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Abstract. In this work we describe the Collapsed Cooperative Video Cache (C-
CVC), a novel scalable technique for delivering video streams over content 
distribution networks (CDNs). C-CVC is based on the idea of collapsing client 
buffers into the proxy caches on the CDN edges nearest to the clients while enforcing 
transparently cooperation among clients that share the same video content. As a 
result of storing videos close to the clients, C-CVC decreases the average initial 
video exhibition latency. C-CVC also reserves cache space in the proxy, therefore 
absorbing more jitter and using less CDN resources. Most importantly, by 
implementing the collapsed cooperative video cache globally across CDN’s proxies, 
C-CVC enables VoD systems to become highly scalable.  

1. Introduction 

The growth in popularity of video media can be explained by the dissemination of 
broadband accesses. However the available communication bandwidth in Video on 
Demand (VoD) servers and network backbones limit severely the distribution of video 
contents in an isochronous way. The problem is that typical VoD systems often reserve 
resources along the communication path whose limited bandwidth ultimately restricts 
the target audience. Recently, the development of proxy-based VoD systems, in which 
video proxies are deployed in the critical path between a VoD server and its clients,  
have emerged as a necessary requisite to support video stream delivery in a scalable 
way.  Also, several authors proposed new scalable approaches that allow the reuse of 
video streams through adaptations of multicast/broadcast techniques such as Batching 
[Aggarwal, Wolf and Yu 1996], Piggybacking [Golubick, Sitaram and Shahabuddin 
1996], Chaining [Sheu, Hua and Tavanapong 1997], Patching [Hua, Drops and Sheu 
1998], Stream Tapping [Carter and Long 1997], Catching [Gao, Zhang and Towsley 
1999], and Skimming [Eager, Vernon and Zahorjan 2000] or some combination of 
them [Acharya and Smith 2000], [Bommaiah, Guo, Hofmann and Paul 2000], 
[Verscheure, Venkatramini, Frossard and Amini 2002], [Almeida, Eager, Ferris and 
Vernon 2002], [Wang, Sen, Adler and Towsley 2002]. 

 For instance, the work in [Verscheure, Venkatramini, Frossard and Amini 2002] 
describes a cache strategy that accounts for the establishment of Quality of Service 
(QoS), but the proxy does not reserve memory for its clients. Another scalable 
technique as proposed in [Almeida, Eager, Ferris and Vernon 2002] called proxy 



  

skimming requires a lot of memory for implementing the client buffer, thus increasing 
the client equipment costs.  To the best of our knowledge, there has been no proposal 
that reserves resources in the proxy placed on the edge of a VoD system in order to 
provide guarantee of minimum cache hit to exhibit videos without hiccups.  

 Our solution is motivated from the observation that typical client equipment of a 
VoD system treats the system jitter by using locally a video buffer that compensates for 
delays or advances in the media delivery. In addition, we note that a large enough client 
buffer can support large variation of QoS in the media delivery, while providing 
substantial bandwidth savings, which can be used to transmit even more streams 
simultaneously in a scalable way. However, a large client buffer means more expensive 
set-top boxes and increasing service latency.  Bearing this in mind we propose the 
collapsed cooperative video cache (C-CVC) technique that as we will show allows 
client buffers to support the design of scalable proxy-based VoD servers in a cost-
effective way. 

 The cooperative video cache (CVC) as described originally in [Ishikawa and 
Amorim 2001] follows a peer-to-peer architecture in which clients at the borders of the 
VoD system not only consume video stream contents they request, but also can 
cooperate with the system by acting as video stream providers to other clients in the 
system. In contrast, the collapsed CVC version enables the CVC concept to efficiently 
work also in more practical settings, as Figure 1 illustrates. More specifically, C-CVC is 
suited to work on the edge of a Content Distribution Network (CDN).  
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Figure 1. The components of distribution and access networks 

  The main contributions of this paper are: 



  

•  We developed a new scalable technique for video stream delivery called 
collapsed CVC that benefits from the original CVC technique while expanding 
its applicability. 

•  Using detailed simulations we show that the collapsed CVC technique enables 
scalable VoD systems to be built for delivering popular videos during prime 
time, in a cost-effective manner, even using low-cost set-top-boxes. 

