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Abstract. This paper proposes a simple reliable multicast protocol that tolerates
arbitrary faults, including malicious faults such as intrusions. The goal is to
show a novel way of designing intrusion-tolerant protocols based on a well-
founded hybrid fault model. This model is based on a simple distributed security
kernel — the TTCB — which is used by the processes only to execute securely
critical steps of the protocol. Otherwise, the processes and their communication
can be attacked in unlimited ways. The TTCB provides only a few basic services,
which allow our protocol to tolerate a number of faults similar to accidental
fault-tolerant protocols: for f faults, our protocol requires f + 2 processes,
instead of 3f + 1 in typical intrusion-tolerant (or Byzantine) protocols. The
protocol exhibits fast termination in the presence of intrusions and/or crash or
malicious process failures, since it does not use any cryptography in runtime.

Resumo. Este artigo propoe um protocolo de difusdo confidvel simples que tol-
era faltas arbitrdrias, incluindo faltas maliciosas tais como intrusées. O obje-
tivo é mostrar um modo original de projetar protocolos tolerantes a intrusoes
baseados num bem fundamentado modelo de faltas hibrido. Este modelo é
baseado num kernel de seguranca distribuido simples — o TTCB — o qual é
usado pelos processos somente para executar passos criticos do protocolo de
forma segura. O TTCB fornece somente alguns servicos bdsicos, os quais per-
mitem ao nosso protocolo tolerar um niimero de faltas similar aos protocolos
tolerantes a faltas acidentais: para f faltas, nosso protocolo requer f + 2 pro-
cessos, ao invés de 3 f + 1 nos protocolos tolerantes a intrusoes (ou Byzantinos)
tipicos. O protocolo exibe terminagdo rdpida na presenga de intrusoes e/ou
crash ou processos maliciosos, uma vez que ndo usa qualquer criptografia em
tempo de execugdo.

*This work was partially supported by the EC, through project IST-1999-11583 (MAFTIA),
and by the FCT, through the Large-Scale Informatic Systems Laboratory (LASIGE) and projects
POSI/1999/CHS/33996 (DEFEATS) and POSI/CHS/39815/2001 (COPE).
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1. Introduction

Distributed protocols that tolerate arbitrary faults — also called Byzantine faults —
have been studied for some time now (see, e.g., [Lamport et al., 1982, Rabin, 1983,
Fischer, 1983]). Recently, with the Internet going mainstream and the rising tide of ma-
licious activity, a new interest for these protocols emerged under the designation of in-
trusion tolerance. These protocols usually consider a set of cooperating processes (or
hosts) interconnected by a network. The processes may fail arbitrarily, e.g., they can
crash, delay or not transmit some messages, generate messages inconsistent with the pro-
tocol, or collude with other faulty processes with malicious intent. The asynchronous
time model is usually used by this type of protocols because it describes appropriately the
Internet and other networks with unpredictable timeliness, although more or less subtle
synchrony assumptions usually have to be done. Examples of recent intrusion-tolerant
protocols can be found in [Castro and Liskov, 1999, Reiter, 1994, Malkhi et al., 1997,
Kihlstrom et al., 1998, Moser et al., 2000, Cachin et al., 2000].

Intrusion-tolerant protocols based on the asynchronous model normally have to
assume a maximum number of processes that are allowed to fail. For the particular prob-
lem addressed in this paper — reliable multicast — Bracha and Toueg showed that it is
impossible to send reliable multicast if there are more than f = ”T_l faulty processes in a
system with n processes [Bracha and Toueg, 1985]. Usually these protocols are also slow
when compared to accidental fault-tolerant protocols because they require several rounds
of message exchange and asymmetric cryptography to protect the transmitted messages
(see, e.g., [Reiter, 1994]).

This paper presents a reliable multicast protocol based on a hybrid fault model.
The basic idea of this type of models is to make distinct failure assumptions about dif-
ferent components of the system, ranging from arbitrary to fail-controlled. In our case,
processes and network can fail in an arbitrary way, however, we assume the existence of
a distributed security kernel which can only fail by crashing. This kernel is called the
Trusted Timely Computing Base (TTCB). It has a set of features that together are innova-
tive: it is distributed with its own private control channel, it is secure and real-time, and
it provides a limited set of services. The design and implementation of the TTCB were
presented and discussed in another paper [Correia et al., 2002b].

