

Collapsed Cooperative Video Cache for Content
Distribution Networks

Edison Ishikawa1,2, Cláudio Luis Amorim2

1 Departamento de Engenharia de Sistemas e Computação - Instituto Militar de
Engenharia (IME) – Praça General Tibúrcio, 80 – 22.290-270 - Rio de Janeiro – RJ -

Brazil

2 Programa de Engenharia de Sistemas – COPPE - Universidade Federal do Rio de
Janeiro (UFRJ) - Rio de Janeiro – RJ - Brazil
ishikawa@ime.eb.br, amorim@cos.ufrj.br

Abstract. In this work we describe the Collapsed Cooperative Video Cache (C-
CVC), a novel scalable technique for delivering video streams over content
distribution networks (CDNs). C-CVC is based on the idea of collapsing client
buffers into the proxy caches on the CDN edges nearest to the clients while enforcing
transparently cooperation among clients that share the same video content. As a
result of storing videos close to the clients, C-CVC decreases the average initial
video exhibition latency. C-CVC also reserves cache space in the proxy, therefore
absorbing more jitter and using less CDN resources. Most importantly, by
implementing the collapsed cooperative video cache globally across CDN’s proxies,
C-CVC enables VoD systems to become highly scalable.

1. Introduction

The growth in popularity of video media can be explained by the dissemination of
broadband accesses. However the available communication bandwidth in Video on
Demand (VoD) servers and network backbones limit severely the distribution of video
contents in an isochronous way. The problem is that typical VoD systems often reserve
resources along the communication path whose limited bandwidth ultimately restricts
the target audience. Recently, the development of proxy-based VoD systems, in which
video proxies are deployed in the critical path between a VoD server and its clients,
have emerged as a necessary requisite to support video stream delivery in a scalable
way. Also, several authors proposed new scalable approaches that allow the reuse of
video streams through adaptations of multicast/broadcast techniques such as Batching
[Aggarwal, Wolf and Yu 1996], Piggybacking [Golubick, Sitaram and Shahabuddin
1996], Chaining [Sheu, Hua and Tavanapong 1997], Patching [Hua, Drops and Sheu
1998], Stream Tapping [Carter and Long 1997], Catching [Gao, Zhang and Towsley
1999], and Skimming [Eager, Vernon and Zahorjan 2000] or some combination of
them [Acharya and Smith 2000], [Bommaiah, Guo, Hofmann and Paul 2000],
[Verscheure, Venkatramini, Frossard and Amini 2002], [Almeida, Eager, Ferris and
Vernon 2002], [Wang, Sen, Adler and Towsley 2002].

 For instance, the work in [Verscheure, Venkatramini, Frossard and Amini 2002]
describes a cache strategy that accounts for the establishment of Quality of Service
(QoS), but the proxy does not reserve memory for its clients. Another scalable
technique as proposed in [Almeida, Eager, Ferris and Vernon 2002] called proxy

skimming requires a lot of memory for implementing the client buffer, thus increasing
the client equipment costs. To the best of our knowledge, there has been no proposal
that reserves resources in the proxy placed on the edge of a VoD system in order to
provide guarantee of minimum cache hit to exhibit videos without hiccups.

 Our solution is motivated from the observation that typical client equipment of a
VoD system treats the system jitter by using locally a video buffer that compensates for
delays or advances in the media delivery. In addition, we note that a large enough client
buffer can support large variation of QoS in the media delivery, while providing
substantial bandwidth savings, which can be used to transmit even more streams
simultaneously in a scalable way. However, a large client buffer means more expensive
set-top boxes and increasing service latency. Bearing this in mind we propose the
collapsed cooperative video cache (C-CVC) technique that as we will show allows
client buffers to support the design of scalable proxy-based VoD servers in a cost-
effective way.

 The cooperative video cache (CVC) as described originally in [Ishikawa and
Amorim 2001] follows a peer-to-peer architecture in which clients at the borders of the
VoD system not only consume video stream contents they request, but also can
cooperate with the system by acting as video stream providers to other clients in the
system. In contrast, the collapsed CVC version enables the CVC concept to efficiently
work also in more practical settings, as Figure 1 illustrates. More specifically, C-CVC is
suited to work on the edge of a Content Distribution Network (CDN).

