
cluster to join based on the largest received signal strength of a adv message,
and communicate their intention to join by sending a join request join_req using
CSMA-MA. Given that the CHs’ transmitters and receivers are calibrated, bal-
anced and geographically distributed clusters should result.

Confirmation: Once the CHs receive all the join requests, they broadcast a confirmation
message that includes a TDMA schedule to be used by their cluster members for
communication during the steady phase.

Once the the clusters are set up, the network moves on to the steady state phase,
where actual communication between sensor nodes and the BS takes place. Each node
knows when it is its turn to transmit (according to the TDMA schedule), and thus can
turn its transmitter and receiver off outside this period to save energy. The CHs collect
messages from all their cluster members, aggregate these data, and send the result to the
BS. The steady state phase lasts much longer compared to the setup phase.

Security vulnerabilities

Like most of the routing protocols for wireless sensor networks, LEACH is vulnerable to a
number of security attacks [5], including jamming, spoofing, replay, etc. But because it is
a cluster-based protocol, relying fundamentally on their CHs for routing, attacks involving
CHs are the most damaging. If a intruder manages to become a CH, it can stage attacks
such as sinkhole and selective forwarding, thus disrupting the network. Of course, the
intruder may leave the routing alone, and try to inject bogus sensor data into the network,
one way or another. A third type of attack is passive: eavesdropping.

Setup phase

1. H=G: h,adv

2. A, —> H: a;h,join_req

3. H=G: h{a,Ty,),...,{an, Ty,),sched
Steady-state phase

1. A, — H: message

2. H— BS: message

The various symbols denote

H, A; : A cluster head and an ordinary node,
respectively
G : The set of all nodes in the network
=, —: Broadcast and unicast transmissions,

respectively
a,h: Node A and H’s ids, respectively
adv,
join_req,

sched : String identifiers for message types
{a,T,) : Anodeid a and its time slot 7},
in its cluster’s TDMA schedule

Figure 1: Leach protocol

4. Adding Security to LEACH

Attacks to WSNs may come from outsiders or insiders. In protected networks, outsiders
do not have credentials (e.g., keys or certificates) to show that they are members of the
network. Insiders are nodes or agents that have these credentials. Insiders may not al-
ways be trustworthy, given that they may be otherwise trustworthy nodes that have been
compromised, or they may have stolen their credentials from some legitimate node of
the network. The solution we propose here is meant to protect the network from attacks
by outsiders only. In the rest of this paper, we use intruders to mean outside attackers.
Another rather ordinary trust assumption we make is that BSs are trusted.

In this section, we will add some of the most critical security properties to
LEACH:

Data authentication: It should be possible for a recipient of a message to authenticate
its originator.

Data confidentiality: Confidential data can be protected in such a way that only those
that are supposed to have access to them actually do.

Data integrity: It should be possible for a recipient of a message to be sure that the
message was not modified while in transit.

Data freshness: It should be possible for a recipient of a message to be sure that the
message is not a replay of an old message.

Using primitives that guarantee these properties, we focus on devising solution to prevent
an intruder from becoming a CH or injecting bogus sensor data into the network by pre-
tending to be one of its members. We also protect sensor data from being eavesdropped.
Our solution uses building blocks from SPINS [9], a suite of lightweight security primi-
tives for resource-constrained WSNSs.

4.1. SPINS Overview

SPINS consists of two symmetric-key security building blocks optimized for highly con-
strained sensor networks: SNEP and 4 TESLA. SNEP provides confidentiality, authen-
tication, and freshness between nodes and the BS, and yTESLA provides authenticated
broadcast. yTESLA implements the asymmetry required for authenticated broadcast us-
ing one-way key chains constructed with cryptographically secure hash functions, and
delayed key disclosure. uTESLA requires loose time synchronization. See [9] for further
details on SPINS.

4.2. Overview of OQur Solution

One straightforward way to prevent intruders from infiltrating a network (and becoming
CHs or injecting bogus messages) is to use a globally shared key for link layer encryption
and authentication. Using this key to protect their communication, members of the net-
work can certify that a given message they received is actually from some other legitimate
node of the network. In the case of LEACH, we could encrypt all the messages in Fig. 1,
and adv in particular, using such a key. Systems that use globally shared keys, however,
are known to be fragile: a compromise of a single node would compromise the whole
network.