•  We show that the resulting C-CVC-based VoD system also works for less 
popular videos by self-adjusting dynamically according to video access pattern.  

 The remainder of this paper is organized as follows. Section 2 overviews the 
CVC technique. Section 3 describes the collapsed version of CVC. Section 4 presents 
our experimental methodology and simulated results of  a VoD server based on C-CVC.  
Finally, in Section 5 we conclude and outline future works. 

2. Overview of the Cooperative Video Cache 

The cooperative video cache (CVC) [Ishikawa and Amorim 2001] treats client buffers 
as part of a single cooperative memory, as shown in Figure 2.  Like the client-server 
model, each CVC client uses its own video buffer for two main purposes: 1) handling 
the system jitter and 2) hold the incoming video stream for decoding and exhibition. 
Differently from the client-server model, each CVC client can cooperate with the VoD 
system by sharing the content of its local buffer with other active clients in the system.  
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Figure 2. CVC treats the client buffers as a single global memory  in a 
cooperative way. 

      Under conventional operation the incoming video stream constantly renews the 
content of the client’s video buffer. We assume that the video unit is the MPEG Group 
of Frames (GoF). Also, arriving GoFs at the client are stored in the local buffer until 



  

they are displayed, after which they are usually discarded. In contrast, instead of 
discarding a displayed GoF, CVC may reuse it, e.g., by joining it to a new video stream 
that is shared with another client that requested the same video. CVC applies such a 
stream reuse technique to new clients that log into the system provided they require any 
available video being exhibited. Ultimately, stream reuse can result in video streams 
that span long chains aka chaining [Sheu, Hua and Tavanapong 1997]. In addition, 
CVC uses buffer’s contents for sending patches to complete other video streams in the 
system so that continuous chain of video streams will be formed when even necessary.  
CVC’s patching differs from the original patching [Hua, Drops and Sheu 1998] by 
allowing clients also to send patches.  

     An implementation of CVC using a 100 Mbps Fast-ethernet switch [Pinho, 
Ishikawa and Amorim 2002] showed that CVC allows conventional VoD servers to 
reduce as much as 90% the demand on its logical video channels. CVC can improve 
system scalability using low-cost VoD servers and it is ideal to distribute institutional 
videos for training and other informational purposes. More detail of the CVC technique 
can be found in [Ishikawa and Amorim 2001], [Pinho, Ishikawa and Amorim 2002] and 
[Pinho, Ishikawa and Amorim 2003]. Nevertheless, the basic CVC presents some 
shortcomings: 

•  Increasing the traffic between clients at the network´s opposite sides may 
congest the network backbone, preventing the use of CVC within WAN 
environments. 

•  CVC is not suitable to asymmetrical links that prevail in the last mile to the 
home user; 

•  The reliability of a CVC-based VoD system is low due to client silent faults; 

•  CVC may restrict user’s privacy.  

      Next, we examine how the collapsed CVC eliminates these restrictions, allowing 
to efficiently extending the concept of CVC to WANs. 

3. The Collapsed cooperative video cache  

To eliminate CVC´s drawbacks we propose to collapse CVC client buffers into the 
network access points. For simplicity, this paper focuses on the design, operation, and 
evaluation of a single proxy design based on the C-CVC technique.  We plan to 
evaluate C-CVC across multiple CDN proxies in the near future. 

 Figure 3 shows client buffers collapsed in the proxy at the edge of a content 
distribution network, before the so called last mile to the client. 

      The main difference between the collapsed CVC and other proxy schemes is that 
C-CVC reserves proxy memory space for client’s usage in a way that to every client 
buffer there exists one extra block associate to it in the proxy memory. Therefore, C-
CVC guarantees cache hits for all the collapsed buffers in the proxy, or they are likely 
to have a minimum guarantee with high probability. In fact, a substantial part of the 
client buffer is collapsed in the proxy, while the remainder part that is left in the client 
is used to decode the video and to handle the proxy jitter due to the last mile. The 
collapsed buffer, whose content can be shared cooperatively with other users, absorbs 
the remaining system jitter. The collapsed buffer is filled accordingly to the contracted 



  