The intrusion-tolerant reliable multicast protocol presented here — BRM-T — is
based on the idea of using the TTCB to give the processes a reliable digest of the sent
message. The protocol terminates early even if there are faulty processes or the network
behaves badly. The fact that it does not need any cryptography in runtime and its sim-
plicity are the two main differences in relation to a protocol of the same family presented
elsewhere [Correia et al., 2002a]. BRM-T is also efficient in relation to other protocols
in the literature, precisely because it does not use cryptography. Also, on the contrary to
similar protocols, BRM-T does not impose any limit on the maximum number of faulty
processes. This result is similar to what is achieved in synchronous systems and is usu-
ally stated as n > f + 2, since the problem is vacuous if there are less than two correct
processes.
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2. The System Model and the TTCB

The TTCB is a secure and real-time distributed subsystem with local parts in the hosts
and a control channel. The architecture of a system with a TTCB is presented in Figure 1.
Each host contains the typical software layers: the operating system and runtime environ-
ments, the applications and processes, etc. The local parts, or local TTCBs, are compu-
tational components with activity, conceptually separate from the operating system. The
control channel is a private communication channel or network that interconnects the lo-
cal TTCBs. It is conceptually separated from the payload network, the network used by
the hosts to communicate. We will not take more time discussing how these conceptual
separations are obtained in practice, since the implementation of the TTCB was already
presented [Correia et al., 2002b].

The system’s time model is mostly asynchronous, with the exception of the TTCB,
which is real-time, therefore synchronous. In relation to the (asynchronous) payload sys-
tem, we can make working assumptions on message delivery delays; they may even hold
many times; we can (and will) use them to ensure system progress; but we can never
assume that bounds are known or even exist, for message delivery or for the interactions
between a process and the local TTCB.

( Host 1 ) ( Host2 ) ( Hostn )

APP/PROC ‘ APP/PROC ‘ APP/PROC ’
Environment I Environment I eoo Environment I
7 /A

Local Local Local
TTCB TTCB TTCB

& J & J & J
l | |

Control Channel

Payload Network

Figura 1: System with a TTCB.

The protocol presented in this paper uses only three TTCB services:

e Local authentication. This service allows a process to communicate securely with
the local TTCB. The service authenticates the local TTCB before the process, and
establishes a shared symmetric key between both!. This shared symmetric key is
used to implement a secure channel between the process and the local TTCB, and
then their exchanges can be authenticated, encrypted, etc. depending on what is
needed [Correia et al., 2002b].

e Trusted block agreement. This is the main building block for secure protocols.
It delivers a value obtained from the agreement of values proposed by a set of
processes. The values are blocks with limited size, so this service cannot be used
to make all agreement related operations of the system, but only to do critical steps
of the protocols.

o Trusted Absolute Timestamping Service. This service provides globally meaning-
ful timestamps. It is possible to obtain timestamps with this characteristic because

'Every local TTCB has an asymmetric key pair. We assume that a process is able to get a trustworthy
copy of the public key. This key is then used to authenticate the local TTCB.
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local TTCBs clocks are synchronized to a precision 7, i.e., for every pair of local
TTCBs (i,7): |Ci(t) — C;(t)| < .

Next we describe with more detail the trusted block agreement service which is
crucial for the understanding of the protocol.

2.1. Trusted Block Agreement Service

The agreement service (for short) is defined in terms of three functions: TTCB propose,
TTCB _decide and decision. A process proposes a value when it calls TTCB propose. A
process decides a result when it calls TTCB decide and receives a result. The function
decision defines how the result is calculated in terms of the inputs to the service. The value
is a “small” block of data with fixed length (currently 160 bits). The result is composed
by a value and two masks with one bit per process involved in the service.

The interface of the agreement service has two functions:
outp «TTCB_propose (eid, elist, tstart, decision, value)
outd «TTCB.decide (eid, tag)

A process calls TTCB _propose to propose its value. eid is the unique identification
of a process before the TTCB, obtained using the Local Authentication Service. elist is a
list with the eids of the processes involved in the agreement. tstart is a timestamp with the
following objective. Ideally the agreement should be executed when all processes in elist
proposed their value. However, if the service was to wait for all processes to propose, a
malicious process would be able to postpone the service execution eternally simply by not
proposing its value. The purpose of tstart is to avoid this problem: when all processes
proposed, the service starts; however, if the service is not initiated by tstart, then it
starts at that instant and no more proposals are accepted. A proposal made after ¢start
is rejected and an error is returned. decision indicates the function that should be used to
calculate the value that will be decided (the TTCB offers a limited set). value is the value
proposed. Function TTCB _propose returns a structure outp with two fields: outp.error is
an error code and outp.tag is a unique identifier of the execution of the agreement. The
TTCB knows that two calls to propose made by different processes pertain to the same
agreement execution if they have the same value for (elist, tstart, decision).