Video
server

Distribution Network

C-CVC
Proxie

Access Network

C-CVC
Proxie

Access
Network

Client
Client Client

Client

Client Client

Figure 1. The components of distribution and access networks

 The main contributions of this paper are:

• We developed a new scalable technique for video stream delivery called
collapsed CVC that benefits from the original CVC technique while expanding
its applicability.

• Using detailed simulations we show that the collapsed CVC technique enables
scalable VoD systems to be built for delivering popular videos during prime
time, in a cost-effective manner, even using low-cost set-top-boxes.

• We show that the resulting C-CVC-based VoD system also works for less
popular videos by self-adjusting dynamically according to video access pattern.

 The remainder of this paper is organized as follows. Section 2 overviews the
CVC technique. Section 3 describes the collapsed version of CVC. Section 4 presents
our experimental methodology and simulated results of a VoD server based on C-CVC.
Finally, in Section 5 we conclude and outline future works.

2. Overview of the Cooperative Video Cache

The cooperative video cache (CVC) [Ishikawa and Amorim 2001] treats client buffers
as part of a single cooperative memory, as shown in Figure 2. Like the client-server
model, each CVC client uses its own video buffer for two main purposes: 1) handling
the system jitter and 2) hold the incoming video stream for decoding and exhibition.
Differently from the client-server model, each CVC client can cooperate with the VoD
system by sharing the content of its local buffer with other active clients in the system.

Video
Server

Video Clients

buffer buffer buffer buffer

. . .
CVC

Distribution Network

Figure 2. CVC treats the client buffers as a single global memory in a
cooperative way.

 Under conventional operation the incoming video stream constantly renews the
content of the client’s video buffer. We assume that the video unit is the MPEG Group
of Frames (GoF). Also, arriving GoFs at the client are stored in the local buffer until

they are displayed, after which they are usually discarded. In contrast, instead of
discarding a displayed GoF, CVC may reuse it, e.g., by joining it to a new video stream
that is shared with another client that requested the same video. CVC applies such a
stream reuse technique to new clients that log into the system provided they require any
available video being exhibited. Ultimately, stream reuse can result in video streams
that span long chains aka chaining [Sheu, Hua and Tavanapong 1997]. In addition,
CVC uses buffer’s contents for sending patches to complete other video streams in the
system so that continuous chain of video streams will be formed when even necessary.
CVC’s patching differs from the original patching [Hua, Drops and Sheu 1998] by
allowing clients also to send patches.

 An implementation of CVC using a 100 Mbps Fast-ethernet switch [Pinho,
Ishikawa and Amorim 2002] showed that CVC allows conventional VoD servers to
reduce as much as 90% the demand on its logical video channels. CVC can improve
system scalability using low-cost VoD servers and it is ideal to distribute institutional
videos for training and other informational purposes. More detail of the CVC technique
can be found in [Ishikawa and Amorim 2001], [Pinho, Ishikawa and Amorim 2002] and
[Pinho, Ishikawa and Amorim 2003]. Nevertheless, the basic CVC presents some
shortcomings:

• Increasing the traffic between clients at the network´s opposite sides may
congest the network backbone, preventing the use of CVC within WAN
environments.

• CVC is not suitable to asymmetrical links that prevail in the last mile to the
home user;

• The reliability of a CVC-based VoD system is low due to client silent faults;

• CVC may restrict user’s privacy.

 Next, we examine how the collapsed CVC eliminates these restrictions, allowing
to efficiently extending the concept of CVC to WANs.

3. The Collapsed cooperative video cache

To eliminate CVC´s drawbacks we propose to collapse CVC client buffers into the
network access points. For simplicity, this paper focuses on the design, operation, and
evaluation of a single proxy design based on the C-CVC technique. We plan to
evaluate C-CVC across multiple CDN proxies in the near future.