To address this problem, we would need to use keys with smaller scope. In the
case of the adv message (message 1, Fig. 1), we would need an authenticated broadcast
mechanism, i.e., a mechanism that would allow non-CH nodes to authenticate the broad-
caster as being a particular, legitimate, node of the network. Public key systems would be
perfect for this purpose, but they are inapplicable here because of the amount of resource
they require. Even yTESLA [9], which is a symmetric key based mechanism that imple-
ments the asymmetry required in this context is too costly, given that it requires the sender
to store a long chain of symmetric keys, which requires storage capabilities not present in
our small nodes.

We propose a solution that divides this authenticated broadcast into two smaller
steps, leveraging on the BS, who is trusted and has more resources. In a nutshell, assuming
that each sensor node shares a secret symmetric key with the BS, then each CH can send
a slightly modified adv message. Part of this message would have the id of the CH in
plaintext, which will be used by the ordinary nodes as usual. A second part would be
protected (in reality, a MAC) using the key the CH shares with the BS, and will be used
by the BS for the purpose of authentication. Once all these (modified) adv messages
have been sent by the CHs, the BS will compile the list of legitimate CHs, and send this
list to the network using the 4y TESLA broadcast authentication scheme. Ordinary nodes
now know which of the (modified) advs they received are from legitimate nodes, and can
proceed with the rest of the original protocol, choosing the CH from the list broadcast by
the BS.

We can modify the rest of the setup protocol similarly, and authenticate the mes-
sages for join request and confirmation. This solution is prohibitively expensive, however,
because the BS would need to authenticate each and all nodes of the network at the be-
ginning of each round, making it a bottleneck of the system. Thus, for efficiency and
scalability reasons, we leave these messages unauthenticated, and show below why this
would not bring devastating consequences, as long as we add an lighter-weight corrective
measure.

If we do not authenticate join_req messages (message 2, Fig. 1), intruders will be
able to join any of the cluster. Intruders that join a cluster may have three goals in mind:
(1) To crowd the TDMA schedule of a cluster, causing a DOS attack, or simply lowering
the throughput of a CH; (2) To send bogus sensor data to the CH, and introduce noise to
the set of all sensor measurements; and 3) To have the CH forward bogus messages to the
BS, and deplete its energy reserve.

We chose not to try to address the first possibility, since there are simpler ways for
an intruder to accomplish the same objective, by jamming the communication channels,
for example. To prevent the second possibility, we authenticate and encrypt sensor data
from sensor nodes to the BS using the symmetric key they share. To thwart the third
possibility, we have the BS warn the CHs about the presence and the identities of intrud-
ers, as soon as it detects their presence (through messages that the BS cannot decrypt
successfully).

If we leave the confirmation message (message 3, Fig. 1) unauthenticated, then
an intruder would be able to broadcast bogus TDMA schedules, possibly causing DOS
problems in the communication during the steady-state phase. Here too, an intruder has
simpler ways (jamming, e.g.) to accomplish the same objective.

4.3. Protocol Details
We describe secure-LEACH (Fig. 2) in the rest of this section.

Notation

In what follows, we use x 4 to represent the master symmetric key that node A shares with
the BS. From this key are derived other keys used in a secure communication between the
two: K4 for encryption, and K', for MAC computation. For freshness purposes, each
node A also shares a counter C'4 with the BS. Something more about the counter. We
use 'unicast’” communication to refer to “logical” unicasts, i.e., communication that is
addressed to one party only, even if the message is physically a broadcast (which all
wireless radio communications are).

4.3.1. Predeployment
Each node A of the network is preloaded with two keys: x 4, a master symmetric key that
A shares with the BS; and £,,, a group key that is shared by all members of the network.

k, is the last key of a sequence S generated by applying successively a one-way
hash function f to an initial key ko (S = ko, k1, ko, - . ., kn_1, ky, where f(k;) = kir1).