Processes call TTCB _decide to get the result of the agreement. tag is the unique
identifier returned by TTCB _propose, and is used to specify the agreement instance. outd
is arecord with four fields: outd.error gives an error code; outd.value is the value decided;
outd.proposed-ok is a mask with one bit per process in elist, where each bit indicates if
the corresponding process proposed the value that was decided or not; outd.proposed-any
is a similar mask but that indicates which processes proposed any value.

2.2. Process Failure Modes

A process is correct if it always follows the protocol until the protocol completion. There
are several circumstances, however, that might lead to a process failure:

1. The process crashes or starts to behave maliciously
2. The pair (eid, secret), which lets the process communicate securely with the local
TTCB, is discovered by a local attacker
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3. The process is unable to exchange data with other processes because its commu-
nication is systematically disrupted or delayed

The first case is the most obvious. We consider that a malicious process can fail
arbitrarily (e.g., in a Byzantine way). It can send messages without regard of the protocol,
delay or send contradictory messages, or even collude with other malicious processes with
the objective of breaking the protocol.

Case two describes a situation that might lead to a personification attack. Before
a process starts to use the TTCB, it needs to call the Local Authentication Service to
establish a secure channel with the local TTCB. The outcome of the execution of this
procedure is a pair (eid, secret), where eid is the identifier of the process and secret is a
symmetric key shared with the local TTCB. If an attacker penetrates a host and obtains this
pair, it can impersonate the process before the TTCB and the TTCB before the process.
If this pair is kept secret, the attacker can only try to disrupt or delay the communication
between the process and the local TCCB — personification attacks are prevented.

The third case requires some discussion. Asynchronous protocols typically as-
sume that messages are eventually received (reliable channels), and when this happens
the protocol is able to make progress. To implement this behavior, processes are required
to maintain a copy of each message and to keep re-transmitting until an acknowledgement
arrives (which might take a long time, depending on the failure). In this paper we decided
to take a different approach: if an attacker can systematically disrupt the communication
of a process, then the process is considered failed as soon as possible, otherwise the at-
tacker will probably disturb the communication long enough for the protocol to become
useless. For example, if the payment system of an e-store is attacked and an attempt of
paying an item takes, let us say, 10 hours to proceed, that is equivalent to a failure of the
store.

In channels with only accidental faults it is usually considered that no more than
Od messages are corrupted/lost in a reference interval of time. Od is the omission degree
and tests can be made in concrete networks to determine Od with any desired probabil-
ity [Verissimo et al., 1989]. If a process does not receive a message after Od + 1 retrans-
missions from the sender, with Od computed considering only accidental faults, then it
is reasonable to assume that either the process crashed, or an attack is under way. In any
case, we will consider the receiver process as failed. The reader, however, should no-
tice that Od is just a parameter that will be used in the protocols. If Od is set to a very
high value, then our protocols will start to behave like the protocols that assume reliable
channels.

Note that the omission degree technique lies on a synchrony hypothesis: we ‘de-
tect” omissions if a message does not arrive after a timeout longer than the ‘worst-case
delivery delay’ (the hypothesis). Furthermore, we ‘detect’ crash if the omission degree
is exceeded. In our environment (since it is asynchronous, bursts of messages may be
over-delayed, instead of lost) this artificial hypothesis leads to forcing the crash of live
but slow (or slowly connected) processes. There is nothing wrong with this, since it al-
lows progress of the protocol, but this method is subject to inconsistencies if failures are
not detected correctly [Chandra and Toueg, 1996]. Failure detection mechanisms are out
of the scope of this paper.
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Another advantage of considering systematically delayed processes as failed is
related with the implementation of the TTCB. Since the TTCB is a small component, it
can only keep the results of the agreement service for a limited time. If a delayed process
asks for a result after it expired the simplest thing to do is to consider the process as failed.
Alternatively, the protocols could be made more complex to recover from this situation.
However, there is no much justification in doing so for the reason pointed earlier — if the
process is too late it is useless.