 Figure 3 shows client buffers collapsed in the proxy at the edge of a content
distribution network, before the so called last mile to the client.

 The main difference between the collapsed CVC and other proxy schemes is that
C-CVC reserves proxy memory space for client’s usage in a way that to every client
buffer there exists one extra block associate to it in the proxy memory. Therefore, C-
CVC guarantees cache hits for all the collapsed buffers in the proxy, or they are likely
to have a minimum guarantee with high probability. In fact, a substantial part of the
client buffer is collapsed in the proxy, while the remainder part that is left in the client
is used to decode the video and to handle the proxy jitter due to the last mile. The
collapsed buffer, whose content can be shared cooperatively with other users, absorbs
the remaining system jitter. The collapsed buffer is filled accordingly to the contracted

QoS with both the VoD server and the distribution network. So, unless the server or the
distribution network cannot sustain the contracted QoS, the cache hit in the collapsed
buffer is guaranteed by the contracted QoS. Also, if a user stops making use of the
system, the user’s reserved proxy memory can be used alternatively to overall benefit of
the system. It is important to notice that cache hits in the proxy depend on which part of
the video is requested. If the part is in the collapsed buffer, the probability of cache hit
of the remainder part of the video is high and is guaranteed by the contracted QoS,
otherwise the cache hit has no QoS guarantee. For instance, a cache miss occurs on the
first time the video is ordered, and the user will experience the initial exhibition latency
while the collapsed buffer is filled.

Video
Server

Video Clients

buffer buffer buffer buffer

. . .

Distribution Network

...
C-CVC
proxy

Figure 3. Collapsing of CVC buffers in a central access point.

3.1 C-CVC design

The collapsed buffer can be divided into four segments, as shown in Figure 4. The first
segment lies between the beginning pointer B and the overflow pointer O. The second
segment lies between O and the underflow pointer U. The pointer W indicates the
average position in the buffer to write next incoming GoF units, and it should point into
the second segment. The third segment is located between U and the reading pointer R.
The fourth segment lies between R and end-of-buffer pointer E. The content’s segment
that cannot be discarded and has not been exhibited, or is to be exhibited shortly, is held
in the second and third segments of the buffer.

 Each slot of the collapsed buffer has enough memory to store a small number of
video units, each of which corresponds to an average of few seconds of video stream.

In this way, the length of time of a video can be divided into time slots forming a
circular vector that rotates clockwise over the video vector. Figure 5 illustrates the two
vectors. The video vector represents the time units that compose the video and has also
the relevant information that is used by C-CVC for managing the units.

E R U O B

W

Figure 4. The division of the collapsed buffer.

 Associate to each video there is a double circular vector used by the C-CVC
system manager. The video vector has the GoF timestamps and uses the GoF’s
sequential number to map every GoFs of the video. Also if a GoF is in the cache then
the video vector has a pointer to it, otherwise the pointer is null. By using such a data
structure, the video unit can be accessed/controlled by either the GoF sequential number
or by its timestamp. When a client starts a video session, some slots of the time-slot
vector (S) are reserved to form the collapsed buffer for the client’s equipment. As the
example in Figure 6 shows, the slots from S-1 to S+2 are mapped to the collapsed
buffer, but only the contents of S+1 and S are really marked as reserved so that they
cannot be discarded by the system. As the time-slot vector rotates over the video vector
synchronously with the video exhibition, new units of video enter and leave the slots. In
case one slot of the time-slot vector is marked as being the second slot of the collapsed
buffer (marked S in Fig. 6), the overflow pointer O become active, and there is a stream
feeding this buffer. If the writing pointer W crosses the overflow pointer O, a warning
signal is generated to inform C-CVC of a risk of collapsed buffer’s overflow. That
signal generates a message to the stream provider so that it should decrease the speed of
video delivery. Similarly, the S+1 slot of the collapsed buffer activates the underflow
pointer U and the reading pointer R. If the writing pointer reaches or moves below the
underflow level a warning is generated to the C-CVC proxy, which will search for a
new source to provide the adequate stream content. Note that the C-CVC proxy is
reactive in the sense that it interacts with the server to ask for sending GoFs quickly or
slowly and also for supplying new video streams. The content pointed by the reading
pointer (R) is transmitted to the clients that share the associate collapsed buffer.