QoS with both the VoD server and the distribution network. So, unless the server or the 
distribution network cannot sustain the contracted QoS, the cache hit in the collapsed 
buffer is guaranteed by the contracted QoS. Also, if a user stops making use of the 
system, the user’s reserved proxy memory can be used alternatively to overall benefit of 
the system. It is important to notice that cache hits in the proxy depend on which part of 
the video is requested. If the part is in the collapsed buffer, the probability of cache hit 
of the remainder part of the video is high and is guaranteed by the contracted QoS, 
otherwise the cache hit has no QoS guarantee. For instance, a cache miss occurs on the 
first time the video is ordered, and the user will experience the initial exhibition latency 
while the collapsed buffer is filled. 
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Figure 3. Collapsing of  CVC buffers in a central access point. 

3.1 C-CVC design 

The collapsed buffer can be divided into four segments, as shown in Figure 4. The first 
segment lies between the beginning pointer B and the overflow pointer O. The second 
segment lies between O and the underflow pointer U.  The pointer W indicates the 
average position in the buffer to write next incoming GoF units, and it should point into 
the second segment. The third segment is located between U and the reading pointer R. 
The fourth segment lies between R and end-of-buffer pointer E.  The content’s segment 
that cannot be discarded and has not been exhibited, or is to be exhibited shortly, is held 
in the second and third segments of the buffer. 

     Each slot of the collapsed buffer has enough memory to store a small number of 
video units, each of which corresponds to an average of few seconds of video stream.  



  

In this way, the length of time of a video can be divided into time slots forming a 
circular vector that rotates clockwise over the video vector. Figure 5 illustrates the two 
vectors. The video vector represents the time units that compose the video and has also 
the relevant information that is used by C-CVC for managing the units.  
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Figure 4. The division of the collapsed buffer. 

 Associate to each video there is a double circular vector used by the C-CVC 
system manager. The video vector has the GoF timestamps and uses the GoF’s 
sequential number to map every GoFs of the video. Also if a GoF is in the cache then 
the video vector has a pointer to it, otherwise the pointer is null. By using such a data 
structure, the video unit can be accessed/controlled by either the GoF sequential number 
or by its timestamp. When a client starts a video session, some slots of the time-slot 
vector (S) are reserved to form the collapsed buffer for the client’s equipment. As the 
example in Figure 6 shows, the slots from S-1 to S+2 are mapped to the collapsed 
buffer, but only the contents of S+1 and S are really marked as reserved so that they 
cannot be discarded by the system. As the time-slot vector rotates over the video vector 
synchronously with the video exhibition, new units of video enter and leave the slots. In 
case one slot of the time-slot vector is marked as being the second slot of the collapsed 
buffer (marked S in Fig. 6), the overflow pointer O become active, and there is a stream 
feeding this buffer. If the writing pointer W crosses the overflow pointer O, a warning 
signal is generated to inform C-CVC of a risk of collapsed buffer’s overflow. That 
signal generates a message to the stream provider so that it should decrease the speed of 
video delivery. Similarly, the S+1 slot of the collapsed buffer activates the underflow 
pointer U and the reading pointer R. If the writing pointer reaches or moves below the 
underflow level a warning is generated to the C-CVC proxy, which will search for a 
new source to provide the adequate stream content. Note that the C-CVC proxy is 
reactive in the sense that it interacts with the server to ask for sending GoFs quickly or 
slowly and also for supplying new video streams. The content pointed by the reading 
pointer (R) is transmitted to the clients that share the associate collapsed buffer. 

 The design of a VoD system based on C-CVC involves two key issues that we 
discuss next: (1) how to control the slots of collapsed buffers and (2) how to discover 
which slots should form the collapsed buffer in a cost-effective manner when a client 
logs into the system. 



  

0

1

2

N-1

N-2

N-3

0 1 2 3 4 5
6

7
8

9

GoF number

time-slot number

 

Figure 5. The time-slot vector (external circle) and the video vector (internal 
circle). 