3. The Reliable Multicast Protocol

In all multicast protocols processes play one of two roles: sender or recipient. A message
transmitted to a group of processes should be delivered to all members, including the
sender. This is not always possible due to failures. In the rest of the paper, we will make
the classical separation of receiving a message from the network and delivering a message
— the result of the protocol execution.

Informally, a reliable multicast protocol enforces the following: 1) all correct
processes deliver the same messages, and 2) if a correct sender transmits a message then
all correct processes deliver this message [Bracha and Toueg, 1985]. These rules do not
imply that the message will be delivered in the case of a malicious sender. However,
one of two things will happen, either the correct processes never complete the protocol
execution and no message is ever delivered, or if they terminate, then they will all deliver
the same message. No assumptions are made about the behavior of the malicious recipient
processes: they might decide to deliver the correct message, a distinct message or no
message. Reliable multicast also gives no assurances about the order in which messages
are delivered. Each process can deliver its messages in a distinct order.

Formally, a reliable multicast protocol has the following proper-
ties [Hadzilacos and Toueg, 1994]:

e Validity: If a correct process multicasts a message M then a correct process in
group(M) ? eventually delivers M.

e Agreement: If a correct process delivers a message M then all correct processes in
group(M) eventually deliver M.

e [ntegrity: For any message M, every correct process p delivers M at most once
and only if p is in group(M), and if sender(M) * is correct then M was previously
multicast by sender(M).

3.1. The BRM-T Protocol

An execution of the BRM-T protocol consists in the sender multicasting the message to
all recipients, and then each recipient multicasting again the message to all others. Each
multicast is performed Od + 1 times in order to tolerate omissions due to accidental
faults (see Section 2.2.). The recipients multicast is needed to ensure the Agreement
property, in case a malicious sender only transmits the message to a subset of the correct
processes. The authenticity and integrity of the message is checked using an hash code
sent through the TTCB agreement service. Consequently, messages do not have to carry
any cryptographic signatures and processes do not need to share any cryptographic keys.

2Sender and recipients of M
3Sender of M
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BRM-T Sender protocol

tstart = TTCB_getTimestamp() + Ty,

M := (elist, tstart, data);

propose := TTCB _propose(elist, tstart, TTCB_TBA_RMULTICAST, HM));
repeat Od+1 times do multicast M to elist except sender od

deliver M;

DN AW =

BRM-T Recipient protocol

6  read_blocking(M);

7 propose := TTCB_propose(M.elist, M.tstart, TTCB_TBA_RMULTICAST, 1);
8 dodecide := TTCB_decide(propose.tag);

9 while (decide.error # TTCB_TBA _ENDED);

10 while (H(M) # decide.value) do read_blocking(M) od

11 repeat Od+1 times do multicast M to elist except sender od

12 deliver M;

Figura 2: BRM-T protocol.

Figure 2 shows an implementation of the protocol. A message consists of a tuple
with three components (elist, tstart, data). elist is alist of eids with the format accepted
by the TTCB agreement service. The first element of the list is the eid of the sender, and
the others are the eids of the receivers. tstart is the timestamp that will be given to the
agreement service, and data is the information to be transmitted. Each execution of the
protocol is identified by (elist,tstart). The read_blocking() primitive only reads mes-
sages with the value (elist, tstart) corresponding to the protocol instance being executed.
Other values of the pair are processed by other instances of the protocol. We assume that
there is a garbage collector that discards messages for instances of the protocol that have
already finished running. This garbage collector can be constructed by keeping in a list
with the identifiers of the messages already delivered and comparing the identifiers of the
arriving messages.

The sender protocol receives as arguments elist and data from the application and
starts by calculating zstart and constructing the message (lines 1-2). Constant 7|, has to
be carefully determined because, on one hand, smaller values ensure faster termination
of the protocol. On the other hand, 7j should be sufficiently large for TTCB _propose to
be called before ¢start (otherwise, the value would not be accepted). Since the system
is asynchronous, it is not possible to establish the best value for 7( because delays are
nondeterministic, but, in practice, a high probable value can be defined. Nevertheless,
if TTCB_propose is called too late, the error TTCB_ TSTART _EXPIRED is returned
and the sender protocol can either retry with a new ¢start or return an error (for simplic-
ity this condition does not appear in the code). The agreement execution is defined by
elist, tstart and the decision function (line 3). Both sender and recipients use the same
decision function TTC'B_ T BA_RMULTICAST. This function selects as the result of
the agreement the value proposed by the first process in elist, which in our case is the
sender. The value proposed by the sender is the hash of the message, H(M). An hash
function is basically a one-way function that compresses its input and produces a fixed
sized digest (e.g., 128 bits for MD5). In the paper, we assume that an attacker is unable
to subvert the properties of the hash function, including weak and strong collision resis-
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tance [Menezes et al., 1997]. The sender terminates by multicasting the message Od + 1
times and then delivering it (lines 4-5).