 The design of a VoD system based on C-CVC involves two key issues that we
discuss next: (1) how to control the slots of collapsed buffers and (2) how to discover
which slots should form the collapsed buffer in a cost-effective manner when a client
logs into the system.

0

1

2

N-1

N-2

N-3

0 1 2 3 4 5
6

7
8

9

GoF number

time-slot number

Figure 5. The time-slot vector (external circle) and the video vector (internal
circle).

 Upon the first request for a certain video arrives at the proxy, the C-CVC
manager creates the data structure for the video, as shown in Figure 5, and sets its initial
state appropriately. To see how that structure works, we can think the video vector is
static while the time-slot vector runs clockwise at the playback speed over the video
vector. The time-slot vector starts running at the time ST immediately after its creation.
The initial slot S+2 of the collapsed buffer (see Fig. 6) that will be reserved for the
client, is calculated by subtracting the current time CT and the initial time GTS (GoF
TimeStamp) of the selected segment in relation to the video’s starting time from time
ST. The number of traversed slots is obtained by dividing the previous result by the slot
duration (SD) and by using that number to the NS (number of slots) module operation
we have the slot number (S+2). This calculation can be translated by the following
expression:

(S+2)= [(ST-CT-GTS)/SD]%NS

 Usually, a video request asks for starting the video transmission at the
beginning, i.e., GTS is equal zero, although the system also allows transmission to start
at any point within the video stream.

 The collapsed buffer is an useful abstraction since what actually controls both
video content and its flow through collapsed buffers mapped in the proxy cache are the
time slots that C-CVC implements. Every time-slot status corresponds to one place in
the collapsed buffer so that if it is not in any of the collapsed buffers then it is set as
non-reserved. A non-reserved time slot means that the slot does not monitor its virtual
content. The content is considered as being virtual because the slot does not store video
content - it only indicates which video units in the video vector it controls. Updating the
limit pointers of a slot at every step is not cost-effective, so the C-CVC proxy calculates
such pointer values on demand. Given ST, CT, PT (the period of time for a complete
rotation, i.e., the video’s duration plus padding), and the slot position (SP) within the
slot vector, then the number of cycles NC can be calculated by:

NC = (ST – CT – SP * SD)/ PT

 The slot starting time (SST) and the slot final time (SFT) are given by:

 SST = ST – CT – NC * PT – SP * SD and SFT = SST – SD

 Both SST and SFT return time values relative to the media starting time. Since
GoFs can be accessed using either its sequential number or its timestamp, the C-CVC
proxy can delimit the GoFs managed by a certain slot using the simple expressions as
stated above.

time-slot vector
S + 2 S + 1 S

S - 1

E R U O BW

Figure 6. Projection of the collapsed buffer on the slots vector.

4. Experimental Methodology

 Using the NS-2 version 2.1b7 simulation tool [Breslau et all 2000] we evaluated
the effectiveness of the Collapsed CVC technique for delivering popular videos in
prime time periods. We make no considerations about the access point equipment that
connect the clients to the CDN, which can be either a router, a switch or even a
DSLAM (Digital Subscriber Line Access Multiplexer). Connected to this access point a
C-CVC proxy capable of supporting up to 1000 simultaneous connections. It is worth to
note that current DSLAM companies offer equipment that support 2000 or more ADSL
ports with downstream rate that reaches up to 11 Mbps [ALCATEL 2002]. Our
simulations use the trace of the first one hour of the Oliver Stone’s motion picture
Platoon, with MPEG2 wide-screen format and an average throughput rate of 8 Mbps
(refer to Fig. 7). We choose the DVD video quality because VoD services will compete
with cable TV, HDTV (High Definition TV) and users are unwilling to subscribe for
low quality services.