  Upon the first request for a certain video arrives at the proxy, the C-CVC 
manager creates the data structure for the video, as shown in Figure 5, and sets its initial 
state appropriately. To see how that structure works, we can think the video vector is 
static while the time-slot vector runs clockwise at the playback speed over the video 
vector.  The time-slot vector starts running at the time ST immediately after its creation. 
The initial slot S+2 of the collapsed buffer (see Fig. 6) that will be reserved for the 
client, is calculated by subtracting the current time CT and the initial time GTS (GoF 
TimeStamp) of the selected segment in relation to the video’s starting time from time 
ST. The number of traversed slots is obtained by dividing the previous result by the slot 
duration (SD) and by using that number to the NS (number of slots) module operation 
we have the slot number (S+2). This calculation can be translated by the following 
expression:   

(S+2)= [(ST-CT-GTS)/SD]%NS 

 Usually, a video request asks for starting the video transmission at the 
beginning, i.e., GTS is equal zero, although the system also allows transmission to start 
at any point within the video stream.  

      The collapsed buffer is an useful abstraction since what actually controls both 
video content and its flow through collapsed buffers mapped in the proxy cache are the 
time slots that C-CVC implements. Every time-slot status corresponds to one place in 
the collapsed buffer so that if it is not in any of the collapsed buffers then it is set as 
non-reserved. A non-reserved time slot means that the slot does not monitor its virtual 
content. The content is considered as being virtual because the slot does not store video 
content - it only indicates which video units in the video vector it controls. Updating the 
limit pointers of a slot at every step is not cost-effective, so the C-CVC proxy calculates 
such pointer values on demand. Given ST, CT, PT (the period of time for a complete 
rotation, i.e., the video’s duration plus padding), and the slot position (SP) within the 
slot vector, then the number of cycles NC can be calculated  by: 



  

NC = (ST – CT – SP * SD )/ PT 

 The slot starting time (SST) and the slot final time (SFT)  are given by: 

     SST = ST – CT – NC * PT – SP * SD and SFT = SST – SD 

  Both SST and SFT return time values relative to the media starting time. Since 
GoFs can be accessed using either its sequential number or its timestamp, the C-CVC 
proxy can delimit the GoFs managed by a certain slot using the simple expressions as 
stated above. 
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S + 2 S + 1 S

S - 1
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Figure 6. Projection of the collapsed buffer on the slots vector. 

4. Experimental Methodology 

 Using the NS-2 version 2.1b7 simulation tool [Breslau et all 2000] we evaluated 
the effectiveness of the Collapsed CVC technique for delivering popular videos in 
prime time periods. We make no considerations about the access point equipment that 
connect the clients to the CDN, which can be either a router, a switch or even a 
DSLAM (Digital Subscriber Line Access Multiplexer). Connected to this access point a 
C-CVC proxy capable of supporting up to 1000 simultaneous connections. It is worth to 
note that current DSLAM companies offer equipment that support 2000 or more ADSL 
ports with downstream rate that reaches up to 11 Mbps [ALCATEL 2002]. Our 
simulations use the trace of the first one hour of the Oliver Stone’s motion picture 
Platoon, with MPEG2 wide-screen format and an average throughput rate of 8 Mbps 
(refer to Fig. 7). We choose the DVD video quality because VoD services will compete 
with cable TV, HDTV (High Definition TV) and users are unwilling to subscribe for 
low quality services. 
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Figure 7. Graphic with the Platoon video GoF size used in the simulation. 
GoFs with 12 pictures on average for a  29.97 frame rate per second.  

 For evaluation purposes, we assume that the server´s capacity corresponds to 
1000 logic channels, which is equivalent to that of a conventional unicast system that 
supports the same amount of simultaneous clients. Also, the server can store 100 
videos, each of which lasts one hour and occupies 3.2 GBytes. For simulation purposes, 
we assume the videos are different, although we used a single video trace. The client 
requests follow a Poisson arrival process and the selected video is chosen according to 
the Zipf distribution [Zipf 1929].  