Setup phase

1. H=G: h,macgy(h|adv)
A store(h)
BS : if macgy (hladv) is valid
add(h, V)
2. BS=G: msg=V mac (V)
3. BS=G: k;
A if (f(k;) = kjy1) and (h € V)
h is authentic
4. A — H: a,h,join_req
5. H=G: hJ{a,Ty),...,{an,T,,),sched

Steady-state phase

1. A— H: msg=a,Ereald), macyy (ca|Frq.co(d))
2. H— BS: msg
3. BS — H: intruderids

Additional notation:

d : Sensor data
V' . An array of node ids
ka : Symmetric key shared by A and BS
ka' : MAC key shared by node A and BS
ca : Counter shared by node A and BS
Eraca{d) : Data encryption using ka and ca
Diaca(d) : Decryption using ka and ca
macky (msg) : MAC calculated using ka’
f() : One-way hash function
add(h,V): AddidhtoV
store(h) : Store id h for future validation

Figure 2: Secure-LEACH protocol

The BS keeps S secret, but shares the last element k,, with the rest of the network.

4.3.2. Setup Phase
Advertisement

Once it decides to be a CH, a node H broadcasts a sec_adv message (message 1, Fig. 2),
which is a concatenation of its own id with a MAC value produced using the MAC key
it shares with the BS. Ordinary nodes simply collect all these broadcasts, and record
the signal strength of each. The BS receives each of these broadcasts, and verifies their
authenticity.

Once the BS has processed all the sec_adv messages, it compiles the list V' of
authenticated H"’s, identifies the last key £; in S that has not been disclosed (note that all
key k;, such that ¢ > 4, have been disclosed, whereas all key £;, such that ¢ < j, have not),
and broadcasts V' (message 2) using pTESLA, and k;. k; is disclosed after a certain time
period (message 3), after all nodes in the network have received the previous message.

Cluster Joining

After receiving both the broadcast and the corresponding key, the nodes in the network
can authenticate the broadcast from the BS and learn the list of legitimate CHs for the
current round. (Note that the key is authentic only if it is a an element of the key chain
generated by the BS, and immediately precedes the one that was released last. That is, if
f(k;) = k;+1.) The node then chooses a CH from this list using the original algorithm
(based on signal strengths), and sends the join_req message (message 4) to the CH it
chooses. Note that this message is unprotected, and identical to message 2, Fig. 1

Confirmation

After the CHs receives all the join_regs, they broadcast the TDMA schedule to their
cluster members (message 5).

4.3.3. Steady-state Phase

During this phase, sensor nodes send sensor measurements to their CHs, who then forward
them (with or without data fusion) to the BS. We protect this traffic using SNEP, which
encrypts and produces the MAC for the plain message. The BS will discard any messages
that it cannot authenticate, and will see their originators as intruders. As soon as these
intruder nodes are detected, the BS reports their identities to the CHs, who will then drop
message from these nodes for the remaining of the round.

4.4. Security Analysis

CHs play a critical role in cluster-based communication protocols. Because they process
and route sensor readings from a large number of sensor nodes to the BS, they can disrupt

whole regions of the network, if they misbehave. Our solution allows authentication
of sec_adv messages, and prevents intruders from becoming CHs. Thus, unless sensor
nodes are compromised (we do not address attacks by insiders in this work), the network
is protected against selective forwarding, sinkhole, and HELLO flood attacks [5].

Our solution does not prevent intruders from joining the clusters. From the point
of view of message origin authenticity, this prevention is not strictly necessary, given that
the sensor data sent by intruders during the stead-state phase will not be authenticated
by the BS, and will be discarded. The intruder will not succeed if its goal is energy
depletion of its CH either (through forwarding bogus messages to the BS), because it can
be readily flagged by the BS, and its CH will cease to forward its messages. Also, they
can try to become members of a cluster to crowd its TDMA schedule, and disturb the
communication within the cluster. But this can be accomplished by other much easier
means, such as jamming the communications channels, for example.

Finally, all communication between the nodes and the BS is encrypted, authenti-
cated, and protected against message tampering and replay.