0

100000

200000

300000

400000

500000

600000

700000

1

44
4

88
7

13
30

17
73

22
16

26
59

31
02

35
45

39
88

44
31

48
74

53
17

57
60

62
03

66
46

70
89

Go F nu m be r

B
yt

es

GoF s iz e

Figure 7. Graphic with the Platoon video GoF size used in the simulation.
GoFs with 12 pictures on average for a 29.97 frame rate per second.

 For evaluation purposes, we assume that the server´s capacity corresponds to
1000 logic channels, which is equivalent to that of a conventional unicast system that
supports the same amount of simultaneous clients. Also, the server can store 100
videos, each of which lasts one hour and occupies 3.2 GBytes. For simulation purposes,
we assume the videos are different, although we used a single video trace. The client
requests follow a Poisson arrival process and the selected video is chosen according to
the Zipf distribution [Zipf 1929].

Table 1. Simulation Parameters

Parameter Standard value Variation

Time of simulation 1 hour -

Avg time between arrivals 3.1 s 3.1 to 300 s

Video length 1 hour -

Video size 3.2 GBytes -

Average transmission rate 8 Mbps -

Slot size 8 Mbytes -

Collapsed buffer size 4 slots -

Cache size 32 Gbytes 0 to 320 GBytes

Client buffer size 8 Mbytes -

Table 1 shows the simulation’s main parameters. The initial simulations used only
one single video to study the local behavior of the collapsed CVC. Next, we present
simulations results for multiple videos so as to analyze the C-CVC’s global behavior
under highly-demanding working conditions. Also, we choose to use a large cache size
because it can be split between main memory and local disk, besides the fact that the
client playback buffer could be reduced substantially. In particular, by combining the

client buffer with the collapsed buffer opens new system design possibilities. One is to
reduce the buffer size of each client’s set-top-box, making it cheaper. Another
possibility is to use the extra buffer size to save CDN resources. For instance, allowing
a video flow with greater jitter (less QoS) that can be absorbed by the collapsed buffer.

 We can estimate the amount of memory necessary for a given video quality
using the video’s average bit rate. As the Figure 8 shows, a low-quality video that is
typically used in the Internet, with 7.1 frames-per-second resolution and bandwidth of
10 Kbps needs only 40 Mbytes of proxy cache, keeping other simulations parameters
fixed. Also, a VCD-quality video with 1.5 Mbps needs 6 GB cache to serve 100
different videos. Apparently, 32 GB of proxy cache to handle 8 Mbps MPEG2 DVD
quality video is an enormous quantity of memory. However, available 64-bit
microprocessors, like the Intel Itanium, is sold with mother boards supporting more
than 128 GB of RAM at an affordable price. An alternative is to use MPEG4
compression with DVD quality video and an average of 1.5 Mbps, but the decoder
processing power prevents its use in low-cost set-top-box.

Memory x average bit rate

0
10
20
30
40
50
60
70
80

10 64 1536 2048 8192 19456

Kbps

G
B

yt
es

Figure 8. Proxy cache size versus video bit rate assuming the cache stores up

to 20% of one hundred 60-minute videos.

4.1 Evaluating the Collapsed CVC behavior under one single video

To evaluate the C-CVC behavior we used three performance metrics according to the
request arrival rate: (a) the amount of busy slots, (b) the average number of free slots
between busy slots, and (c) the average latency. The number of busy slots indicates the
number of collapsed buffers, which are related to the clients that will receive the proxy
stream, so as to distinguish them from the temporary reserved slots. The average
number of free slots between busy slots is a measure of how close is one busy slot to
another. The average latency indicates the length of time that clients keep waiting
between the video request and its exhibition.