Table 1. Simulation Parameters 

Parameter Standard value Variation 

Time of simulation 1 hour - 

Avg time between arrivals 3.1 s 3.1  to 300 s 

Video length 1 hour - 

Video size 3.2 GBytes - 

Average transmission rate 8 Mbps - 

Slot size 8 Mbytes - 

Collapsed buffer size 4 slots - 

Cache size 32 Gbytes  0 to 320 GBytes 

Client buffer size 8 Mbytes - 

 

Table 1 shows the simulation’s main parameters. The initial simulations used only 
one single video to study the local behavior of the collapsed CVC. Next, we present 
simulations results for multiple videos so as to analyze the C-CVC’s global behavior 
under highly-demanding working conditions. Also, we choose to use a large cache size 
because it can be split between main memory and local disk, besides the fact that the 
client playback buffer could be reduced substantially. In particular, by combining the 



  

client buffer with the collapsed buffer opens new system design possibilities. One is to 
reduce the buffer size of each client’s set-top-box, making it cheaper. Another 
possibility is to use the extra buffer size to save CDN resources. For instance, allowing 
a video flow with greater jitter (less QoS) that can be absorbed by the collapsed buffer. 

 We can estimate the amount of memory necessary for a given video quality 
using the video’s average bit rate.  As the Figure 8 shows, a low-quality video that is 
typically used in the Internet, with 7.1 frames-per-second resolution and bandwidth of 
10 Kbps needs only 40 Mbytes of proxy cache, keeping other simulations parameters 
fixed. Also, a VCD-quality video with 1.5 Mbps needs 6 GB cache to serve 100 
different videos. Apparently, 32 GB of proxy cache to handle 8 Mbps MPEG2 DVD 
quality video is an enormous quantity of memory. However, available 64-bit 
microprocessors, like the Intel Itanium, is sold with mother boards supporting more 
than 128 GB of RAM at an affordable price. An alternative is to use MPEG4 
compression with DVD quality video and an average of 1.5 Mbps, but the decoder 
processing power prevents its use in low-cost set-top-box. 
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Figure 8. Proxy cache size versus video bit rate assuming the cache stores up 

to 20% of one hundred 60-minute videos. 

4.1 Evaluating the Collapsed CVC behavior under one single video 

To evaluate the C-CVC behavior we used three performance metrics according to the 
request arrival rate: (a) the amount of busy slots, (b) the average number of free slots 
between busy slots, and (c) the average latency. The number of busy slots indicates the 
number of collapsed buffers, which are related to the clients that will receive the proxy 
stream, so as to distinguish them from the temporary reserved slots. The average 
number of free slots between busy slots is a measure of how close is one busy slot to 
another. The average latency indicates the length of time that clients keep waiting 
between the video request and its exhibition. 

 Figures 9 and 10 show that as the arrival rate increases so does the number of 
busy slots while the average number of free slots between busy ones decreases. Overall, 
we infer that the busy slot density grows directly with the arrival rate, which implies 
that C-CVC should adjust dynamically the video contents held in the cache according to 
video popularity. In other words, if a video has a high arrival rate then it is very popular 
and almost all of its video GoFs are likely to be kept in the proxy. In contrast, if a video 
is unpopular then only few parts of it are necessary to be stored in the proxy´s cache. 
Another important detail is that even with high arrival rates the amount of clients per 



  

busy slots is on average no more than 2 clients per slot. This reveals that the memory 
economy of C-CVC is obtained partially by more than one user sharing the slots while 
most of the economy comes from the busy slot density. Therefore, the larger the 
number of busy slots, the greater is the amount of reserved video units in the cache and 
consequently the larger is the recycled content. 
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Figure 9. The number of busy slots for one single video versus arrival rate. 
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Figure 10. The average number of free slots between busy slots. 

      Figure 11 shows C-CVC’s average latency. As can be seen in the figure, the 
average latency decreases with the increase of the arrival rate. This result is mainly due 
to the latency of first requests, whose delays to fill a buffer are greater for buffers that 
are not in the cache. When a larger number of clients share the same video, the initial 
latency is reduced to the time necessary to complete the smaller set-top-box buffer. This 
is one of the advantages of using video prefix [Sen, Rexford and Towsley 1999], which 
retains the initial part of the video in the cache. Ideed, C-CVC enforces low discard 
priority for prefix of popular videos by keeping them stand-by and outside of the 
collapsed buffers. 

4.2 Evaluation of collapsed CVC under multiple videos 

In order to study the C-CVC behavior with several videos, we employed the 3 metrics 
we used for evaluating one single video performance.  In Figure 12, the graphics show 
that popular videos with large ranks have greater number of busy slots and also smaller 
average number of free slots between busy slots. 