5. Discussion

Our solution is extremely simple: each node, aside from the BS, is preloaded with only
two keys, one for secure end-to-end communication with the BS, and the other for au-
thenticating broadcasts from the BS.

5.1. Efficiency

Our solution for securing the protocol setup is quite efficient. The only secure-LEACH
messages (Fig. 2) not found in the original LEACH protocol (Fig. 1) are the authenticated
broadcast (message 2), whose length is determined by the number of CHs that there will
be in the round, and the key disclosure (message 3) from the BS. Because the BS is
resource-rich, these broadcasts and one single symmetric key encryption will not strain it.

In terms of the sensor nodes, CHs now send sec_adv instead of adv. This incurs
each CH a MAC computation and some additional 64 bits for the MAC code in their
sec_adv broadcast. As for the non-CH nodes, the additional work required of them has to
do with receiving and processing the BS’s authenticated broadcast (steps 2 and 3, Fig. 2).
The length of message 2 is determined by the number of CHs that the BS managed to
authenticate, which may vary slightly in each round. In any case, there is only one such
message per round, so we expect the cost to be tolerable (though a deeper analysis would
be required for a definite conclusion). To process message 2, each node needs to compute
a MAC, and one (a few in cases where desynchronization occurs) application of f. This
cost is also minimum.

For the steady-state phase, our solution encrypts messages from the sensor nodes
to the BS using SNEP. This incurs one symmetric key encryption per message at the
sensor nodes, and an additional 64-bits of MAC code for transmission, which is quite
reasonable. Because the CHs do not share keys with its cluster members, they are unable
to decrypt the messages from these members. The only thing they can do is to forward
them. While this transfers the burden of decryption to the BS (which is something de-
sirable), it prevents the CHs from doing data fusion, thus increasing their consumption

with communication. This increase will depend on the type of sensor data that is being
collected and the type of data fusion (or aggregation) being carried out. In some cases it
would be desirable to allow data fusion and we present a solution at subsection 5.5.

5.2. LEACH with additional control messages

In this paper, for the purpose of simplicity, we assume that there are no additional control
messages, aside from the ones we show. It is not difficult to see, however, that they can
be handled the way setup messages are.

5.3. Applicability

As was observed before, our solution is quite efficient and does not require major mod-
ifications or additions to the original protocol. This was possible because no extra com-
munication was needed to transmit the sec_adv messages to the BS, which was assumed
to be within every node’s communication range by the original LEACH protocol. We
expect our solution to be applicable to any cluster-based communication protocols where
this assumption holds.

5.4. Adding new nodes to the network

Sometimes it is necessary to add new nodes to the network, to replace nodes that died,
or to extend the area being monitored. It is straightforward to do security provisioning
using our scheme. For each new node A, we generate a symmetric key £ 4, which will be
preloaded to A, and communicated to the BS. k4 will be the secret key shared between A
and the BS. A also needs to know the key k; that was used to protect the last authenticated
broadcast from the BS. There are a few simple ways how this can be accomplished: (1)
the BS can send it encrypted to A, using the secret key they share; (2) A can be preloaded
with any value k; in S that has been disclosed, and the authenticity of the next key to be
disclosed k;, 1 can be checked by applying the one-way function f successively to k;;
until &; is obtained, since 7 > ¢ + 1.

5.5. Data Fusion

Trading off security with efficiency, our basic solution does not allow data fusion by
CHs, which would require shared keys between a CH and its cluster members. One
straightforward solution would be to use the BS as a key distribution center. In networks
with a large number of sensor nodes, this solution would consume a rather high amount
of energy with key generation and distribution.

To allow data fusion, CHs need to decrypt messages. In the simplest solution,
n — 1 keys for each node would be needed since every node is a potential CH. We propose
a cheaper solution that uses one distinct cluster key for each cluster. This key is gener-
ated at base station, delivered to CH during LEACH setup phase and are valid only for
the next round. By avoid reusing cluster keys we make the system more robust against
cryptanalysis attacks.