 Figures 9 and 10 show that as the arrival rate increases so does the number of
busy slots while the average number of free slots between busy ones decreases. Overall,
we infer that the busy slot density grows directly with the arrival rate, which implies
that C-CVC should adjust dynamically the video contents held in the cache according to
video popularity. In other words, if a video has a high arrival rate then it is very popular
and almost all of its video GoFs are likely to be kept in the proxy. In contrast, if a video
is unpopular then only few parts of it are necessary to be stored in the proxy´s cache.
Another important detail is that even with high arrival rates the amount of clients per

busy slots is on average no more than 2 clients per slot. This reveals that the memory
economy of C-CVC is obtained partially by more than one user sharing the slots while
most of the economy comes from the busy slot density. Therefore, the larger the
number of busy slots, the greater is the amount of reserved video units in the cache and
consequently the larger is the recycled content.

Number of busy slots

0
50

100
150
200
250
300
350
400

0,2 0,5 1 1,3333 2 4 6 8,3333 19,355

arrivals/minute

b
u

sy
 s

lo
ts

Figure 9. The number of busy slots for one single video versus arrival rate.

Average free slots between busy slots

0

5

10

15

20

25

30

35

0,2 0,5 1 1,3333 2 4 6 8,3333 19,355

arrivals/minute

n
u

m
b

er
 o

f
sl

o
ts

Figure 10. The average number of free slots between busy slots.

 Figure 11 shows C-CVC’s average latency. As can be seen in the figure, the
average latency decreases with the increase of the arrival rate. This result is mainly due
to the latency of first requests, whose delays to fill a buffer are greater for buffers that
are not in the cache. When a larger number of clients share the same video, the initial
latency is reduced to the time necessary to complete the smaller set-top-box buffer. This
is one of the advantages of using video prefix [Sen, Rexford and Towsley 1999], which
retains the initial part of the video in the cache. Ideed, C-CVC enforces low discard
priority for prefix of popular videos by keeping them stand-by and outside of the
collapsed buffers.

4.2 Evaluation of collapsed CVC under multiple videos

In order to study the C-CVC behavior with several videos, we employed the 3 metrics
we used for evaluating one single video performance. In Figure 12, the graphics show
that popular videos with large ranks have greater number of busy slots and also smaller
average number of free slots between busy slots.

 The remaining 70 videos are not plotted in Figures 12 and 13 because the slot
densities are very low at 0 to 5 clients per video, each one occupying different slots
most of the time. On average, 10% of all the requests are spread over the 70 least
popular videos. C-CVC treats such cases, by using the memory savings that more
popular videos provide to compensate for the low slot density of low-rank videos. This
solution represents a compromise between using proxy memory instead of
network/server bandwidth.

0

0,5

1

1,5

2

2,5

3

3,5

0,2 0,5 1 1,3333 2 4 6 8,3333 19,355

arriva ls/minute

se
co

n
d

s

latency

Figure 11. The average latency to start a video exhibition.

 Figure 14 shows the server utilization rate for a proxy cache that can store from
0% to 100% of the 100 video contents that are held in the server. The figure suggests
that without a cache the system behaves like a conventional system. In this case, all of
the 1000 clients that logged into the system occupied the 1000 logic channels that the
server supports. For a 10% cache that can store up to 10% of the capacity of 100 videos
stored in the server, the server utilization rate drops drastically to less than 31%. A
dramatic decrease is achieved with a 20% cache in which the server utilization rate is
reduced to 13% only.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

rank

sl
o

ts

free slots busy slots

 Figure 12. Number of busy slots and average number of free slots between
busy slots versus video rank

 Although the 20% cache corresponds to a 64 GB-size cache, which the C-CVC
VoD system requires to support DVD-quality video, actually more than half of the
cache size can be stored in the local hard disk. Also, we note that C-CVC reduces
substantially buffer size requirements of the client set-top box since most part of the

system jitter is handled by the collapsed buffer, and each of the 8 MBytes that each
client buffer saved resulted in total memory savings of 80 GBytes for the system with
1000 active clients.

C lie n t s p e r v id e o

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

1 4 7 10 13 16 19 22 25 28

r a n k

cl
ie

n
ts

Figure 13. Number of clients per video versus the video rank acording to the
Zipf distribution

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

cache size

%

utilization rate

Figure 14. C-CVC performance for several cache sizes. The cache size ranges
from 0 to 100 % of the space necessary to store 100 videos.