BRM-T uses the agreement service in the way described to multicast H (M) to
the recipients, and the fact that the TTCB is involved in the procedure guarantees that
all recipients receive a reliable H(M). Given the collision resistance property of the hash
function, it is “computationally infeasible” for a malicious sender to give to two correct
recipients distinct messages but with the same H(M). The fact that an instance of the
protocol is defined by the pair (elist,tstart), that together with the decision function
uniquely identifies the agreement, is also very important. This prevents an attacker or
malicious process from trying to change elust, for instance, to exclude a process, or from
modifying tstart, for instance, to delay the protocol. If one process gives different values
for these parameters to the agreement service, a new instance of agreement will be cre-
ated in the TTCB, and its execution will not interfere with the original execution of the
agreement.

The recipient protocol starts by waiting to read a message (line 6). Then, it calls
TTCB propose with the sole objective of getting the tag that identifies the agreement
(line 7). Next, there is a call to TTCB_decide, which is done inside a loop to guarantee
that the protocol waits for the agreement to finish, in case it is still running (lines 8-9).
If the received message is different from the one transmitted by the sender then H (M)
will be different from the value returned by the agreement, decide.value. In this case,
the protocol has to wait for the correct message to be received (line 10). To complete
the protocol, the process multicasts the message Od + 1 times to the other recipients and
delivers it (lines 11-12).

As mentioned in Section 3., there are situations when the protocol does not termi-
nate if the sender is malicious or the process is failed. First, in some cases, the recipient
may never receive the message (line 6 and 10): (1) if the sender is malicious it may not
send the message to any correct recipient (e.g., multicasts M/ 1 and gives to the agreement
H(M)); or (2) if all the messages sent to the process are corrupted or lost, which means,
according to our process model, that the recipient is faulty. Second, a malicious sender
might send a message but never propose a value. In this case, the agreement at the correct
recipients will not terminate and they will be blocked forever (lines 8-9). Third, if a recip-
ient becomes aware that the protocol is running so late that when it calls 7T7T'C'B _decide
the result of the agreement is no longer available. In this case the recipient is considered
faulty, as mentioned in Section 2.2..

Example Execution of the BRM-T Protocol

Figure 3 illustrates the behavior of the BRM-T protocol. The horizontal lines represent
the execution of processes through time. The thicker line represents the TTCB as a whole,
even though, each process calls a separate local TTCB in its host (this representation is
used for simplicity).

The sender calls the TTCB agreement and then multicasts the message twice
(Od = 1). These messages are received in the following way: P2 receives the two copies
of the message, P3 receives the first copy corrupted and the second well, and P4 does
not receive the first copy and the second is delayed. The example assumes that the first
message sent to P3 is corrupted only in the data part, and for that reason it is still possible
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Figura 3: Example execution of the BRM-T protocol.

to determine this protocol instance. When a message arrives, the recipient calls the TTCB
agreement to get the result with the reliable value of H(M). Both processes P2 and P3
get this value almost immediately after the end of the agreement. They use the hash to
select which of the messages they received is correct, and then they multicast the message
to all the other recipients. P4 asks for the result of the agreement later, when it receives
the first message from the protocol. Then, it multicasts the message.

4. Protocol Evaluation

This section evaluates the BRM-T protocol in terms of message complexity and time
performance.

Message Complexity

The number of messages transmitted by the BRM-T protocol is always the same. How-
ever, the way these messages are counted depends on how the unreliable multicast prim-
itive is implemented. Equations are given for implementations in which a multicast is
performed using a network multicast primitive (e.g., I[P multicast) or with consecutive
calls to a point-to-point send primitive (e.g., UDP).