The BS will send cluster keys encrypted with each CH’s secret key and this could
be done right after message 2 in figure 2. Ordinary members of a cluster receive the key
for the cluster they join, not at the setup phase but by demand. Before the first node

transmission in each round, it asks the BS for the cluster key in use for the current round.
This allows every node and its CH to share the same key during each round.

This solution is more appropriate for those scenarios where sensor node transmis-
sions are event-driven. In these scenarios, it is common for parts of the network to sense
the occurrence of an event, and thus not every sensor node will transmit a report. On the
other hand, the worst situation occurs when all nodes have some report to transmit right
after the start of a new round. In these cases the BS would become a bottleneck, and this
solution is likely to be impractical.

This solution make use of a relative small number of keys compared to the n? keys
needed in the conventional key distribution scheme. When compared to the global key
solution, cluster keys offer higher level of security because they are valid only for one
round and for one cluster. The cost is more processing at the BS and more network traffic.

5.6. A Network’s Lifetime x Length of the broadcast key chain

In our solution, the BS uses ¢ TESLA to send authenticated broadcast. In each round, one
key from a one-way key chain is used and disclosed. It would be ideal if the BS can be
initialized with a chain that is long enough to cover the whole lifetime of the network.
Given that BSs are usually high-power machines, storage space for long chains should
not be an issue. If, however, the chain runs out before the network’s time is over, a new
chain T can be generated by the BS, and its last key k! be authenticated using the first
key kg of the original chain. The length of the original chain does not, thus, determine the
lifetime of the network.

6. Conclusion

To the best of our knowledge, this is the first study that focuses on adding secu-
rity to cluster-based communication protocols in homogeneous WSNs with resource-
constrained sensor nodes. We proposed secure-LEACH, the first secure version of
LEACH, using building blocks from SPINS. Secure-LEACH prevents an intruder from
becoming a CH or injecting bogus sensor data into the network by pretending to be one
of its members. It also encrypts and authenticates sensor data, and protects them from
tampering and replay. Secure-LEACH is lightweight and preserves the structure of the
original LEACH.

The simplicity of our solution relies on LEACH’s assumption that every node can
reach a BS by transmitting with sufficiently high power. This assumption will not always
be true, and we are investigating alternatives in cases where it is not true.

References

[1] Mathias Bohge and Wade Trappe. An authentication framework for hierarchical ad hoc
sensor networks. In Proceedings of the 2003 ACM workshop on Wireless security,
pages 79-87. ACM Press, 2003.

[2] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution schemes for
sensor networks. In IEEE Symposium on Research in Security and Privacy, 2003.

[3] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for distributed
sensor networks. In In Proc. of ACM CCS, 2002.

[4] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In HICSS,
January 2000.

[5] Chris Karlof and David Wagner. Secure routing in wireless sensor network: Attacks and
countermeasures. First IEEE International Workshop on Sensor Network Protocols
and Applications, May 2003.

[6] Stephanie Lindsey and Cauligi S. Raghavendra. Pegasis: Power-efficient gathering in
sensor information systems. In IEEE Aerospace Conference, March 2002.

[7] A. Manjeshwar and D. Agrawal. Teen: A routing protocol for enhanced effeciency in
wireless sensor networks. In /st International Workshop on Parallel and Distributed
Computing Issues in Wireless Networks and Mobile Computing, 2001.

[8] Leonardo B. Oliveira, Hao Chi Wong, Antonio A. Loureiro, and Daniel M. Barbosa. A
security protocol for hierarchical sensor networks. In Proceedings of the 2004 SBRC
- Simposio Brasileiro de Redes de Computadores, May 2004.

[9] Adrian Perrig, Robert Szewczyk, Victor Wen, David E. Culler, and J. D. Tygar. Spins: Se-
curity protocols for sensor networks. In Mobile Computing and Networking, pages
189-199, 2001.

[10] L. Venkatraman and D. Agrawal. A novel authentication scheme for ad hoc networks. In
IEEE Wireless Communications and Networking Conference (WCNC 2000), vol. 3,,
pages 12681273, 2000.

[11] Anthony D. Wood and John A. Stankovic. Denial of service in sensor networks. IEEE
Computer, 35(10):54-62, October 2002.