 Figure 15 shows the amount of server streams versus cache size. It is worth to
note that with a 10% cache, the number of server streams is quite large although the
utilization rate decreases. This is explained by the increasing of short streams (patches)
to refill discarded contents of the cache. This also explains a substantial decrease of the
server utilization rate for the 20% cache. With larger caches less patches are necessary,
which translates into the smaller utilization rate.

 Figure 16 shows that without a cache the average latency is bigger because it is
necessary to fill the client buffer. In case of using a cache, the client buffer is only the
minor portion of the total buffer, since the major part is held in the collapsed buffer,
whose initial content corresponds to the beginning of the video, which in turn has a
high probability of being in cache. From the graphics in the figure we conclude that C-
CVC can sustain on average small reply´s latency to client requests.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90 100

cache size

st
re

am
s

server streams

Figure 15. The effect of cache size on the amount of regular streams and
patches the server generates. The cache size ranges from 0 to 100 % of the

space necessary to store 100 videos.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

cache size %

se
co

nd
s

latency

Figure 16. Latency.

5. Conclusions and Ongoing Work

In this work we introduced and evaluated the collapsed CVC technique for building
scalable VoD systems using a high-quality video stream with MPEG2 wide-screen
format and average transmission rate of 8 Mbps. We showed that C-CVC accomplishes
QoS and significant bandwidth savings in both the content distribution network and the
VoD server. Central to C-CVC performance is the collapsed buffer, a new mechanism
that C-CVC introduces in the proxy server, which reduces the buffer length of the
client’s set-top-box and its associate costs.

 Our performance results revealed that under C-CVC a proxy cache that can store
at most 20% of the total video contents allows the VoD server to decrease significantly
the average exhibition latency. Most importantly, C-CVC reduced the network traffic
and busy channels in the server to only 13% in comparison with that of the VoD server
without C-CVC. Furthermore, our results were obtained for a VoD server under
stressing conditions, in which the system demand corresponded to 1000 clients
accessing concurrently one hundred videos stored in the server.

 Overall, the video proxy based on C-CVC is an excellent choice for an interface
between the distribution network and the access network, using either ADSL or SDSL

connections in the so-called last mile to the home user. In this context, WANs, could
have several DSLAM equipments and several proxies that collaborate among
themselves to increase the overall performance of VoD systems. So, the next step in our
research is naturally to study the behavior that accrues from the cooperation of several
C-CVC proxies. In addition, using C-CVC to provide VCR-like interactive services is
under way.

6. ACKNOWLEDGMENTS

 The authors thank Brazil´s funding agencies Finep, Capes and CNPq, for supportting
this research.

REFERENCES

Ishikawa, E. and Amorim, C. L. (2001) “Cooperative Video Caching for Scalable and
Interactive VoD Systems”, IEEE ICN´01, Colmar, France, July.

Aggarwal, C., Wolf, J. and Yu, P. (1996) “On Optimal batching policies for video-on-
demand storage servers”, IEEE International Conference on Multimedia Computing
and Systeems, June.

Golubick, L., Sitaram, D. and Shahabuddin, P. (1996) “Adaptive piggybacking: a novel
technique for data sharing in video-on-demand servers”, ACM Journal of Multimedia
System, 4(3), pp. 140-155, June.

Sheu, S., Hua, K. A. and Tavanapong, W. (1997) “Chaining: The generalized batching
technique for video-on-demand systems”, IEEE International Conference on
Multimedia Computing and Systems, Ottawa, Ontario, Canada.

Hua, K. A., Drops, Y. and Sheu, S. (1998) “Patching: The multicast technique goes true
video-on-demand services”, ACM Multimedia´98, Bristol, England, September.

Carter, S. and Long, D. (1997) “Improving video-on-demand server efficiency through
stream tapping”, International Conference on Computer Communications and
Networks.

Gao, L., Zhang, Z. and Towsley, D. (1999) “Catching and\Selective Catching: Efficient
Latency Reduction Techniques for Delivering Continuous Multimedia Streams”,
ACM Multimedia´99.