If there are f failed processes that do not communicate (e.g., because they
crashed), then the number of messages send by the (n — f) correct processes is:

Nicast = (0d+1)(n — f) (1
Npop =(0d+1) x (n—1)+ (n— f—1)(n—2)) 2)

Time Performance

The performance of the BRM-T protocol was evaluated using the current implementation
of the TTCB, the COTS-based TTCB [Correia et al., 2002b]. This setup is based on six
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450 Mhz Pentium IIT PCs with 192 Mbytes RAM. The payload network and the TTCB
control network are 100 Mbps Fast-Ethernet LANs. Each PC has two network adapters.
The operating system is RTAI *, a freeware real-time engineering of Linux. RTAI was
security-enhanced in order to prevent intrusions in the local TTCB and in the TTCB con-
trol network. The code was implemented in C and compiled using the standard gcc com-
piler. The hash function used was MD5 [Menezes et al., 1997] and the communication
was done with IP multicast. T}, cement 15 currently 13ms.

A first set of experiments was used to setup some protocol parameters. Setting up
Ty = 1ms the sender managed always to propose before tstart (lines 1-3). We also ob-
served that although IP multicast is unreliable, if there are no attacks usually no messages
are lost.

All other experiments measured the time the protocol takes to deliver the message
to a recipient. There was always one sender and five recipients, one per PC. The method-
ology used was the following. One of the processes is randomly chosen as the sender and
multicasts a message M using an IP multicast address A. When the recipients receive the
message they follow the protocol and resend the message to all other recipients using an
IP multicast address B (the sender does not listen to this address). Then, immediately
after delivery, a recipient is selected to answer the sender. This reply is an IP multicast
for the same set of processes using the address A, and with a message of the same size.
For each execution of the protocol two times were measured: the round-trip time and
the recipient processing time. The round-trip time (7'rd) is obtained by the sender, and
it corresponds to the time measured between the multicast and the reception of the last
reply. The recipient processing time (I'proc) is the time taken between the reception of
the message M in the recipient and its reply. This time includes all tasks executed by
the recipient, such as hash calculation, and it corresponds mostly to the time waiting for
the TTCB Agreement Service, i.e., calling TTCB propose and waiting for TTCB _decide
to return the result of the agreement (lines 8-9). If we assume that an IP multicast al-
ways takes the same amount of time, we can use the following formula to calculate the
protocol’s message delivery time:

_ Trd—"Tproc
-

Td + T'proc 3)

Each measurement is the average of at least 1000 executions of the protocol. Both
the network and the PCs were lightly loaded.

Figure 4 shows the variation of the BRM-T average delivery times with the mes-
sage data size, and the standard deviation (second set of experiments), with no faults.
The messages carry an extra 24 bytes header for BRM-T. The picture compares these
times with the unreliable IP multicast (under UDP sockets) delivery times with the same
message sizes. The gap of approximately 8ms between both is due mostly to the TTCB
Agreement execution time. We are currently working on an faster protocol for this TTCB
service, that will have a direct impact on the performance of BRM-T. Nevertheless, the
times obtained seam to be good when compared with protocols in the literature. For
instance, in [Reiter, 1994], for 6 processes and messages with 0 and 1 Kbytes, the de-

“http://www.rtai.org
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livery times were approximately 52 and 57 ms, about 6 times the BRM-T times. This
comparison should, however, be taken with caution since the test environment were quite
different.
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Figura 4: Six-node average delivery time for different message sizes, with Od = 2.

The third set of experiments assessed the impact of the omission degree on the
protocol delivery times. Figure 5 shows the variation of the average delivery time with
Od and the respective standard deviations. Varying Od from 0 (1 copy sent) to 10 (11
copies sent) the performance was only slightly affected.
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Figura 5: Six-node BRM-T average delivery time for different Od values (data size
500bytes).

The fourth set of experiments assessed the impact of silent processes in the per-
formance of the protocol. A process can be silent for a number of reasons, for instance,
because it crashed or because it is malicious and does not want to execute the protocol.
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Figure 6 shows the average delivery times obtained with O to 4 silent processes. The dif-
ference between the delivery times with none and one or more silent processes is around
4ms. Why does the protocol takes longer to execute when there are silent processes? Be-
cause in all previous experiments processes usually proposed before ¢start and therefore
the TTCB Agreement started to run earlier and also terminated sooner. When there are
silent processes, the Agreement starts running only by ¢start and is considered to termi-
nate only by tstart + T'agreement, which is a pessimistic value because T'agreement is
the higher time the Agreement may possible take to run.
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Figura 6: Six-node average delivery time with 0 to 4 silent processes (Od = 2,
data size 500bytes).

5. Related Work

Early reliable multicast protocols which tolerate arbitrary or “Byzantine” faults were re-
ported both considering the synchronous [Lamport et al., 1982] and the asynchronous
time model [Bracha and Toueg, 1985]. Bracha and Toueg established the result that in
asynchronous systems less than a third (f < n/3) of the processes can be corrupted for
the protocol properties to hold [Bracha and Toueg, 1985]. In our protocols, with the sup-
port of the TTCB, we can overcome this limit, and require only f < n — 2, a result
analogous to the one obtained in synchronous systems [Lamport et al., 1982].

The Rampart toolkit contains a reliable multicast protocol that uses public-
key cryptography to digitally sign some of the messages [Reiter, 1994]. The proto-
col is based on a simpler echo protocol that improves an earlier echo protocol by
Toueg [Toueg, 1984]. Rampart assumes a membership service [Reiter, 1996]. Later,
Malki and Reiter optimized the Rampart protocol using a method of chaining acknowl-
edgments [Malkhi and Reiter, 1997]. Malkhi, Merrit and Rodeh proposed a secure reli-
able multicast protocol based on dissemination quorums, as a way to reduce delays spe-
cially in the case where f < n [Malkhi et al., 1997]. These two protocols have a static
membership.
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The SecureRing system provides a reliable message delivery protocol that uses
public key cryptography and assumes a fully connected network [Kihlstrom et al., 1998].
The multicast is imposed on a logical ring, where a token controls who can send the mes-
sages. The Secure Trans protocol, part of the SecureGroup system, uses retransmissions
and acknowledgments to achieve reliable delivery of messages [Moser et al., 2000]. Both
systems support dynamic group membership.

The BRM-T protocol does not need public key cryptography (asymmet-
ric cryptography), one of the main bottlenecks of group communication perfor-
mance [Castro and Liskov, 1999], since it uses the TTCB to securely exchange a digest
of the message. In fact, it also does not even use symmetric cryptography in runtime,
one of the main differences in relation to a protocol of the same family called BRM-
M [Correia et al., 2002a]. BRM-T and BRM-M have some points in common and some
differences. The first, BRM-T, is based on the well known idea of multicasting a message
enough times to tolerate accidental omissions in the network [Verissimo et al., 1989]. The
protocol terminates early even if there are faulty processes (accidental or malicious faults)
or the network behaves badly, and it does not need to use cryptography in the messages,
therefore avoiding the maintenance of shared keys among processes. This protocol, how-
ever, is pessimistic in the sense that it potentially sends more messages than what is nec-
essary. The second protocol, BRM-M, uses acknowledgements. Consequently, it usually
sends fewer messages but may take longer to terminate if there are faulty processes. This
protocol requires message authentication codes (MAC) only in the acknowledgements
(not in the data messages), but since these are based on symmetric cryptography the per-
formance does not suffer too much [Castro and Liskov, 1999, Menezes et al., 1997]. We
argue that providing two similar protocols optimized for different conditions can be useful
for building systems which adapt to, e.g., different levels of threat. In terms of the net-
work both protocols assume unreliable channels, which results on a message complexity
proportional to the omission degree.

There is a body of research on hybrid fault models starting with the work by Meyer
and Pradhan [Meyer and Pradhan, 1987] which assumes different failure type distribu-
tions for different nodes. For instance, a number of nodes is allowed to fail arbitrarily
while others can fail only by crashing. These distributions are hard to substantiate in the
presence of malicious and intelligent entities, unless their behavior is constrained in some
way. Our model may be better called an architectural hybrid fault model in the sense that
it makes different failure mode assumptions about different system components, and that
those assumptions are enforced by construction.

6. Conclusion

This paper presents a new intrusion-tolerant reliable multicast protocol for asynchronous
systems with an hybrid fault model. This type of failure model allows some components
to fail in a controlled way while others may fail arbitrarily. In our case, we assume the
existence of a simple distributed security kernel, the TTCB, that can only fail by crashing,
while the rest of the system can behave in a Byzantine way. By relying on the services
of the TTCB, both protocols exhibit excellent behavior in terms of time and message
complexity when compared with more traditional Byzantine protocols. Moreover, they
only require n > f + 2 correct processes, instead of the usual n > 3f + 1.
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