  

 The remaining 70 videos are not plotted in Figures 12 and 13 because the slot 
densities are very low at 0 to 5 clients per video, each one occupying different slots 
most of the time. On average, 10% of all the requests are spread over the 70 least 
popular videos. C-CVC treats such cases, by using the memory savings that more 
popular videos provide to compensate for the low slot density of low-rank videos. This 
solution represents a compromise between using proxy memory instead of 
network/server bandwidth.  
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Figure 11. The average latency to start a video exhibition. 

      Figure 14 shows the server utilization rate for a proxy cache that can store from 
0% to 100% of the 100 video contents that are held in the server. The figure suggests 
that without a cache the system behaves like a conventional system. In this case, all of 
the 1000 clients that logged into the system occupied the 1000 logic channels that the 
server supports. For a 10% cache that can store up to 10% of the capacity of 100 videos 
stored in the server, the server utilization rate drops drastically to less than 31%. A 
dramatic decrease is achieved with a 20% cache in which the server utilization rate is 
reduced to 13% only.  
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 Figure 12.  Number of busy slots and  average number of free slots between 
busy slots  versus video rank   

 Although the 20% cache corresponds to a 64 GB-size cache, which the C-CVC 
VoD system requires to support DVD-quality video, actually more than half of the 
cache size can be stored in the local hard disk. Also, we note that C-CVC reduces 
substantially buffer size requirements of the client set-top box since most part of the 



  

system jitter is handled by the collapsed buffer, and each of the 8 MBytes that each 
client buffer saved resulted in total memory savings of 80 GBytes for the system with 
1000 active clients. 
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Figure 13. Number of clients per video versus the video rank acording to the 
Zipf distribution 
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Figure 14. C-CVC performance for several cache sizes. The cache size ranges 
from 0 to 100 % of the space necessary to store 100 videos.  

 Figure 15 shows the amount of server streams versus cache size. It is worth to 
note that with a 10% cache, the number of server streams is quite large although the 
utilization rate decreases. This is explained by the increasing of short streams (patches) 
to refill discarded contents of the cache. This also explains a substantial decrease of the 
server utilization rate for the 20% cache. With larger caches less patches are necessary, 
which translates into the smaller utilization rate. 

 Figure 16 shows that without a cache the average latency is bigger because it is 
necessary to fill the client buffer. In case of using a cache, the client buffer is only the 
minor portion of the total buffer,  since the major part is held in the collapsed buffer, 
whose initial content corresponds to the beginning of the video, which in turn has a 
high probability of being in cache. From the graphics in the figure we conclude that C-
CVC can sustain on average small reply´s latency to client requests.  
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Figure 15. The effect of cache size on the amount of  regular streams and 
patches  the server generates. The cache size ranges from 0 to 100 % of the 

space necessary to store 100 videos. 
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Figure 16. Latency.  

5. Conclusions and Ongoing Work 

In this work we introduced and evaluated the collapsed CVC technique for building 
scalable VoD systems using a high-quality video stream with MPEG2 wide-screen 
format and average transmission rate of 8 Mbps. We showed that C-CVC accomplishes 
QoS and significant bandwidth savings in both the content distribution network and the 
VoD server. Central to C-CVC performance is the collapsed buffer, a new mechanism 
that C-CVC introduces in the proxy server, which reduces the buffer length of the 
client’s set-top-box  and its associate costs. 

  Our performance results revealed that under C-CVC a proxy cache that can store 
at most 20% of the total video contents allows the VoD server to decrease significantly 
the average exhibition latency. Most importantly, C-CVC reduced the network traffic 
and busy channels in the server to only 13% in comparison with that of the VoD server 
without C-CVC. Furthermore, our results were obtained for a VoD server under 
stressing conditions, in which the system demand corresponded to 1000 clients 
accessing concurrently one hundred videos stored in the server. 

       Overall, the video proxy based on C-CVC is an excellent choice for an interface 
between the distribution network and the access network, using either ADSL or SDSL 



  

connections in the so-called last mile to the home user. In this context, WANs,  could 
have several DSLAM equipments and several proxies that collaborate among 
themselves to increase the overall performance of VoD systems. So, the next step in our 
research is naturally to study the behavior that accrues from the cooperation of several 
C-CVC proxies. In addition, using C-CVC to provide VCR-like interactive services is 
under way. 
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