Eager, D., Vernon, M. and Zahorjan, J. (2000) “Bandwidth Skimming: A Technique for
Cost-Effective Video-on-Demand”, Multimedia and Computing 2000, San Jose, CA,
January.

Pinho, L. B., Ishikawa, E. and Amorim, C. L. (2002) “GloVE: A Distributed
Environment for Low Cost Scalable VoD Systems”, IEEE 14th Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD 2002,
Brazil, October.

Pinho, L. B., Ishikawa, E. and Amorim, C. L. (2003) “GloVE: A Distributed
Environment for Scalable VoD Systems”, to appear in The International Journal of
High Performance Computing Applications, volume 17, number 2, summer.

Zipf, G. K. (1929) "Relative frequency the determinant of phonetic change", Harvard
Studies in Classical Philology, Volume XL.

Sen, S., Rexford, J. and Towsley, D. (199) “Proxy prefix caching for multimedia
streams”, IEEE Infocom´99, New York.

Acharya, S. and Smith, B. (2000) “MidleMan: A Video Caching Proxy Server”,
NOSSDAV 2000, Chappel Hill, NC, June.

Bommaiah, E., Guo, K., Hofmann, M. and Paul, S. (2000) “Design and Implementation
of Caching System for Streaming Media over the Internet”, IEEE Real Time
Technology and Applications Symposium, Washington, DC, May.

Verscheure, O., Venkatramini, C., Frossard, P. and Amini, L. (2002) “Joint server
scheduling and proxy caching for video delivery”, Computer Communications 25
(2002) 413-423.

Almeida, J. M., Eager, D. L., Ferris, M. and Vernon, M. K. (2002) “Provisioning
Content Distribution Networks for Streaming Media”, IEEE Infocom 2002, New
York, NY, June.

Wang, B., Sen, S., Adler, M. and Towsley, D. (2002) “Optimal Proxy Cache Allocation
for Efficient Streaming Media Distribution”, IEEE Infocom 2002, New York, NY,
June.

ALCATEL (2002) “ALCATEL 7300 ASAM data sheet”, http://www.alcatel.com

ALCATEL (2002), “ADSL line card (24-port) data sheet”, http://www.alcatel.com

Breslau, L. et all (2000) “Advances in Network Simulation”, IEEE Computer, 33(5),
p.p. 59-67, May.

	cabecalho2481: XXI Simpósio Brasileiro de Redes de Computadores
	page2481: 249
	cabecalho2491: XXI Simpósio Brasileiro de Redes de Computadores
	page2491: 250
	cabecalho2501: XXI Simpósio Brasileiro de Redes de Computadores
	page2501: 251
	cabecalho2511: XXI Simpósio Brasileiro de Redes de Computadores
	page2511: 252
	cabecalho2521: XXI Simpósio Brasileiro de Redes de Computadores
	page2521: 253
	cabecalho2531: XXI Simpósio Brasileiro de Redes de Computadores
	page2531: 254
	cabecalho2541: XXI Simpósio Brasileiro de Redes de Computadores
	page2541: 255
	cabecalho2551: XXI Simpósio Brasileiro de Redes de Computadores
	page2551: 256
	cabecalho2561: XXI Simpósio Brasileiro de Redes de Computadores
	page2561: 257
	cabecalho2571: XXI Simpósio Brasileiro de Redes de Computadores
	page2571: 258
	cabecalho2581: XXI Simpósio Brasileiro de Redes de Computadores
	page2581: 259
	cabecalho2591: XXI Simpósio Brasileiro de Redes de Computadores
	page2591: 260
	cabecalho2601: XXI Simpósio Brasileiro de Redes de Computadores
	page2601: 261
	cabecalho2611: XXI Simpósio Brasileiro de Redes de Computadores
	page2611: 262
	cabecalho2621: XXI Simpósio Brasileiro de Redes de Computadores
	page2621: 263
	cabecalho2631: XXI Simpósio Brasileiro de Redes de Computadores
	page2631: 264
	Indice:

